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Swithed a�ne systems using sampled-data ontrollers: robust andguaranteed stabilizationPasal Hauroigné, Pierre Riedinger, Claude Iung
AbstratThe problem of robust and guaranteed stabilization is addressed for swithed a�ne systemsusing sampled state feedbak ontrollers. Based on the existene of a ontrol Lyapunovfuntion for a relaxed system, we propose three sampled-data ontrols. Global attratingsets, omputed by solving a sequene of optimization problems, guarantee pratial and globalasymptoti stabilization for the whole system trajetories. In addition, robust margins withrespet to parameters unertainties and non uniform sampling are provided using input-to-state stability. Finally, a buk-boost onverter is onsidered to illustrate the e�etiveness ofthe proposed approahes.Keywords: swithed a�ne systems, stabilization of hybrid systems, input-to-state stability,robust ontrol1. IntrodutionDuring the past deades, hybrid systems have attrated a large interest from the sienti�ommunity. Indeed, a wide range of systems an be modeled in a hybrid ontext: physialsystems involving impats, multi-model approahes, eletrial iruits ontaining swithingelements (diodes, transistors,...), et. Here, we study a partiular lass of hybrid systems:swithed a�ne systems. It onsists in a �nite olletion of a�ne subsystems whih are se-leted by a swithing rule. Usually, the ontrol design of these systems relies on an averagedmodel [1℄. Averaging methods [2, 3℄ are largely used in power eletronis in order to providefeedbak strategies using Pulse Width Modulation (PWM) ontrol. Advaned methods suhas passivity based ontrol [4℄, sliding modes [5, 6℄, optimal [7, 8, 9℄ and preditive ontrol[10, 11, 12, 13, 14℄ are attrative in order to improve dynami performanes. These methods,Preprint February 25, 2011



in whih a diret seletion of the ative subsystem is made, provide strategies to take intoaount the disontinuities introdued by swithings.Two main problems are related to the stability of swithed systems: the �rst onernsthe stability onditions for an arbitrary swithing law and the seond onerns the swithingstrategy whih keeps the system stable. In this paper, we treat the latter problem. Severalsurveys are available [15, 16, 17, 18℄ on this topi. Most of the available tehniques foreither analyzing the stability or synthesizing ontrol laws are based on Lyapunov funtions:quadrati [19℄, multiple [20, 21, 22℄, pieewise quadrati [23, 24℄, et. In [17℄, the authorpresents a Lie algebra approah for the study of swithing systems. The role of dwell timeand the impat of time-delay have also been emphasized in [25, 26℄. Even various tehniquesare employed, most of them deal with swithed systems whose subsystems share a ommonequilibrium.Unlike these studies, we address the ase where no ommon equilibrium an be de�ned. Alarge lass of systems having a pratial interest, suh as DC-DC power onverters is overedby this framework. Based on the existene of a ommon quadrati Lyapunov funtion, aontinuous time stabilizing swithing strategy is provided in a reent paper [27℄. In [28℄, ina disrete time framework, a positively invariant set [29℄ formed by the union of boundedellipsoids is determined and used in a preditive ontrol algorithm to steer the state inside.However, the method uses a LMI formulation to ompute these ellipsoids whih introduessome onservatism in the result. Indeed, LMIs imply that the swithed system possesses aswithing sequene S of a presribed length for whih a property of uniform stability w.r.t.the initial ondition is satis�ed. So, the omputed invariants are not partiularly tight aroundthe target.In this paper, based on the existene of a Control Lyapunov Funtion (CLF) for a relaxedsystem - obtained by relaxing the ontrol domain to its onvex hull -, robust stability forsampled swithed strategies is investigated. In this framework, the referred targets, namedoperating points, are de�ned as the equilibria of the relaxed system. Assuming that a on-tinuous time CLF is known for the relaxed system, di�erent sampled swithed strategies arededued. A method whih omputes estimation of tight positive invariant sets around the2



targets is given. The global and pratial asymptoti stabilization is thus guaranteed.Preisely, we prove that positive invariant sets an be obtained by solving optimizationproblems. Sine no assumption is made on the CLF, this problem is in general non trivial andnon-linear. Fortunately, when the target de�nes a stable equilibrium of the relaxed system, aquadrati Lyapunov funtion an be easily exhibited and the optimization problem reveals tobe a quadratially onstrained quadrati program (QCQP) for whih e�ient solvers exist.The robustness aspets of the proposed sampled swithed strategies in ase of non uniformsampling and parameter unertainties are also studied and disussed. The Input-to-StateStability (ISS) formulation [30, 31℄ is used in order to provide stability margins.The paper is organized as follows. Setion 2 gives notations and de�nitions used through-out the paper. The system desription is given and the operating points are de�ned in Setion3. In Setion 4, we propose three di�erent sampled-data ontrols for the swithed system,dedued from a known CLF for the relaxed system. Using this CLF, a set of optimizationproblems is also formulated. In Setion 5, we prove that the solutions of these problems allowto de�ne global attrating sets for the sampled swithed a�ne system. Setion 6 providessome relations of inlusions between these attrating sets. An extension of those results inthe ase of parameter unertainties and non-uniform sampling is given in Setion 7. The om-putational aspets are addressed in Setion 8. A buk-boost onverter is used in Setion 9 toillustrate our results. We show that the stability is guaranteed even in presene of parameterunertainties. To onlude, Setion 10 summarizes the results of this paper and their interestin the researh �eld of swithed a�ne systems.2. NotationsLet R, N and N∗ denote the set of real, natural and stritly positive natural numbers,respetively. Moreover, for any a ∈ N, let N≤a denotes the set {k ∈ N | k ≤ a}. ‖ · ‖ is theEulidian norm of a vetor and ‖ · ‖∞ the in�nite norm of a funtion. In this paper, systemsare of the form ẋ(t) = f(x(t), u(t)) where f : R
n × R

