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Where is Nancy ?

BRITAIN

LORRAINE /g i1z

FRANCE

ANDORRA

Miles 100 SPAIN

e The city of Nancy is at the East of Paris (1h30 by direct train) ;
e 2h by car from cities of Strasbourg and Luxembourg ;
e 4h30 by car from Eindhoven.

€T
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!3,.,&.;. : An attractive city

Place Stanislas,

Nancy Jazz Pulsation,

St Nicolas,

Mirabelle, macarons.
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The research at Nancy

UNIVERSITE .
DE LORRAINE
[ ]

e Centre National de la recherche scientifique
e 11000 researchers; 1100 units; all fields.

New university (january 2012) gathering
universities of Nancy, Metz, and INPL ;

3700 professors and researchers ;
3000 administrative agents ;

82 laboratories in all fields ;
54200 students (before PhD) ;
1700 PhD students

G
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CRAN Laboratory

e Research Center for Automatic control at Nancy.

f' !Q A'\ ¢ 120 professors and researchers ;
\ -.

e 80 PhD students

Three departments :
e CID : Control theory, Identification and Diagnostic.
e SBS : Signal Processing for Biology and Health engineering.
e |SET : security and dependability of systems.

Main topics in Control theory : Hybrid systems, switched systems in discrete
time, optimal control, generalized Riccati equations, networked control systems,
event-triggered approach, observer, multiagent systems, graph and game
theory, opinion dynamics ;...

A

Discrete-time switched Lur'e systems M. Jungers 6/68



Outline of the talk

Lur'e systems
Definitions
Motivation examples
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Definition of a Lur’e system (i)

A Lur'e system is the interconnection bet- Linear System

ween a linear system and a nonlinearity ve-
rifying a cone bounded sector condition*.

Nonlinearity ¢

ely) Sy
Assumption :

¢ The nonlinearity ¢(-) verifies the cone
bounded sector condition : ¢(-) € [0, Q]

SC(e(-), ¥, N) = ' (¥)Ale(y) -yl <0, (1)
with A € RP*P diagonal positive definite.

Ve

Issue of absolute stability, that is the stability of such a system for any
nonlinearity verifying the condition.

1. A I. LUR’E et V. N. POSTNIKOV. “On the theory of stability of control systems”. In : Applied Mathematics and Mechanics 8.3 (1944),

CRAn
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Definition of a Lur’e system (ii) : Continuous-time
Continuous-time Lur’e system :
x(t)
y(t)

where x(t) € R”, y(t) € R?, (t € RY).
Classical Lyapunov functions :2,3

Ax(t) + Fo(y(1)), (2
Cx(1), €

-

=

e The quadratic function with respect to the state (circle criterion) :
v(x(t)) = x'(£)Px(1); (4)

e Lur'e-type Lyapunov function (Popov criterion) (scalar case for clarity) :
Cx(t)
V() =X (OPx(0)+20 [ Q) a>0n=0  (5)
0

o (-) must be time-invariant to have :focx p(s)ds > 0;
o In continuous-time case, ¢(Cx) appears in the expression of v, only (1) is needed
to conclude v < 0;

2. A. I. LUR’E et V. N. POSTNIKOV. “On the theory of stability of control systems”. In : Applied Mathematics and Mechanics 8.3 (1944),
p. 3-13.
3. R.E. KALMAN. “Lyapunov functions for the problem of Lur'e in automatic control”. In : Proceedings of National Academy of Sciences 49

CQKAZN—ZOB.
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Classical Lyapunov function for Lur'e systems

The main idea to ensure v(x(t)) < 0, thanks to ¢(-) € [0, Q2] via the S-procedure,

that is :
v(x(t)) <0, Wx(t)#0.
With &(t) — ( @Z(y((tg)) > £ 0, (equivalent to x(f) £ 0) :
e Circle criterion :
g(t),qA’P:-PA FZ)B}_'_ )g(t)<o.

e Popov criterion :

([ AP+PA  PB1nACQ
&) ({ x  n(QCF+FCQ) } +

Links with KYP Lemma, frequency approach...

) £(t) < 0.

