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Abstract

A general optimal hybrid control problem which en-
ables a direct Maximum Principle approach is pre-
sented. Necessary conditions at switching time for con-
trolled and autonomous switching are derived in the
case where a linear quadratic criteria is used. Further
extra condition for stability of switched systems is ad-
dressed. Finally an illustrative example of optimal hy-
brid control problem is treated.

1 Imtroduction

In automatic control area two kind of dynamical sys-
tems have been separately considered: continuous and
discrete depending on the nature of the variables. Dis-
crete variables mean variables that take values in a dis-
crete set and likewise for continuous variables, that is
to say they take values in a continuous set. The be-
havior of such entities is described by dynamical sys-
tems such as automata and differential equations re-
spectively. The main reason of this separation states
essentially in theoretical point of view. Each of these
systems has indeed specific analysis tools defined with
a discrete and continuous metrics. Physical systems
do not have this strict separation and there is often a
more or less interaction between discrete and continu-
ous variables. Think for example at threshold phenom-
ena which changes the continuous dynamic or at recipes
in a batch process whose dynamics are continuous. This
intricate interaction is well-known in electromechanical
systems and some approaches consist to approximate
the system using methods such as averaging methods
[1]-[2]. But in general there is no theoretical framework.

The notion of hybrid dynamical systems appears in [3]
where the necessity to develop a theory melting contin-
uous and discrete signals 1s stressed. Today, it is ad-
mitted that hybrid systems are dynamical systems in
which discrete and continuous variables interact. Their
integration into one system ensures interaction between
them. Generally it can be said that the discrete part
plays the role of the supervisor of the continuous part.
When discrete event occurs, it may change the continu-
ous dynamic and therefore discontinuities in the vector

field and /or in the continuous state appear. In the
last decade, there was a great interest in studying such
systems with regard to their potential applications as
well as to the theoretical point of view [4]-[8]. In this
article optimization problem for continuous part of hy-
brid systems is investigated. Linear hybrid systems are
considered and for a given criteria the target is to look
for an optimal control law. In [9], a dynamic program-
ming approach is proposed to solve an hybrid optimal
problem. In this paper, we suggest the use of the Maxi-
mum Principle (MP) of Pontryagin [10] for solving such
a problem.

This paper 1s organized as follows. In section 2, the
Pontryagin’s approach for solving optimal control prob-
lem is presented and a general hybrid optimal control
problem is formulated. The main result shows that the
Maximum Principle (MP) is an efficient tool to study
hybrid optimal control problems. In section 3, the work
on Linear Quadratic (LQ) optimal control is focused on
for linear hybrid systems. Transversality conditions at
switching times are stressed. The main result shows
that solving a linear quadratic hybrid problem con-
sists in solving a sequence of Differential Riccati Equa-
tions(DRE). A stability result for switched systems less
conservative than one the proposed in [11] is stated in
section 4. Finally all this results are applied in section
5 to a second order hybrid controlled system for which
a closed loop control including optimal switching time
is built.

2 Hybrid Optimization: Pontryagin approach

Let us start by a general description of controlled hybrid
systems and associated optimal problems. We have in
mind systems that switch among vector fields over time,
in the form

l"(t)Ifk(l‘(t),uk(t)),k’EK:{1,...,]&7} (1)

where (1) € R™ is the continuous state and u(t) € U,
a bounded set included in R™*, is the continuous con-
trol. Here, f; and % are assumed to be continuous
functions on the direct product R”? x Uy where Uy, de-
note the closure of Uy. More generally, weaker hypothe-

ses can be considered (Lipschitz conditions and jumps



on the states), see [12], [13] and [14] for more details.
The index k& € K or mode 1s referred as the discrete
state whose dynamic is obtained using a transition func-
tion,

k(t) = o(a(t), k(17),d(1),1) (2)

where d(t) € D = {1,..., D} is a discrete input. Note
that the relations (1) and (2) can be described by an
hybrid automata. In order to conciliate the discrete
dynamic with the continuous dynamic, the time is cho-
sen as a continuous variable and the discrete variables
k and d are considered as piecewise constant functions.
Thus the transition function ¢ appears piecewise con-
stant from the right. This mention is indicated by ¢~ in
(2). Two categories of hybrid phenomena can be repre-
sented in this formulation: the autonomous switching
and the controlled switching [9]. All these changes are
reflected on the discrete state k(t) or mode of the sys-
tem at the time ¢ using the transition function.

