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Issue of the presentation

Provide some elements to cope with optimization problems in the
framework of optimal control theory :

e Euler-Lagrange equations
e Pontryaguin Maximum Principle (necessary conditions of optimality)
¢ Dynamic Programming (sufficient conditions of optimality)

How these tools may be applied to the Linear Quadratic problem ?
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Outline of the talk

Formulation of the problem

Motivation

Variational approach : Euler-Lagrange equation
Pontryaguin Minimum Principle

Dynamic Programming

Linear Quadratic Control Problem

Conclusion and Open Questions
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Optimal control problem
Dynamical System :

x(t) = f(x(t),u(t),t), xeR", uelR.
X(fo) = Xo.

Criterion to minimize :

J(X, U, X0) = Ki(x(t), 1) + /, " L), u(t). 1y dt

Terminal cost Instantaneous cost

e {; < +o00, the time horizon is finite ; t; free or fixed.
e fr = +00, the time horizon is infinite, (then K(x(&), tr) = 0).
Optimization problem :
min
u(t)leR' J(x, u, xo)

under the constraint (1).
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Motivation and typical examples of criteria
Stability : at { = #;, x(#) should be the closest as possible to the
origin : Ke(x (), t) = %x’(t,)K,«x(tf); L(x,u,t)=0.

Trajectory tracking : x(t) should tracks Xyesirea(t). Minimize the error

[ Xaesirea () — Xx(2)]]-

Potential energy ; input’s cost energy : Ki(x(%), tr) and L(x, u, t) are
quadratic :

Kilx(t).t) = X (6)Kix(t)

Lx(1), u(®), 1) = %(X'(f)Q(f)X(f) + U (DR(tu(t)).

Economy : Monetary and fiscal policy interaction (discount rates).

Q(t) = €'Q;  R(t) = é*'R.

o Time optimality : K¢(x (&), tr) = 0, L(x(¢), u(t),t) =1, thatis
J(x,u, X)) = t.
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Variational approach : Euler-Lagrange equation
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Basic assumptions

f(x,u, t) and L(x, u, t) are continuous functions.
f is Lipschitz.

for both f and L, all partial derivatives w.r.t. x and u exist and are
continuous.

L belongs to C'.

In addition, here, t — u(t) is assumed to be continuous.
Iy is fixed.

This implies the equation (1) admits one and only one solution.

R ™
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Main idea : modifying the criterion
To avoid the problem of constrained optimization problem, the
instantaneous criterion is modified to take into account the constraint
f(x(t),u(t),t) — x(t) = 0.

/tf N (1) (F(x(t). u(t). ) — x(1))at = 0, ()

where A(t) is an arbitrary chosen column vector, called the Lagrange
multiplier or costate-vector.
By introducing the Hamiltonian function

H(x,u,t,\) = L(x,u,t) + N(t)f(x,u,t), (5)

we have a modified criterion to minimize
- ff
J(x, U, x0) = Ky(x(ty), tr) + / [M0x,u, t (D) = N(Dx(D)]at. (6)
1)

Note also that, by definition
() = 55 (0 u().) = Fx(0).u(0). 0 ™)
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Refomulation of the criterion

By using the integration by parts

[ Nt = —N()x(t) - V() + | VXDt (@)

f) b
one gets
t )
J= t [H(x,u,t,A(t))+X(t)x(t)}dt+[K,(x(tf),t,)—X(t,)x(tf)}+X(t0)xo.
’ )
AN ™
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First order necessary conditions ()

By assuming that u*(t) is a continuous optimal control input, solution of
the optimization problem. The associated trajectory is denoted x*(¢).

x*(t) + dx(t)

Considering bx(ty)
u(t) = u*(t) +du(t); (10) ()
x(t) =x*(t)+ox(t) (11)
5 (to)
leads to the inequality
J(x*,u*, Xx0) < J(X* 4 0x,U* + 0u, xg),  Véx,du. (12)

The first order necessary condition consists in the fact that J(x*, u*, xo)
is an extremum.