m → R
n is loally Lipshitz ontinuous.So, for a given input u, there is a unique solution of the initial value problem and is denoted

x(t, x0, u) for eah initial state x0. 3



De�nition 1 (N0, K and K∞−funtions). A funtion α : R
+ → R

+ is a N0−funtion, if itis ontinuous, nondereasing and satis�es α(0) = 0. Moreover, α is a K−funtion if α ∈ N0and is stritly inreasing. α is a K∞−funtion if it is an unbounded K−funtion.De�nition 2 (KL−funtion). A lass KL−funtion is a funtion β : R
+ × R

+ → R
+ suhthat β(·, t) ∈ K for eah �xed t ≥ 0 and ∀r ≥ 0, β(r, t) → 0 as t → +∞.De�nition 3 (ISS). A system of the form ẋ = f(x, u) is said to be Input-to-State Stable (ISS)if there exist some β ∈ KL and γ ∈ K suh that ‖x(t, x0, u)‖ ≤ β(‖x0‖, t)+γ(‖u‖∞), ∀u ∀x0.De�nition 4 (Pratial stability). A system of the form ẋ = f(x, p) where p is a �xedparameter, is said to be pratially stable if there exist some β ∈ KL and a positive onstant

c(p) suh that ‖x(t, x0, u)‖ ≤ β(‖x0‖, t) + c(p), ∀x0.De�nition 5 (0-GAS). A system of the form ẋ = f(x, u) is said to be 0-Globally Asymptot-ially Stable (0-GAS), if there exists some β ∈ KL suh that ‖x(t, x0, 0)‖ ≤ β(‖x0‖, t), ∀x0.De�nition 6 (AG). A system of the form ẋ = f(x, u) has the Asymptoti Gain property(AG), if there exists some α ∈ N0 suh that lim sup
t→+∞

‖x(t, x0, u)‖ ≤ α(‖u‖∞), ∀u ∀x0.De�nition 7 (CLF). For a system of the form ẋ = f(x, u), a ontrol Lyapunov funtion is afuntion V that is ontinuous, di�erentiable, positive-de�nite, proper, and suh that for all x,there exists u for whih the diretional derivative along the trajetory satis�es V̇ (x; u(x)) :=

∂V
∂x

· f(x, u(x)) ≤ −γ(‖x‖) where γ is a lass K−funtion.3. System DesriptionA swithed a�ne system has the form:
ẋ(t) = A0x(t) + B0 +

m
∑

i=1

ui(t)(Aix(t) + Bi) (1)where ui(t), i = 1, . . . ,m are omponent values of the ontrol u(t) ∈ U = {0, 1}m and
x(t) ∈ R

n represents the state value at time t. Ai and Bi are real matries of appropriatedimensions. As previously laimed, the most studied ase in the literature is the partiularase Bi = 0, ∀i ∈ N≤m. In this situation, all the subsystems (following the �nite values of u)4



share a ommon and unique equilibrium: the origin. The aim of this paper is to explore thease where Bi are all distint from 0 and for whih no ommon equilibrium an be de�ned,e.g. DC-DC onverters.System (1) belongs to the lass of nonsmooth systems for whih the notion of solution anbe properly de�ned and generalized in the sense given by Fillipov [32, 33℄. The generalizedsolutions are de�ned by onsidering the following relaxed system:
ẋ(t) = A0x(t) + B0 +

m
∑

i=1

ui(t)(Aix(t) + Bi) with ui(t) ∈ [0, 1] (2)where the ontrol domain is now the onvex hull o(U) of the original one. A link betweenthe solutions of the system (1) and those of the system (2) an be established by a densitytheorem in in�nite time [34℄:Theorem 1. If z is a global solution of (2) starting from z0 and ε : [0, +∞) → (0, +∞)is ontinuous, then there exists a solution x of (1), starting from x0 ∈ B(z0, ε(0)) suh that
‖z(t) − x(t)‖ < ε(t) for all t ∈ [0, +∞).Therefore, swithing laws u ∈ L∞([0, +∞), U) (where L∞ denotes the Banah spae of allessentially bounded measurable funtions) exist suh that the trajetory of the system (2) anbe approahed as lose as desired by the one of the system (1). For this reason, the operatingpoints set of the swithed system (1) denoted by Xref , is de�ned as the set of equilibriumpoints of the system (2):