Let [0, 71, ..., 7i, ..., T] be the sequence of switching time
and associated mode sequences [ko, ki, ..., ki, ..., km)
(ki € K ). Tt is clear that these sequences depend
on the control (u,d)(.). A hybrid criteria can then be
introduced as:
Tit1
J= Z/ Ly, (2(t), ug, (t))dt (3)
i»0 T

where k; € K. For all k € K, Ly, is defined and contin-
uous on the direct product R” x U/, and continuously
differentiable in the state variable. So, different criteria
with respect to each mode are possible. Then, the op-
timal control (u,d)(.) is the control that minimizes the
cost function J over time interval [0, T7.

MP is a principle which can be applied to various opti-
mization problems with different specific and technical
conditions (boundary, free final time, constraints, etc.).
Hence, according to the regularity assumptions on the
data, several versions of MP can be stated. In our
case formulation (1)(2) and (3) allows a direct use of a
smooth version of MP with an additional dynamic pro-
gramming argument in order to consider autonomous
switching. To this purpose, define the Hamiltonian
function associated to each mode k as (mention of time
is omitted):

He(\ o, 2,u) = AT fio (2, up) — oLy (2, ug) (4)
and the Hamiltonian system as
. O0Hy . OHy
) W (5)

where Ag is a positive constant (A > 0). Now ,we have
the following theorem:

Theorem 1 If (u,d)(.) and (x,k)(.) are respectively an
admissible optimal control and the corresponding trajec-
tory for the problem (1)(2) and (3), then there erists a

piecewise absolutely continuous curve A(.) and a con-

stant Ag > 0, (Ao, A(¥)) # (0,0) on [0,T], such that:

1. the siztuplet (A, Ao, z, k,u,d)(.) satisfies the associ-
ated Hamiltonian system (5) almost everywhere

2. for given (A, Ao, z, k) (1) at given timet, the following
mazximum condition holds if t 1s not a switching time

Hk(/\,/\o,x,u):ma)((sup Hm(/\,/\o,x,v)) (6)
deD veEU

where m = ¢(x, k, d, 1) (7)

3. at switching time 7; (i.e. when (6) is not obtained
for the k-mode) the following transversality conditions
are satisfied:

a. if 7 is an autonomous switching time on the
manifold defined by a p components vector (p < n),
Ci(z,t) = 0, from the mode k to the mode j then:

_oct
R T (8)
_act

with m a p dimensional vector.

b. if 7; is a controlled switching time from the mode k
to the mode j then:

Hif=H (11)
Proof: It is an extension to the MP approach of a
result given in ([16],chap.3). n

Remarks: 1) It can be noted that Hg(A Ag, 2, u) =
sup Hp (A Ag,z,v) is exactly the optimal condition
vEUmk

holding for a single differential system. Hence the ac-
tive available mode 1s the one which has the largest
Hamiltonian.

2) Notice that (8)(9) imply discontinuities at time 7 in
adjoint variable A and in Hamiltonian function H.

3) Trajectories such that the previous necessary condi-
tions are satisfied are called extremals.

4) Tn most applications Ag # 0, in which case one may
take A\g = 1.

Examples of optimal problem for hybrid systems have
been studied in [15], [17] and [18]. In these papers it is
shown how optimal switching scheme can be achieved.
In the paper [9], the authors describe an algorithm to



design optimal controls of hybrid dynamical systems.
The proposed method is mainly based on dynamic pro-
gramming and Hamilton-Jacobi-Bellman (HJB) equa-
tions. An hysteresis example, which is fully described
in [19]-[20], illustrates fairly well the capability of the
proposed algorithm to converge towards the optimal
criteria in certain cases. Unfortunately, a bifurcation
both in the trajectory and the criteria appears with re-
spect to a parameter value in the criteria [18], then the
shape of the trajectories found with this approach are
very far from the optimal ones. Our method can then
be used to solve the example given by Branicky et al.
and get the optimal value of the criteria and the opti-
mal trajectories. In general it is difficult to solve HJB
equations due to non-smooth value function. The MP
approach avoids this difficulty with the introduction of
the Hamiltonian systems.

Another interesting case is certainly one where the cri-
teria is a linear quadratic.