R ™
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First order necessary conditions (Il)

J(X* + 0x, U* + 6u, Xo) — J(x*, U™, Xo)
t OH' . oOH' ap s
:/to [5 (X7, U7, EAD)ox + Z o (X7, U7, 1A (D)o + A (t)(sx}dt

+ [%’j (x*(t), tr) — X(tf)} x(tr) + X (to)dxo > 0. (13)

J(X* + 6x,U* 4 du, Xo) — J(X*, U*, Xo)

:/,0 [(837: (x*, U™, t (1) + N(t ))5 +%I(X*,U*,t,)\(t))6u dt

[ 2 (1.1 — (1) 5300 + X ()ono = 0. (14)
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First order necessary conditions (ll1)

The initial state xg is fixed, that is dxo = 0. No condition about ().

The final state is free, that is dx(t;) # 0, which implies the
transversality condition

At) = 5 L0 (). 1) (15)
* Vox, leads to
M) = - T, A0) (16)
e Vix, leads to o
%(X*,u*,t7 A1) =0 (17)
AN ™
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Interpretations Ot the TIrst oraer necessary

conditions
By definition, A\(t) = 88—7: = 88—7: We have the Euler-Lagrange equation

0= 5 (5) e taw) = =S e e

Two-point boundary-value problem, due to the initial state condition and
to the final co-state condition (transversality condition).

. OH OH
= SN =

oN’ O

Generally, % = 0 leads to the expression of the optimal control u*.

R ™
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Numerical example (1)

A car is driving in straight line and should maximize the distance and
simultaneously to minimize the energy of the input.

E=u; £0)=¢(0)=0.
The criterion to minimize is

tr

J = —¢(t) +/ U?(t)dt.

0

Let denote x = ( 5 ),we have x(t) = f(x,u,t) = ( ¢ )
3 u

NOE ( M) ) and H = UR(t) + A (DE(E) + Aa(t)u(t).
A2(1)

A
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Numerical example (ll)

Applying the Euler-Lagrange relations leads to

M) = —%—? =0,

dao(t) = —(?; =-M(1),

) = -l

M(t) = %’? =—1= \(t) = -1,

holty) = a@’zf —0= No(t) =t t.
tr—t £

Which implies u*(t) = and x(t;) = é.

2

G
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Second numerical example (l)

Let consider the system
: 1"
x(t) = —u(t); x(0)=2; J=—x(t)+ §/ (x3(t) + U?(t))dt.
0

Then H = %(X2 + u?) — \u. ltyields x = Aand A = —x and A(t;) = —1.
x(t) \ | cos(f) sin(t) Xo
At ]| —sin(t) cos(t) | \ A0)

™

—1 = \(t1) # Mz) = —sin(z)x +cos(5)A(0) = —2

For t; = g,

There is a solution to the two-boundary problem only iff cos(f) # 0.

R ™
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Third numerical example (I)

Let consider the system with two inputs
x(t) = uy(t) + we(t); x(0)=0.
The criterion to minimize is

J = —x(t;) + /Otf(u12(t) Gyt

Then H = u(t) — u3(t) + A(t)[u1(t) + ua()].

G

Introduction 17/55 M. Jungers

CID




Third numerical example (ll)
Applying the Euler-Lagrange relations leads to

OH

OH 1

u 0 = uw(t) = —5 ,

OH 1

871,12 - O = Uz(t) - +2
(=X

Ay = K

That implies A(t) = —1, ui(t) = —w(t) = —% and x(t) = 0 and finally

J* = 0. Nevertheless for u;(t) = u»(t) = 1, we have x(t) = 2t and
J = -2t < 0 = J*. J* is not the minimum, but a saddle-point.

Further necessary conditions are required.

R ™
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Second order necessary conditions

The solution consists in a mimimum and not only in an extremum.

OP*H

Link with the convexity of the criterion and implicit function theorem.
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Pontryaguin Minimum Principle
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Main idea : introducing the singular controls

Let us consider a control system (the link with our optimization problem,
that is the relation between x and z will be clarified in the sequel) :

2(t) = f(z,u,t), z(k) =z € R (19)

We denote z, the trajectory solution of (19) on [fy, ;] issue from z, and
associated with the control u.
The associated end-point mapping E, ;, at time t is defined by

E. U — RS
2ol (20)
u —  zy(t),

with z, the trajectory solution of (19) associated to the control u, and U
is the set of admissible controls.

Definition : We call singular a control u(t) on [ty, &] with trajectory
defined on [fy, ;] such that the end-point mapping is singular at u, that is
the Fréchet derivative of the end-point mapping is not surjective when
evaluated on u.