Xref =
{

xref ∈ R
n : A0xref + B0 +

m
∑

i=1

ui
ref (Aixref + Bi) = 0, ui

ref ∈ [0, 1]
}

. (3)This set de�nes the ontrol targets for the state of the system (1).It is worth noting that none of the ontrols uref ∈ o(U)\U from (3) and orrespondingto an equilibrium xref , is admissible for the swithed system (1). The outome is that theswithed system state x annot be maintained on xref by a ontrol taking its values in U(unless the time duration between swithings tends towards 0). Consequently, if the targetfor the swithed system is an operating point xref , the asymptoti behavior of the trajetoriesof (1) is haraterized by: 5



• a yle near xref if a dwell time ondition is applied on the swithings (i.e. a lower limitexists for the time duration between swithings);
• an in�nite swithings sequene with a vanishing time duration between swithings as

t → ∞.These features onern indiretly most of the ontrol designs whih use an averaged model[2, 3, 35℄.4. Sampled ontrol strategiesMany ontrol strategies like optimal [7, 11, 9℄, preditive [13, 36℄, sliding mode [37℄ orstabilizing ontrols [38, 6, 5℄ an be investigated to steer the state of the system (1) near ade�ned operating point xref ∈ Xref . As shown in [9℄, some singularities known as singularars that render partiularly hard the optimal ontrol synthesis, appear in the resolutionof optimal ontrol problems for the system (1) or (2). This ertainly explains why disretetime preditive formulation with ontrol restrited to U or Lyapunov based approahes seemto be more tratable. Our aim is not to disuss the advantages and/or drawbaks of eahmethod. The paper fouses on two pratial aspets: the use of sampled swithed laws andthe guarantee of stability margins.For a given xref ∈ Xref , let us de�ne the hange of oordinates z = x− xref . The system(1) or (2) an be rewritten in the form:
ż = A(u)z + B(u) (4)with A(u) = A0 +

∑m
i=1 uiAi and B(u) = A0xref + B0 +

∑m
i=1 ui(Aixref + Bi).Suppose that the following assumption is satis�ed:Assumption 1. A ontrol Lyapunov funtion V is known for the system (4) with a ontroldomain relaxed to co(U).Assumption 1 implies that a ontinuous time state feedbak strategy:

u∗ = κ(z) ∈ co(U) (5)6



exists suh that the system (4) is globally asymptotially stable (GAS). One the origin isreahed, i.e. the target xref in x−oordinates, the relation u∗ = uref neessarily holds.From Assumption 1, we an dedue three sampled swithed ontrol strategies:1. Pulse-Width Modulation strategy is a simple way to apply a ontrol de�ned by (5)to the swithed system. For a given sample period Ts, the ith omponent of the ontrol
u is approximated by:

vi(t, Ts) =
∞
∑

k=0

I[tk, tk+ui
k
Ts[(t), ∀t ∈ R

+ (6)where IA(.) stands for the indiator funtion whih takes the value 1 when t ∈ A and 0otherwise, tk = kTs and uk = u(tk).2. Steepest desent strategy onsists in hoosing at time tk, k ∈ N, the most dereasingdiretion of the CLF V among the �nite values given by u ∈ U :
v(t, Ts) =

∞
∑

k=0

uk I[tk, tk+1[(t), ∀t ∈ R
+ (7)where uk = arg min

u∈U
V̇ (zk; u) (8)with V̇ (zk; u) the derivative of V in the diretion given by A(u)zk + B(u).3. Preditive strategy minimizes, over a horizon NH and among a �nite set of sequenes,

V (zk+NH
) from the urrent position zk:

v(t, Ts) =
∞
∑

k=0

uk I[tk, tk+1[(t), ∀t ∈ R
+ (9)where uk = arg1 min

uk,uk+1,··· ,uk+NH−1∈UNH

V (zk+NH
) (10)with arg1 the �rst argument of the optimal sequene uk, uk+1, · · · , uk+NH−1.Note that all the proposed swithing strategies de�ne expliitly or impliitly a state feedbakontrol law:

v(t, Ts) = κs(t, z(t), Ts). (11)7



Whih stability guarantees an be given for these three strategies? To answer this ques-tion, onsider the losed loop obtained from one of the three feedbaks v. The resulting exatdisretization of (4) at time tk, k ∈ N, an be written as:
zk+1 = As(κs)zk + Bs(κs). (12)When the hosen strategy is the preditive or the steepest desent, As(κs) = eA(uk)Ts and

Bs(κs) =
(

∫ Ts

0 eA(uk)(Ts−τ)dτ
)