3 Linear Quadratic Criteria

In this section linear quadratic (LQ) criteria for hybrid
linear systems is considered. Optimal control problem
using a collection of quadratic criteria can be stated as
follows. Minimize the quadratic criteria :

J = 5/0 (mT(t)Qk(t)x(t) —+ Ug(t)(t)Rk(t)Uk(t)(t)) dt (12)

over time interval [0, 7] where Ry (respectively Q) are
symmetric positive definite (respectively semi-definite)
matrices and x is subject to the hybrid system :

() = Apa(t) + Brug(t) z(0) = xo (13a)

k(t) = ¢(x(t), k(t7),d(?),1) k(0) = ko (13b)
where Ajg, By are respectively n x n and n x m di-
mensional matrices and # € R", u € R™ k(t) € K =
{1,2,..,K} , d(t) € D = {1,2,..., D} for some inte-
ger values K and D. Define the Hamiltonian function
associated to each mode as:

1
Hk(/\, x, u) = \T (Akl‘ + Bkuk) — §(l‘Tle‘ + unguk)

(14)
and the Hamiltonian system:
. 0H
&= a—/\k =Apx + Brug (15a)
: H
A:—aa—x’“:—AzAJerx. (15b)

Remark: We take Ag = 1 in (14)(cf. remark bellow
Theorem1).

The optimal condition for each Hamiltonian Hj; with
respect the continuous control wuy leads to:
OHy,

up = R 'BLA (Far =0 (16)

Assume now that there is a time interval [TZ',TZ»_H[
where the active optimal mode is the k;-mode, then

Hi, (A z,ug,) > Hy(A 2,uq), Vg € 5(t), 9 # ki,  (17)

where s(t) = ¢(x(t), k;(t7), D, t) is the constant set of
available modes on [TZ', TZ»_H[ from k;. If we denoted
by Ji(x(t),t) the value function J (The optimal cost
starting from (z(t), k;) at time ¢) on [7;, 7,4, [ then the
Hamilton-Jacobi-Bellman equation gives rise to:

aJ; 0J;
5 = He=g @ uw) on [rr [ (18)

aJ;

where A = —<2. Hence if we choose J; of the form
Ji(x(t),t) = %(x(t)TPi(t)x(t) + ¢;) with P;(¢) a sym-
metric matrix and ¢; a constant, (18) leads to the Dif-

ferential Riccati Equation (DRE):
Pi = —PiAy, — AL Pi+ PiBy, R ' BL P — Qr,  (19)

with A = —P;z. Now the limit conditions depend to the
type of the switch which is produced at time 7;41. If a
controlled switching is obtained to the k;41 mode then
the following transversality must be satisfied:

Hy,

Pi+1xaxaukz+1) IHkl(—Pil‘,l‘,Ukl) (20&)

Pi+1l‘ = Pl'l‘. (20b)

z+1(_

else an autonomous switching occurs on a manifold
Cr, (2(7i41), 7i41) = 0 and we have:

oCt,

P
k ox

x = Pr,x +

T (21a)

t=1

i1

Hipy (= Piqr2, 2, ukg gy ) = Hi (= Piz, o, ug,) (21b)
oCt,
ot

t=1

At last as the value function must be continuous along
optimal trajectories, the following additional condition
must be held in both cases

xTPH_ll‘ + Cig1 = l‘TPix + ¢ (22)

Remark: The choice of an additional constant term ¢;
for each value function J; is completely justified with
the full proof of theorem 1.

Finally at the final time as z is free, A(T') must be taken
to zero. Solving (12) and (13) consists now to determine
switching time sequence [0, 7y, 72, ..., 73, T] and mode se-
quence [ko, k1, ko, ..., k;] such that :

a) (16)(17) and (19) are satisfied for all indices k; on
[7i, Tiga]

b) (20) or (21) (following controlled or autonomous
switching is considered ) and (22) is satisfied at switch-
ing time 7;.



Remarks: 1) In (20) the matrix P, must be chosen
such that # € Ker(P, — P;). So P is not uniquely
defined at this time. If two candidates are considered
P? and P} then at future times it always holds z(t) €
Ker(P}t) — PZ(t))(since solution of (15) is unique).
Therefore the trajectories are equal and we can choose
Py = Py in (20 ). Deduce in the same manner for (21).

2) The same result occurs if time varying matrices are
considered in place of (13) and/or if the problem is
supposed in infinite time 7' = +00).