(AN ™
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Fréchet derivative of the end-point mapping (1)
Regularity : The end-point mapping is C*. The successive derivatives
can be computed as follows.

u

RN

z
u+déu Z+6z

Z+46z="Fz+06z,u+6u)=f(z,u)+ g—;(z, U)oz + S—Z(z, u)su

o2f 1 02f 1 02f

+ 8zau(z’ u)(éz,ou) + 5@(2, u)(6z,6z) + §W(z, u)(du,éu) +---
0z can be written as 1z + d>z + - - -, where §1z is linear in du, d»z is
quadratic in du and are given by identification as (where z(t)) = z; is
fixed) :

. of of
d1z = E(Z’ u)o1z + %(z, wou;, 61z(t) =0; (21)
. f 2f 1 02f
00Z = a—(z, u)ooz + o (z,u)(61z,0u) + 0 (z,u)(612,612)

9z dzdu 29z2

- (F'; ciD
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Fréchet derivative of the end-point mapping (1)
Then the Fréchet first derivative of the end-point mapping at u is given by
dE;, 1 (u).6u = 612(t).

By denoting
of of
Alt) = o (2u(t),u(D): - B(t) = 5 (2u(1), u(t));

The equation (21) becomes
61z = A(t)d1z + B(t)ou;  61z(th) = O; (22)

and if the transition matrix M(t) is solution of M(t) = A(t)M(t) and
M(t) = Id, then also

t
dE, 4 (u).0u = 612(t;) = M(t;) | M~'(s)B(s)ju(s)ds
)
The singular control is of corank 1 if there exists a unique vector ¢ (up to
a scalar) such that
¢'dE,, 1 (U).6u=10, VYoéu

R ™
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Back to the main idea
x(1)

X
Consider z = , Z(f) = | where
xO(t) 0

x(1) 2 f(x(t), u(t), 1)
( (1) ) (=40 40) ( L(x(1), u(t), 1) )
In other words x°(t) = fté’ L(x(t), u(t), t)dt, the current value of the
criterion.

If the control u associated
with the system in x is opti-
mal for the criterion to opti-
mize J, then it is singular for
the augmented system in z.

(’ T x
RAN
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Pontryaguin Minimum Principle (weak version)

Theorem :

If the control u associated with the system (1) is optimal for the cost (3),
then there exists an application p(-) absolutely continuous on [f, t],
R"-valued, called costate vector and a real p° < 0, such that (p(t;), p°) is
not trivial and verifies :

X0 = S0t (0.5, (29)
p) = (e, u(e).p(), ), (24)
0 = Tex(t) u(e).p(t).p°). 5)
and p(t;) = po%(x(tf), tr), where
H(x,u,p,p°) = p'f(x,u,t) + p°L(x, u, 1). (26)
&R ™
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Pontryaguin Minimum Principle : sketch of proof

©'dE,, 1 (u).60u=0
implies that

©'M(t )M~ (s)B(s) = 0 almost everywhere on [ty, ;].

p(1)

o P ¢ not trivial |
pO(t)

o
o (P'(1): P°) = —(P(1): P°) ( gx )

Let define( P ) — o' M(t;)M~'(t). Then

CID




Pontryaguin Minimum Principle (strong version)

Theorem :

If the control u U/-valued associated with the system (1) is optimal for the
cost (3), then there exists an application p(-) absolutely continuous on
[o, t;], R"-valued, called costate vector and a real p° < 0, such that
(p(t), p°) is not trivial and verifies :

OH

x(t) = a—p(x(t),u(t),p(t),p"), (27)
plt) = =20, u(t), p(0), ), 8)
= U(t) = argminyg, H(x(1), u(t), p(t). p°), (29)
and p(t;) = p° %’f{" (x(t;), t;), where
H(x,u,p,p°) = p'f(x,u, t) + p°L(x, u, 1). (30)
&R ™
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Pontryaguin Minimum Principle (strong version)

Interpretation :

More difficult to prove. A larger set of admissible controls (v not anymore
continuous) is considered. PMP and Euler-Lagrange Theorem differ on
the fact that the PMP tells us that the Hamiltonian is minimized at the
optimal trajectory and that it is also applicable when the minimum is
attained at the boundary of /. See also that p° cannot be null.