B(uk) with uk given in (8) or (10). For the PWM strategy, theright side expression is obtained reursively sine this strategy de�nes a pieewise onstantontrol on eah interval (tk, tk+1) depending on the value uk, given in (6).De�nition 8 (Level sequene and sublevel set sequene). For a sequene {z0, · · · , zN} oflength N + 1 generated by the system (12) from an initial ondition z0, let us de�ne the levelsequene by:
Lk(z0) = V (zk), k ∈ N≤N , (13)and the sublevel set sequene by:

SLk
(z0) = {z : V (z) ≤ Lk(z0)}, k ∈ N≤N . (14)Following the fat mentioned at the end of the previous setion that a swithed systemannot be maintained on xref , it is lear that non-monotone dereasing sequenes Lk(z0),

k ∈ N≤N , may exist for some z0. Intuitively and as one an expet, yli path is followednear the operating point xref . Thus, the notion of pratial stability seems onvenient toharaterize an attrating set w.r.t. the period Ts.To get some insights: for a sequene {z0, · · · , zN}, generated by the system (12) froman initial ondition z0, one an searh w.r.t. z0, the highest level LN(z0) at the end of thesequene that an be reahed from a lower level L0(z0). Denote this optimization problem by
PN :

PN : max
z0∈Rn

LN(z0) (15)s.t. zk+1 = As(κs)zk + Bs(κs), k ∈ N≤N−1 (16)
LN(z0) ≥ L0(z0) (17)8



Remark 1. For all N ≥ 1, the onstraints (16) and (17) an be trivially satis�ed with aninitial ondition z0 = 0. Therefore z0 = 0 is always a feasible argument for PN .If z∗0 is an optimal argument of PN , then L∗
N = LN(z∗0) denotes the optimum and S∗

LN
=

SLN
(z∗0) the orresponding sublevel set.De�nition 9. The problem PN is said to be bounded if the optimum L∗

N is �nite.From the de�nition of PN , any sequene {z0, · · · , zN} with z0 outside S∗
LN

learly satis�es
LN(z0) < L0(z0). The next setion uses this feature, onnets the asymptoti properties ofthe system (12) to the set S∗

LN
, N ∈ N∗, and proves pratial stability results for the system(12).5. A su�ient ondition for global and pratial stabilizationLet us begin by realling some de�nitions:De�nition 10. A set Ω is said to be positively invariant for the system (12), if for all z0 ∈ Ω,the state sequene zk ∈ Ω, k ∈ N∗.De�nition 11. A trajetory is said to approah a set Ω, if the distane d(zk, Ω) = min

ω∈Ω
‖zk −

ω‖ → 0 as k → ∞.De�nition 12. A losed positively invariant set Ω is said to be a global attrating set of (12),if for all initial onditions z0 ∈ R
n, the trajetories approah Ω.Now, some properties onerning the sublevel sets S∗

LN
, N ∈ N∗ an be established:Theorem 2. Under Assumption 1, if the problem PN is bounded, then S∗

LN
is a global at-trating set for all trajetories of the system (12).Proof. Consider a trajetory (zk)k∈N of the system (12) obtained from an arbitrary initialondition z0. First, let us prove that S∗

LN
is a positive invariant set for all in�nite subsequenes

(zpN+r)p∈N, r ∈ N≤N−1. Suppose that a state zr ∈ S∗
LN

exists suh that V (zr) ≤ L∗
N <

V (zr+N). Then, zr leads to a bounded solution for PN better than the optimum, whih is9



absurd. Consequently, if V (zr) ≤ L∗
N then V (zpN+r) ≤ L∗

N , for all p ∈ N, whih means that
S∗
LN

is a positive invariant set for in�nite subsequenes of the form (zpN+r)p∈N, r ∈ N≤N−1.Now, let show that S∗
LN

is a global attrating set for the system (12). Assume that anindex s ∈ N≤N−1 exists suh that zs /∈ S∗
LN

, then two ases must be distinguished:
• either an index p0 ∈ N∗ exists suh that V (zp0N+s) ≤ L∗

N then the positive invarianeproperty of S∗
LN

implies ∀p ≥ p0 ∈ N∗, zpN+s ∈ S∗
LN

;
• or this index p0 does not exist, then, following the de�nition of L∗

N , a strit dereasing ofthe sequene V (zpN+s), ∀p ∈ N∗ is mandatory. The relation V (zpN+s) > V (z(p+1)N+s) >