Stability results can be derived from this optimal prob-
lem.

Theorem 2 Suppose that Qi are positive definite for
all k € K. Starting from position (xo, ko), if a
time sequence [0,71,72,...,Ti,...] and associated mode
sequences [ko, k1, ka, ..., ki,...] (ki € K ) are erhibited
such that

1. the origin can be reach in finite time by some control

(controllable),

2. the time between two switches is bellow bounded (3
€>0, g1 — T > €),

3. the sequence of P;i(t) (i = 0,1,2,...) is uniformly
bounded

Fa>0,8>0, oz <zTPt)x < 8|l Vt, Vi),

4. (16),(17),(19),(20) (21) and (22)-hold,

then the trajectory is asymptotically stable.

Proof: The proof is quite long and is omitted. It
is obtained showing that: the cost function is bounded
(hypothesisl), % — 0 and « is bounded (hypoth-
esis2 and 3), u‘]df—’tl — 0 implies #(t) = 0 (Qr > 0).
Note that J;(z,t) = %(xTPix + ¢;) is not a lyapunov
function since J;(0,t) = ¢; # 0. n

4 Stability of Switched Systems

Linear switched systems is the degenerate case of
the previous control problem since only autonomous
switching between linear systems are considered. It can
be viewed as a control problem with a unique control
(consequently an optimal control).

Let 2(t) = Ap(t)z(t),k € N = {l1,..., N} with the
switching rule defined by relations of type Cy(z,¢) = 0.
From an initial position (zg, ko), #(¢) evolves accord-
ing to the switching rule which products switching
time sequence {0, 7,7, ..., 7, ...} and mode sequences

{ko, k1, ko, ..., ki, ...} with k; € N. Stability of such sys-
tems can be stated from the following theorem.

Theorem 3 Starting from position (xg, ko), if there
erist two sequences of positive definite matrices P;(t),
Qr, and a bounded associated sequence of number c;
such that

1. the time between two switches is bellow bounded , (3
€>0, g1 — T > €),

2 3a>0,8>0, Vt,k, ao<||PE®| <8,
3. P; verifies:
Py = —PiAy, — AL Py — Qp, on [1i, Ti1]

at switching time 741,

Cr,
or Tit1
t:‘r,+1

T T 4T T T

T P,‘+1Akl+1x—|—x Akl+1P,'+1x—|—x le_'_lx:x PiAg, v+
oCt,
ot

Piyiz = Pix +

xTAglP,m + xTlex — 2

Tit1

t= Ti41

T T
2 Pyiv+cit1 =0 Piv+oa

where m;41 15 a constant vector and ¢; a constant, then
the trajectory is asymptotically stable.

There has been recent work concerning Lyapunov sta-
bility of switched systems [11], [21], [22] summarized in
[23]. All these approaches deal with the search of can-
didate Lyapunov functions, one for each mode, with a
non increasing condition at switching times [21], [22].
As mentioned in [23] has underlying, the conditions ob-
tained in this related work can yield to very conserva-
tive results.

Theorem 3 shows that less conservative results can be
achieved if a time varying candidate function is con-
sidered. Two interesting cases can be stressed when
the sequence of events (modes) is periodic or finite. In-
deed if the sequence is a cycle of events, stability can be
stated by looking for periodic matrices Py (t) which sat-
isfy theorem 3. Fixed point algorithms are efficient in
this situation. In other case if there is a finite sequence,
it means that the last mode say & must satisfy an Alge-
braic Riccati Equation (ARE). Consequently the ma-
trix Pj(t) is known and we can build the rest of the
sequence from an arbitrary switching time.

5 Switching time and Example

Suppose we get a problem of type (12)(13) without au-
tonomous switching and with the particular transition



function: k(t) = ¢(x(t),k(t),d(t),t) = d(t). So con-
trolled switching could taken place anywhere at any
time. MP define the control which must be used in
terms of A. Consider now an extremal trajectory z(.)
at a given time ¢ (not a switching time) with closed loop
control ug, = —RllekTka and an active mode k. Let
U e(t) = He(A 2, u) — He(X, 2, up) where A = —Prz.
A switching time occurs at the first time where there
exists indice £ such that ¢y ¢(t) vanishes. We can ob-
tain these switching times by the help of the following
theorem.