C?AA M. Jungers - -
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Numerical example
Let us consider the system x = u, with the criterion ft x(t)dt — 2x()
and the constraint ||u|| < 1. We have the Hamiltonian # = x + pu,
leading to p(t) = —1, p(t) = —2. One gets p(t) = t; — t — 2. Furthermore

1ifp(t) < 0

ut(t) = argminu(t)e[_L”(X(t) + p(Hu(t)) = undefined if p(t) =
—1ifp(t) >0

U R <o) = 1,

() pour ti=2
i
-

Ifte>2:

0 1ift; —2 <t <t,
u*(t) =
—1if0<t<ty -2

P

u) pourti=4.

Py S——

\RAA o W
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Dynamic Programming
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Bellman’s Principle : an intuition

How to reach optimally Paris from Nancy ?
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Bellman’s Principle : an intuition

How to reach optimally Paris from Nancy (in terms of distance) ?

Nancy
J 130km
Vitry-le-Frangois
J 182km
Paris

Vitry-le-Frangois
1 optimally ?
Paris
223km ? 182km ? 179km ?

AN ™
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Bellman’s Principle : an intuition

How to reach optimally Paris from Nancy (in terms of time) ?

Nancy
Metz
Reims

Paris

A ™
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peliman's FrincCiple o sutticient conaitions oft
optimality

Dynamic Programming (DP) is a commonly used method of optimally
solving complex problems by breaking them down into simpler problems.

Principle : An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision.

“it's better to be smart from the beginning, than to be stupid for a time
and then become smart”

AN ™
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Value function (1)
Let us define the value function as the optimal criterion on the restricted
time-horizon : [t, t], always ending at { and starting at time  with the
initial condition x(t) :

V(t,x(1) = iy = E‘T[“n] (Kf(x(tf)-, tr) +
tty

I

L(x(s), u(s),s)ds> . (381)

We have (with the minimum taken under x(t) = f(x(t), u(t), t))

t

t+At
V(t7x(t)):min</ L(x(s),u(s),s)ds+  V(t+ At x(t+ At)) )
t

Uyt )

Optimal between [t + At, t] from x(t + At)
Cost between [t, t + At]

: ot + At)

t o t+At i

R ™
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Value function (ll)

When At — 0, we have the Hamiltonian Jacobi Bellmann equation

-G tx(®) = min (Lx(O.u(0.0 -+ FLEADAXD.U0.0) (32)
and
V(tr, x(t)) = Ke(x(tr), t)- (33)
AN o™
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Dynamic Programming

Let V(t, x) defined by (31), and assume that both partial derivatives of

. . . d .
V(t, x) exist, xS continuous and moreover T V(t, x(t)) exists, then

_%(l‘,x(t)) = min (L(X(t), u(t), ) + %(t, x(1)F(x(t), u(?), t)> . (34)
V(t, x(t) = Ke(x(t), t) (35)
and

u*(t) = argmin g, (L(X(t), u(t), t) + g—)‘:(t,x(t))f(x(t), u(t), t)) (36)

AN ™
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Numerical example

Let consider x(t) = x(t)u(t), with u € [-1,1] and J = x(&). If xo > O,
thenu=—-1andif xo <0,thenu=1.lfxg=0,J=0.
e~ =0 if x > 0,
V(t,x) =< eli-Difx <0,
0ifx =0,

No C' solution to HJB equation. Viscosity Solution for HJB equation is
required.

AN ™
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Linear Quadratic Control Problem

R 2 W
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Linear Quadratic control problem

System :
x(t) = Ax(t)+ Bu(t), xeR", ueR.
X(to) = Xo.
Criterion to minimize :
1t
J = X' (t)Kex(t) + 3 (X'(t)Qx(t) + U'(t)Ru(t)) dt
fo

Assumptions :
Q=Q >0, R=R >0,.

AN o™
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Necessary Conditions

Hamiltonian :

H= %(X'QX—F U Ru) + p' (Ax + Bu).

The necessary conditions are given by the Pontryagin Minimum Principle

o _ M oA
a ax Qx(t) — A'p(t),

(97'[ * —1 /
0 - 0, (firstorder). = u*(t) = —R'B'p(f).

The final state being free, the condition of transversality is

p(t) = Kixy.

AN
Introduction 41/55 M. Jungers
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Two Boundary Problem

()G -1 =)

where S = BR~'B’, with the two boundary conditions

Resolve

x(fo) =X,  P(tr) = Kex(t).

How to solve this kind of problem ?