L∗
N neessarily holds, for p ∈ N∗. As V is also ontinuous and the sequene is bounded,a limit ℓs exists suh that lim

p→∞
V (zpN+s) = ℓs. Assume ℓs > L∗

N . By ompatness,a subsequene (zϕs(pN+s))p∈N (with ϕs : N → N stritly inreasing), that onvergesto a limit point ys an be extrated. Moreover, ys neessarily satis�es V (ys) = ℓs.Considering y+
s the N th iterate of ys by (12), the relation V (y+

s ) = V (ys) = ℓs alsoholds. However, V (y+
s ) = V (ys) implies that ys is a possible argument for PN whih isabsurd. Therefore the sequene (zpN+s)p∈N ful�lls lim

p→∞
V (zpN+s) = L∗

N .Sine all subsequenes of the form (zpN+s)p∈N, s ∈ N≤N−1, follow one of the two aforementionedases, then the whole sequene (zk)k∈N approahes S∗
LN

i.e. lim sup
k→∞

V (zk) ≤ L∗
N . Therefore,from De�nition 12 and the fat that S∗

LN
is a positively invariant set, S∗

LN
is a global attratingset for the system (12).Corollary 1. A su�ient ondition for the global and pratial stabilization of the sampledswithed system (12) is that an integer N exists suh that PN is bounded.6. Relations of inlusion and smallest attrating setA natural question onerns how the sets S∗

LN
, N ∈ N∗, are imbriated.Theorem 3. Assume problem PN is bounded. Then ∀p ∈ N∗, the problem PpN is boundedand the following inlusions hold:

S∗
LpN

⊆ S∗
LN

.10



Proof. Following Remark 1, the set of andidates is not empty sine for all N , z0 = 0 isalways an initial andidate. Consider a sequene zk, k ∈ N≤pN , for any positive integer p, andsuppose that zpN /∈ S∗
LN

. As in the proof of Theorem 2, the subsequene V (zjN), j ∈ N≤p, isneessarily stritly dereasing and then, this sequene is not feasible for PpN . It implies thatthe optimal sequene z∗k, k ∈ N≤pN , for PpN ful�lls z∗pN ∈ S∗
LN

(and a fortiori z∗0). Then PpNis bounded sine PN is bounded.One might expet a strit inlusion between the sets S∗
LN

. This is not the ase in generaland it is easy to exhibit an example showing that a relation as L∗
N ≥ L∗

N+1,∀N ∈ N∗, annothold. However, the upper bound L∗
1 ≥ L∗

N , ∀N ∈ N∗ remains valid when P1 is bounded.Corollary 2. Assume that a non empty set of integers I exists (neessarily in�nite followingTheorem 3) rendering Pi, i ∈ I, bounded. Then S∞ =
⋂

i∈I
S∗
Li

= lim inf
i→∞

S∗
Li

is the smallestattrating set of the system (12) given by the set of problems P.7. Robust stabilizationIn order to investigate the robustness of the proposed sampled-data ontrollers, an input-to-stable stability property with the sample time as input is given hereafter. Then, in the nextsubsetion, a generalization of this result is provided in the ase of parameter unertaintiesand non-uniform sampling.7.1. Input-to-state stability w.r.t. the sample timeTheorem 4. Under Assumption 1 and assuming for every sampled period Ts, 0 < Ts ≤ Tsmax
,that an integer N(Ts) exists suh that the problem PN is bounded, the system (12) when Ts → 0is 0−GAS.In order to establish the proof of this theorem, onsider the following de�nition:De�nition 13 (Supporting hyperplane). A hyperplane H of dimension (n − 1) is said tosupport a losed and onvex set M(⊂ R

n) on point y ∈
(

∂M ∩H
) if M is ompletely loatedin one of the two losed half-spaes determined by H (where ∂M is the boundary of M). If11



a vetor λ is inward-pointing normal to this supporting hyperplane H of M on point y then
λT y = inf

z∈M
λT z.Proof. First, we show that the system (12) is GAS whatever the hosen swithed strategyis, when Ts → 0. For the PWM strategy, sine lim

Ts→0
v(t, Ts) = u(t) = κ(z(t)) holds almosteverywhere, the ontrol law orresponds exatly to the feedbak given by the CLF. So, fromAssumption 1, the system is 0−GAS when Ts → 0.For the NH−step preditive strategy, the best dereasing value for V (zk+NH

) from V (zk),when Ts vanishes, orresponds to the diretion given by arg min
u∈U

V̇ (zk; u) whih preisely or-responds to the steepest desent. A �rst order Taylor expansion an be used to prove thispoint. So it only remains to prove the fat that the steepest desent strategy is GAS when
Ts → 0.Notie that the instantaneous swithing law from a urrent position z along the trajetoryis given by arg min

u∈U
V̇ (z; u). Now, if

min
u∈U

V̇ (z; u) ≤ V̇ (z; κ(z)) < −γ(‖z‖) (18)where γ is a lass K−funtion, the GAS property holds. Note that the existene of thefuntion γ is dedued from the de�nition of a CLF.In order to prove the left side inequality of (18), observe that along the trajetory, thederivative of V is given by V̇ (z(t); u) = ∂V
∂z