Theorem 4 The function () = Hp(A z,u;) —
Hy(A 2, 1) satisfies the homogenous linear ODE with
constant coefficients defined by the characteristic poly-
nomial Sy where Si 1s the minimal polynomial of
My, & My, ( & denote Kronecker sum, [24]) with M, =

(Ak By R;'BF )
Qs —AT '

Proof: Using (16), (15) can be rewritten as

)= ) [
and () becomes y(t) = <[ i] D [ §]> where

D= <%(Qz - Qk) 0 >
Ar—A¢  L(BkR;'Bl — B«R;'B})

First derivative of ¢(¢) leads to:

o= ([ woom )

This derivative appears as a first order differential op-
erator which assigns to a given matrix D, the matrix
MED + DMy. Let col(.) be the stacking operator ap-
plied to a given matrix A = [A1...A,] by col(A) =
[AT . AT1T where Aj,..., A, are the columms of A.
Then an interesting property is: col(ACB) = (BT @
A)eol(C). Thus, if we form col(D) and col(MI D +
DMy), (33) can be equivalently rewritten as:

b(t) = <[§] ® [i] M7 @M,?COZ(D)>

Differentiating (¢) successively with respect to t, one
gets:

Cﬁ;f () = <[§] ® [i] (M7 @MT)"COZ(D)>

One can conclude by Caley-Hamilton theorem. n

This theorem enables a fast construction of extremal
trajectory from a given xzy and Py since switching time
can be exactly determined. Hence using an appropri-
ate algorithm (steepest descent, Newton) optimal tra-
jectory can be retrieved.

In the sequel, we considered an optimal (L.Q) problem
over infinite time obtained from two vector fields :

() = (Apx(t) + Brug(t))  k=1,2 z(0) = zo
-1 4 -1 1
where A1 = (_3 2), A2 = (_1 _1), Bl = Bz =
I and the associated (LQ) criteria :
L T
J=3 (7 Qry® + up(e)” Reoyun))dt
0

0.5 0.5 2 05
@1 = (0.5 1 ) @2 = <0.5 1 )

05 0 5 0
= ( 0 0.25) 2 = (o 1)

Starting from a Py and z¢ and using theorem 4, one gets
switching times sequence [0, 7,72, ..., 7, ...] and mode
sequence [ko, k1, ko, ..., k;, ...]. If there is a periodic cycle
it can be detected with the asymptotic behavior. Hence
using appropriate algorithm (steepest descent, Newton)
optimal trajectory can be retrieved (Figurel). For

1r
0.8F

0.6

0.4

x2
o

Figure 1: Optimal trajectories in the phase plane

this example, a cycle sequence is obtained such that:
1. A switch occurs from mode 1 to mode 2 for time
duration of 1.37 seconds when the trajectory hits the
line D1y = {2 :axs = —1.2921}. Furthermore at this
time

p, _ (07106 0.2412
2700.2412 0.5610

2. A switch occurs from mode 2 to mode 1 for time
duration of 0.55 seconds when the trajectory hits the
line Doy = {a : 2 = 1.192, }. Furthermore at this time

p_ (08865 0.05916
1= 10.05916  1.4342
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Figure 2: Optimal hybrid criteria (solid), Optimal criteria
for the mode 1(dotted) and 2 (dash dotted) ob-
tained for several initial conditions on the unit
circle.

3. Py(t), k = 1,2 is periodic of time period T = 1.92.

Conclusion about optimality can be made since this is
the only one extremal trajectories which lead to a pe-
riodic switching scheme and symmetric solutions with
respect to . The figure 2 compare the optimal hybrid
criteria with the one obtained for each mode separately
(solving ARE associated). This figure shows that the
result we obtained, is effectively better one.

6 Conclusion

A general optimal hybrid control problem which en-
ables autonomous and controlled switching has been
presented. A MP approach for solving such hybrid
systems appears clearly as an efficient tool. Applying
this principle, one gets necessary conditions satisfied
by the solution. Additional transversality conditions
at switching time are obtained. In context of a linear
quadratic criteria, it is shown that closed loop hybrid
control is determined by solving a sequence of Differen-
tial Riccati Equations. This last point leads to a stabil-
ity result for switched systems. At last an illustrative
example shows how to build numerically the closed loop
control. Theorem 4 which express how switching time
can be achieved in the case of controlled switching, is
of importance for optimal control law synthesis.
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