(6)

AN
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Definition of a Lur’e system (iii) : Discrete-time
Discrete-time Lur'e system :
Xer1 = Axk+ Fo(yx), 9)
Yo = Cxk, (10)

where xx € R”, yx € RP, (k € N).
Classical Lyapunov functions : Extensions provided by Tsypkin*.
e The quadratic function with respect to the state (extension of Circle criterion) :

V(Xk) = Xk Pxi; (11)

e Lur'e-type Lyapunov function (extension of Popov criterion) :

Cxy
V(Xk) = Xk Pxic + 277/ Qp(s)ds, a >0, n = 0; (12)
0

o ¢(+) must be time-invariant to have :foclx p(s)ds > 0;
o v(-) is inspired from the continuous-time;
o An extra assumption ® 8. is necessary to bound f”‘*‘ p(s)ds. Ex: ( ) < Komax.

4. Y. Z. TSYPKIN. “The absolute stability of large-scale nonlinear sampled-data systems”. In : Doklady Akademii Nauk SSSR 145 (1962),
p. 52-55.

5. J. B. PEARSON et J. E. GIBSON. “On the Asymptotic Stability of a Class of Saturating Sampled-Data Systems”. In : [EEE Transactions on
Industry Applications Al-83 (1964), p. 81-86.

6. G. P. SZEGO. “On the Absolute Stability of Sampled-Data Control Systems”. In : Proceedings of National Academy of Sciences 50 (1963),

CRAR

Discrete-time switched Lur'e systems M. Jungers 11/68



Motivation example (i) : Deadzone and Saturation

@' (YN (e(y) —y) <0.

QR
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Motivation example (ii) : @ mechanical system with spring

A mass m is constrained to slide along a
straight horizontal wire, with a viscous dam-
ping force of coefficient «. A spring of relaxed
length ¢y and spring stiffness k is attached
to the mass and to the support point a dis-
tance h from the wire. The horizontal coor-
dinate of the mass is denoted x(t) and we
define x = 0 when the spring is vertical.”.

ho

T
The nonlinear motion equation of the mass m is given by the Newton’s law :
. k k Lo
x(t :——xt ——Xt 4+ — —=x(1).
(1 ()= X0+ o
() () —x) <0, Q=2 o= -2
o S VAR

e |f 4o > h, the origin is unstable ;
e |f 4o < h, the origin is globally asymptotically stable.

’ Q EA H/ STROGATZ. Nonlinear Dynamics and Chaos. Studies in nonlinearity. Perseus books, 1994.

(O
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Motivation example (iii) : Duffing system

Differential equation
mé +~€ + a& + B¢ = F cos(wt) (13)

where £ is the position, m the mass, v damping coefficient, « stiffness, S return
force, F amplitude and w pulsation of input force.

o =[S 3o~ [3]evmy+ [2un. rern

m m m m

y(ty = [1 0]x(),
u(t) = Fcos(wt),

with x(t) = (g%g) and ¢(y(1)) = By°.

Then Q = +oo, thatis yo(y) > 0.

G
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Motivation example (iv) : Chua’s Circuit

Letx(t) = (va v, i)', thus Chua’s circuit is a Lur'e system :

-6 6 9 =1
4 g & +
) = |- & o|X+ [0] e(y(t), teRT,
o ; O 0
y(ty = [1 0 0]x(1),
where o m
p(y(1) = moy(t) + =5 (ly(t) + bl — ly(t) — b,

with scalar parameters mg, my and b. This is a chaotic system.

G
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Motivation example (v) : link with uncertainty
An uncertain system
x(t) = Ax(t) + FACX(t), 0< A < Ap, (14)

can be reformulated into a Lur’e system

x(t) = Ax(t)+ Fe(y(1)),
y(ty = Cx(),
ely) = Ay
and with
<P(,V)(<P(Y) - Amaxy) S 0.
G
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Outline of the talk

Introduction of a new Lyapunov-Lur’e type function
Global stability analysis
Local stability analysis

R
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Main difficulty in discrete-time case

In discrete-time, extra assumption about the slope of the nonlinearity is required.
That introduces a break of analogy with respect to the continuous-time
framework.

24|
2
15| T
: =

03

A counterexample : half-circle o
allowing vertical tangents.

4 -
15| 5
of T

e

Aim : Consider a suitable Lur’e-like Lyapunov function in order to

e propose sufficient conditions for the global stability analysis problem (Lur’'e
problem) ;

e cover a wider range of cone bounded nonlinearities ;
¢ relax the assumptions of the classical literature of the Lur’e problem.