T
f(z, u). For a �xed z, f(z, u) = A(u)z + B(u)is a�ne w.r.t. u. So, the set de�ned by {

f(z, u), u ∈ o(U)
} mathes with the set Λ =o{

f(z, u), u ∈ U
} and is a losed polyhedron. Let λ = ∂V

∂z
(z) and G its supporting hyperplaneon Λ. Denote u∗ = arg min

u
λT f(z, u). Then, on the point ρ = f(z, u∗), we have λT ρ =

min
w∈Λ

λT w. Two ases must be distinguished: either ρ is single, then ρ is a vertex of thepolyhedron Λ and u∗ ∈ U , or ρ is non single, then ρ belongs to an edge or a fae of thepolyhedron Λ. At least one vertex δ exists suh as δ ∈ ∂Λ ∩ G (Figure 1). So, a ontrol
u∗ ∈ U always exists suh that (18) holds.Corollary 3. Assuming for every sampled period Ts, 0 < Ts ≤ Tsmax

, an integer N(Ts) existssuh that problem PN is bounded. Then, the system (12) is input-to-state stable w.r.t. the12
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Figure 1: Supporting hyperplane G on Λ.lass of onstant input Ts.Proof. A lassial result [30℄ states that ISS is equivalent to 0-GAS property (f. Theorem 4)and asymptoti gain property (the solutions are ultimately bounded) i.e. lim sup
k→∞

‖zk(z0, Ts)‖ ≤

γ(Ts) where γ is a N0−funtion for 0 < Ts ≤ Tsmax
. From the de�nition of S∞, de�ne the as-soiated level L∞ = lim inf

i→∞
L∗

i . If L∞(Ts) is a lass N0−funtion for 0 < Ts ≤ Tsmax
, the resultis given by taking γ(Ts) = L∞(Ts). If not, it is always possible to de�ne a lass N0−funtion

γ by hoosing γ(Ts) ≥ sup
0<T≤Ts

L∞(T ) sine sup
0<T≤Ts

L∞(T ) is bounded and nondereasing forall Ts ≤ Tsmax
.Remark 2. Note that this ISS result is given for the lass of onstant input Ts.7.2. Non-uniform sampling and parameter unertaintiesAn improvement an be obtained if the lass of swithing laws is relaxed in the followingmanner: de�ne a minimum (resp. maximum) dwell time δmin (resp. δmax) as the minimum(resp. maximum) duration between two swithings. Let us de�ne the swithing time sequene

tk, k ∈ N, with duration onstraints:
δmin ≤ τk = |tk+1 − tk| ≤ δmax, (19)orresponding to the time instants where the system (4) swithes from one mode to another.Assume also bounded parameter unertainties θ on the matries Ai and Bi in (4). Withoutloss of generality, the unertainties are given in the form:

−θmax ≤ θ ≤ θmax. (20)13



We relax the problem PN by:
PN(δmin, δmax, θmax) : max

z0,θ,τk

LN(z0) (21)s.t. zk+1 = As(⋆)zk + Bs(⋆), k ∈ N≤N−1 (22)
δmin ≤ τk = |tk+1 − tk| ≤ δmax (23)
− θmax ≤ θ ≤ θmax (24)
LN(z0) ≥ L0(z0) (25)where (⋆) = (τk, θ, κs).Remark 3. κs remains unhanged and based on the unperturbed model (4).Remark 4. In this relaxed problem, the optimization depends on the initial ondition z0, theswithing time sequene tk and the parameter unertainties θ. Notie that the set of onstraints(22) is now time dependent following the integration duration τk.Remark 5. All the results onerning the attrating sets S∗

Lk
remain valid sine the givenproofs do not depend on how the losed loop sequene (zk)k∈N is obtained from an initial guess

z0.Property 1. The optimal value of PN(δmin, δmax, θmax) is non-dereasing w.r.t. δmax or θmaxand non-inreasing w.r.t. δmin.Proof. It is lear that an optimal argument (z∗0 , θ
∗, τ ∗

k , k ∈ N≤N−1) for PN(δmin, δmax, θmax)is also an admissible argument for PN(δmin, δmax + δ, θmax) for all δ ≥ 0. The rest of theannouned properties is also trivially established.Corollary 4. Assume (∆max, Θmax) > 0 exists suh that for all δmin > 0 (∆max ≥ δmax ≥

δmin), an integer N(∆max, δmin, Θmax) exists suh that the problem PN(δmin, ∆max, Θmax) isbounded. Then the system (12) with relaxed swithing laws (19) and parameter unertainties(20), is ISS with input (τ, θ) orresponding to the swithing duration sequene τ = (τ0, τ1, · · · )and the parameter unertainties θ. 14



Proof. The proof uses, as in Corollary 3, the equivalene between ISS and (0-GAS+AG) prop-erties [30℄. Taking δmin ≤ δmax → 0 and θmax → 0, 0-GAS property expressed in Theorem 4 re-mains valid with this lass of relaxed swithing laws and bounded unertainties. The AG prop-erty i.e. lim sup
k→∞