AN ™
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Differential Riccati Equation (DRE)

The necessary conditions are linear and the conditions of transversality
are linear with respect to the initial state xp. The solutions are

p(t) = K(E(1),

with K(t) € R™" and £(t) the predetermined state of the system. The
controls are
u*(t) = —RB'K(t)(t),

£(t) = (A= SK())&(t),  &(b) = xo.
The matrice K(t) should verify the Differential Riccati Equation
K(t) = —A'K(t) — K(t)A— Q + K(t)SK(t),

with
K(t;) = K;.

R ™
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Solving Differential Riccati Equation
Set the Hamiltonian matrix

A =S
-Q A

H:

] , where S = BR™'B'.

Set the transition matrix associated to H

t, t t, ¢
ot 1) = P11(t, tr)  Pra(t, tr) ’ @(t, 6) = Ho(t t),  o(tnty) = bon.
21 (1, 1) d2o(t, tr)

= d)(ta tf)
Y(t) K;

Then if X(f) is invertible for all t € [, t]

K(t) = Y(O)X (1) = (d21(t, tr) + daa(t, t1)Kr) (d11 (L, tr) + (L, tf)Kf)_1-

AN ™
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Example
Minimize .
f
J = Kix?(1) +/ (X3(t) + 42(t))dt,
0
under the constraint

x(t)=u(t), x(0)=x=1.

0 -1 1 e~ (t=t) 4 glt=tr) o=(t=t) _ g(t=t)
H= = QS(t, tf) =5
1 2| o (t=t) _ glt=t)  g=(t=t) 4 glt=t)
So we obtain
_ g2t=t) (t—t7)
K(t,t,):(1 e )+ Ki(1 + e?(t=1))
(1 + e2(t=1)) + Ky(1 — e2(t=1))
AN ™
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Dynamic Programming
Let us define V(t, x(1)) = %x’(t)K(t)x(t) with respect to the quadratic
form of the criterion to optimize. Then

e X0 =y (L("“)v u(t).0) + S X)), (o), t)) (37)

becomes

—X (K (0)x(t) = min (x' () Qx(1) + U () Ru(t) + 2x (K (1)(Ax(t) + Bu(1))

(38)
and
u*(t) = —R'B'K(t)x(1) (39)
with the Riccati equation :
~K=Q+AK+KA-KSK; K(t) =K. (40)

In this case, the PMP and the DP coincide.
R ™
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Explosion in finite time

The Riccati equation may have no solution on the interval [y, t;], due to
explosion in finite time (which are characteristic of nonlinear equations).

For example _
k(t) =1+ K3(t),  k(0)=0 (41)
has a solution t — tan(t), which exploses in finite time at t = g
R ™
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Asymptotic Behaviour

For different applications it is assumed that

lr — +o0

The terminal cost x'(f;)Kix(t;) has no sense anymore.

J= /+OO ()0x(t) + U (H)Ru(t))dt

Idea :
The limit (if it exists) K(—oo, t) is a solution of the Algebraic Riccati
standard Equation (ARE)

0h,=-AK-KA—Q+ KSK.

AN ™
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How to solve the ARE

Integration method :
lim K(t, t)
t——o0
This solution depends on the initial condition Kj.

Algebraic method :
All the solutions K of ARE, there exists matrices Y, X and J (X
invertible, J Jordan canonical form) such that

X X
K=yYX", H = J.
Y Y
In the other hand, if
X X
H = J,
Y Y

with X invertible, then K = YX~'is a solution of ARE.
R ™
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How to solve the ARE
The matrix H is Hamiltonian
Re (M) < - <Re(Ap) <0< Re(App1) <--- <Re(Agn).

Select the eigenvalues A1, - - - , A\, and construct by the (generalized)
eigenvectors associated with the invariant subspace

(3)-(0)¢

K=YX"'

If X is invertible :

Note that when K is a solution of ARE,

A(A = SK) € A(H).

R ™
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Example
integration method
lim K(t t) = +1
tr——+oo
This limit does not depend on K;.
algebraic method

» 1 1 —1
H=VDv-', V= . D=
1 -1

The only one stabilizing solution is given by the eigenvalue —1 and the

eigenvector [
1

K=YX""=1 A—SK = —1.

G
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Conclusion and Open Questions
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Contact

Contact :

Marc.Jungers@univ-lorraine.fr

Thank you very much!
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