Taking into account the nonlinearity by avoiding the integral term.

G
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A Lur’e-like Lyapunov function for discrete-time
Definitions

(15)

) R"” x RP — R,
(X;p(Cx)) — X'Px+2p(Cx)' AQCx,

e with 0, < P =P € R™"and 0, < A € RP*P diagonal.
e Bounding quadratic functions :

V(x) < V(x;9(Cx)) < V(x). (16)
where V(x) = x'Px and V(x) = x'(P +2C'Q' AQC)x.

QR
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Basic properties
Candidate Lyapunov function :

e V(x;¢(Cx)) > 0dueto P > 0, and the sector condition (1) of ¢(-).
e V(x;0(Cx)) =0« x=0,dueto P> 0.

¢ Relation (16) implies that function (15) is radially unbounded

e Lyapunov difference : 6xV = V(Xk+1; ¢(CXk+1)) — V(Xk; ©(Cx«)).

The level set of our function (15)

Lyv(y) = {x € R"; V(x; p(Cx)) <~} . (17)

e The set Ly(y) may be non-convex
and disconnected.

Discrete-time switched Lur'e systems M. Jungers 20/68



Global stability analysis

Global Stability Analysis If there exists a matrix 0, < P = P’ € R™", a diagonal
matrix 0, < A € RP*P and diagonal matrices 0, < T, W € RP*P, such that the
LMI

A A 1 [-P CQ[T-A] ACQ[W+A4]
EALAN

F’ F * -2T F'C'QW + A]| < 02n42p,
Opxn Opxn * * —2W
(18)
is verified, then the function V(x; o(Cx)) is a Lyapunov function and the origin of
system (9)-(10) is globally asymptotically stable.

’

Main idea :

V(Xk11; p(Cxii1)) — V(Xk; 0(Cxk))
—28C((+), Yir1, W) —28C(p(-), ¥k, T) < 0, Vxi # 0.

No assumption about the variation of ¢(-).

8. C. A. C. GONZAGA, M. JUNGERS et J. DAAFOUZ. “Stability analysis of discrete time Lur'e systems”. In : Automatica 48 (9 2012), p. 2277—

Can
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lllustration for global stability analysis

Example 1 : global stability analysis

R
V2

O R ]

e o(y) =0.5Qy(1 4+ cos(10y)) (unbounded derivative on y € R);

e Luresystemwithn=2,p=1,Q=

e The Lyapunov function (15) exists and applying Theorem 18 leads to :

p_ [ 0.9825 —0.0846

—0.0846 0.9476 } ; A =0.7503.

G
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Global stability analysis

One initial condition xo k=0

107

7.5¢

~10 i i i i i i i ;
-10 -756 -5 -25 0 25 5 75 10
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Global stability analysis
Contractivity of the level set Ly (v = V(xo0, ¢(J0))) ; k=0

107

7.5¢

A
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Global stability analysis
Lv(y = V(Xk—1, 0(¥k-1))) and Lv(y = V(xk, p(¥«))) ; k=1

107

7.5¢
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Global stability analysis
Lv(y = V(Xk—1, 0(¥k-1))) and Lv(y = V(xk, p(¥«))) ; k

I
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Global stability analysis
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©
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Lur'e system with saturated input

Xke1 = Axk+ Fo(yk) + Bsat(uk), VkeN (19)
yk = CXk (20)

Class of state and nonlinearity feedbacks as controller : ux = Kxx + Fo(yk).

Linear System
u(w, p(yx)

+ Tk
o(yr) W Nonlinearity | Yk
e()

Due to the saturated input in discrete-time :

e Only local stability ;

¢ The basin of attraction of the origin 5y may be non-convex and disconnected.
Aims :

e Stability analysis and control synthesis,

e Estimate the basin of attraction By via the level set Ly(1);

G
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Tools :

e The deadzone W(ux) = ux — sat(uk), is dual to the saturation.
e On the set

S(K—J,p) ={0 e R"™; —p < (K- J)0 < p}, (21)

with K = [K ] and J = [Js J2], W(ux) verifies a generalized LOCAL cone
bounded condition :

SCuk = \U/(Uk)U[\U(Uk) — J1Xk — Jg(p(yk)] < 0, (22)

for any diagonal matrix 0, < U € R™"™,

Closed-loop system :
Xier1 = AaX + Fap(Ve) — BV (), (23)
where Ay = A+ BKand Fq = F + BI'.