‖zk(z0, θ, τi, i ∈ N≤k−1)‖ ≤ γ(‖(τ, θ)‖∞) with ‖(τ, θ)‖∞ = max (sup
k

τk, θ),follows from the fat that the funtion φ(δmax, θmax) = sup
0<δmin≤δmax

L∞(δmin, δmax, θmax) isbounded and non-dereasing w.r.t. δmax, for all δmax ≤ ∆max and respetively θmax, for all
θmax ≤ Θmax. Then, it is always possible to de�ne a lass N0−funtion γ by hoosing forexample γ(s) ≥ φ(s, s) with s = ‖(τ, θ)‖∞.8. Computational aspetsThis setion disusses some omputational aspets that an be enountered when onesolves the optimization problems PN . Sine no assumption is made about the known CLFand sine the state feedbak is generally a disontinuous funtion of the state, the optimizationproblems PN are non-linear and non-smooth.Nevertheless, if the preditive or steepest strategies are onsidered, the feedbak law leadsto a partition of the state spae w.r.t. the ontrol values u(z) ∈ U . Then, the smoothnessrequirement an be ahieved if PN is solved for every �xed swithing sequenes. In this on-text, additional onstraints related to the hosen swithing strategy must be added. Preiselyfor a �xed sequene:

• Steepest strategy: at eah time tk, the ontrol uk∗ of the hosen sequene has to verify
2m − 1 onstraints:

V̇ (zk; uk∗) ≤ V̇ (zk; u), u ∈ U, u 6= uk∗, k ∈ N≤N−1. (26)Therefore, for a �xed sequene of length N , N(2m − 1) onstraints are added to PN .The problem is learly smooth in this ase, if the CLF is.
• NH−preditive strategy: at eah time tk, the ontrol uk∗ of the hosen sequene has toverify the onstraints:

min
uk∗,uk+1,··· ,uk+NH−1∈UNH

V (zk+NH
) ≤ min

uk,uk+1,··· ,uk+NH−1∈UNH

V (zk+NH
) (27)15



with uk 6= uk∗, k ∈ N≤N−1. The left minimization is done over 2m(NH−1) elements andthe right one over 2mNH − 2m(NH−1) elements for eah N element of the �xed sequene.As the left and right terms are ontinuous but not di�erentiable everywhere, a diretsearh algorithm is needed in order to solve the problem (exept the ase NH = 1: wherethe smoothness requirement is ahieved).This aution an be avoided if, at eah time tk, the sequene uk∗, uk+1, . . . , uk+NH−1 inthe left term is �xed in advane. This proedure implies to de�ne a set of additionaloptimization problems orresponding to all possible sequenes at all time tk. Then, thetotal number of optimization problems beomes 2mNNH .
• PWM strategy: sine the state feedbak laws u(z) are generally disontinuous funtionsof the state, optimization problems are non-smooth. Nevertheless, there are two aseswhere PN an be solved without numerial issues: if u(z) is ontinuous or if u(z) ∈ Ualmost everywhere and allows to de�ne a partition of the state spae. In this ase, thesame previous methodology an be applied.Now, we have shown that the smoothness requirement an be met. It an be underlinedthat, for many pratial ases, quadrati Lyapunov funtion andidates an be exhibited.For example, in (4) as B(uref ) = 0, if A(uref ) is Hurwitz then there exists a quadratiLyapunov funtion assoiated to the system ż = A(uref )z whih an be used with one of thegiven strategies. Passivity based ontrol is another way to get suh quadrati CLF. It meansthat the objetive funtion and the onstrains are quadrati funtions. So, a quadratiallyonstrained quadrati program (QCQP) an be used. QCQP is a wide-studied problem in theoptimization literature having a large number of appliations [39℄. Relaxations of QCQP basedon semide�nite programming (SDP) and the reformulation-linearization tehnique (RLT) anbe an e�ient way to solve it. Global optimization solvers, suh as GloptiPoly [40℄, that solvenon onvex global optimization problem of minimizing a multivariable polynomial funtionsubjet to polynomial inequality, equality or integer onstraints, are partiularly e�ient forQCQP. GloptiPoly allows to solve a series of onvex relaxations of inreasing size, whoseoptima are guaranteed to onverge monotonially to the global optimum. The result is an16



Table 1: Compared omputation timeSolver Computation Time (s)
L∗

1 L∗
4 L∗

6NL Matlab 0.98 399.2 4078Gloptipoly 1.36 3.91 14.9extremely fast solver. A omparison between the Non-Linear Solver fminon of Matlab andthe solver GloptiPoly is performed on the example given in the next setion. The results aresummarized for the steepest strategy ase in table (1).Now, if parameter unertainties and non uniform sampling are taken into aount, thelevel set omputed mathes to the worst ase for the dynamis. In this ase, the program isnot a QCQP but aurate polynomial approximations of (22) an be obtained using Taylorexpansion of e(A+∆A)(Ts+δTs) where ∆A and δTs de�ne the unertainties. More aurate, apolytopi approximation of the dynami like in [26℄ ould be another way to deal with thisissue. If a polytopi approximation is used then the problem beomes again a QCQP. So, theproposed solver remains adapted for both ases.9. Appliation9.1. DC-DC onverter desription
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Figure 2: Buk-boost onverterConsider a buk-boost onverter (Figure 2) whose state equation in ontinuous ondutionmode (the urrent passing through the indutane never falls to zero) is given by:
ẋ = A0x + B0 + u(A1x + B1)17



where x = [iL, vC ]T and
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Aref = A0 + urefA1 is Hurwitz and as B(uref ) = 0, the solutions P = P T > 0 of AT
refP +

PAref + Q = 0 with Q = QT > 0 allow to de�ne quadrati CLFs V (z) = zT Pz for thesystem (4). Taking Q = 180× Id, one gets: P =
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. In the next two subsetions,the results of the proposed approahes are illustrated through the steepest and preditivestrategy. The sample time is Ts = 2.5.10−5s.9.2. Attrating set estimations for the sampled strategiesFigure 3 shows a system trajetory using the steepest desent feedbak law and attratingsets determined by PN for N = 1 (red dashed line) and N = 2 (magenta solid line). Clearly,

S∗
L2

is an aurate approximation of the all system trajetories. Using Glotipoly software, theomputation times are respetively 1.36 s and 0.97 s.
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Figure 3: Trajetory in the state-spae and attrating sets for N = 1 and N = 2For a reeding horizon NH �xed to NH = 2, Figure 4 shows the ase of the preditivestrategy. The blak solid ellipse is the estimation for a sequene of length N = 1. The18



estimation is still large omparing to the limit yle. For a sequene of length N = 8, a betterapproximation is obtained. The omputation times, still using Glotipoly are respetively 1.6s and 29.103 s.
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Figure 4: Trajetory in the state-spae and attrating sets for N = 1 and N = 8Figure 5 represents the evolution of L∗
N in funtion of N for the steepest (solid blueline) and the preditive strategies (dashed red line). Observe that the relations S∗

LpN
⊆

S∗
LN

, ∀p ∈ N∗ hold as stated in Theorem 3. While the relation L∗
N ≥ L∗

N+1 does not hold ingeneral. Figure 5 also shows that the above given approximations of the attrating sets areaurate although in the ase of preditive ontrol, this estimation appears not partiularlytight around the yle. This an be learly justi�ed by the fat that there exists at least onesequene starting inside the sublevel set that reahes the level. This sequene is obviously thesolution of PN . In view of the evolution of the urve in Figure 5, an inrease of N seems notto lead to a better estimation of S∞.In Figure 6, the evolution of L∗
2 w.r.t. Ts is drawn for both strategies. This �gure learlyillustrates the ISS property of the system. Finally, Figure 7 shows the exponential growth ofthe omputation time for the two strategies.9.3. Robust attrating set estimations for sampled strategiesSuppose now that all parameters L, R, E, C are known with 5% of unertainties and thatthe sample time Ts is time dependent with variation of 5% around its nominal value. Theproblem PN(δmin, δmax, θmax) gives the attrating set in the worst ase. Figure 8 shows insolid line the level sets orresponding to L∗

N for N = 1 (red line) and N = 8 (blak line) and19



1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

PSfrag replaements Preditivestrategy
Steepeststrategy

Figure 5: L∗

N
versus N

0 1 2 3 4

x 10
−3

0

100

200

300

400

500

600

700

800

900

PSfrag replaements Preditivestrategy Steepeststrategy
Figure 6: L∗

2
versus Ts ∈ [2.5, 4500]µsin dashed line the respetive level sets for the system without unertainties. This �gure alsoshows two trajetories, simulated with a uniformly distributed random law for the sampletime variations, and two parameters sets inside the 5% of unertainties.It is worthy notiing that, as expeted, the attrating sets for the system with parametersvariations are bigger than the ones for the nominal system. However, the boundedness of theoptimization problem guarantees the stability of the perturbed system.10. ConlusionIn this paper, robust stability for the lass of swithed a�ne systems has been investigated.Based on the existene of a CLF for the relaxed ontrol problem, sampled swithed strategieshave been proposed to stabilize the swithed a�ne system around an operating point.20
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Figure 7: Computation time (in seonds) versus N
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Figure 8: Trajetories in the state-spae and attrating sets for N = 1 and N = 8 in ase of unertaintiesThe proposed framework allows to ompute tight global attrating sets for the whole sys-tem trajetories, by solving a set of onstrained optimization problems. Numerial aspetshave been disussed and it has been shown that pratially, the optimization problems re-veal to be QCQP or non onvex polynomial optimization problems for whih e�ient globaloptimization solvers exist. In addition, ISS results with respet to the sample time and theparameter unertainties are formulated. In doing so, some stability margins are guaranted.The numerial illustration given on a buk-boost onverter shows that quadrati CLFan be easily designed for DC-DC onverters. Applying the steepest or preditive strategies,numerial results also showed that it is not neessary to onsider a high order in PN to get agood auray in the over-approximation of S∞.As future work, a omparison between optimal ontrol and the given swithing laws wouldbe of interest in order to measure the ratio performanes over design easiness.21
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