G
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Main idea :

Inclusions as Matrix Inequalities ®
IM1) Ball of radius 1/,/1 included inside Ly(1).
IM2) Ly(1) € S(K — J, p) such that SC,, < 0.
IM3) 6,V — 2SCy, — 2SC((*), Yit1, W) — 2SC((-), ¥k, T) < 0.

Conclusion :on Ly(1), 8¢V <0,V x # 0.

r. 9. C. A. C. GONZAGA, M. JUNGERS et J. DAAFOUZ. “Stability analysis of discrete time Lur'e systems”. In : Automatica 48 (9 2012), p. 2277—

AN
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Inequalities implying the inclusions (i)

e The LMI )
[uln; P -C 92[’1':?r + A]} > Onep, (24)
leads to ;
E(, ;) C Lv(1). (25)
e The LMI

P C'QA-Q (K- J1)(e)
* 2Q (r- J2)E£) > Ontpi, (26)
* * 0

yields, with K = [K [ and J = [Js Js]

(K = )Xk + (T = J)o(yi)l*

V(xk, ¢(¥)) +25C(¢(), ¥&, Q) > y (27)
©)
and finally o
Lv(1) c S((K - J),p). (28)
G
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Inequalities implying the inclusions (ii)

If the BMI is feasible (LMI by applying the Finsler's Lemma, or setting U),

P N R IS VAl
P e S Zou Lem<o (29)
Opxn Opxn * * * —2W
with My = C'Q[T — A]; N, = C'Q[W + A], then one obtain
5k V — 2SCy, — 2SC(p(+), Yi+1, W) — 2SC(e(*), ¥k, T) < 0. (30)

Inequalities (26) and (29) ensure the asymptotic stability on xo € Ly(1).

G
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Optimization problem for increasing the size of Ly/(1)

Local asymptotic stability and best Ly (1) If there exist matrices G € R"™*",
Jiy e R™*" Jp € R™*P, matrix 0, < P = P’ € R"™" ; diagonal matrices

0p < AERPP 0, < R, Q, T,W € RP*P, and a scalar i solutions of the
following optimization problem :

min m
G, P,J1,4, QR T, W, A, p
under the constraints (24), (26) and (29)

then an estimate of BBy is given by the set Ly(1).

€T
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Illustration

Example 2 :
e Lure systemdefinedby :n=2;p=m=1;p=15;Q2=0.9.

085 0471 , [13] o [13] ~_
A:[o.e 0.95}'5*{1.2]' F*[1.2}' C=[-05 09].

e With given gains :
K =[-0.3324 —1.0006]

e The theorem leads to :
p_ 0.0418 0.0173
~10.0173 0.2305

Without knowing ¢(y«), the estimate of B, is the inner ellipsoid :

} ; A =0.0381.

E(P+2C'QAQ0)
... but with knowing ¢ (y«)...

G

Discrete-time switched Lur'e systems M. Jungers 30/68



Illustration

Ly(1) for distinct nonlinearities :
o(y) = 0.5Qy(1 + exp (—0.5y?)).

Initial conditions xo leading to unstable trajectories
The basin of attraction of the origin By depends on the nonlinearity.

RAN
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Illustration

Ly(1) for distinct nonlinearities :
ey) = Qy.

Initial conditions xo leading to unstable trajectories
The basin of attraction of the origin By depends on the nonlinearity.
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Illustration

Ly(1) for distinct nonlinearities :
»(y) = 0.5Qy(1 + cos(20y)).

Initial conditions xo leading to unstable trajectories

The basin of attraction of the origin By depends on the nonlinearity.

RAN
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Outline of the talk

Extension to switched Lur’e systems
Definition
Global stability analysis
Global stabilization
Local stability analysis
Local stabilization
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Switched Lur’e system

Discrete-time switched system composed of Lur'e subsystems :

Xkt = At Xk + For oy (Vi) (31)
Yo = ComyXk, (32)

where xx € R”, yx € RP, o(:) : N —» Iy = {1, ..., N}.

Motivation :

e The active nonlinearity is defined by the
switching rule.

e Each mode is associated with a nonlinearity ;

e The sector conditions are mode-dependents,
Vieln:

) ) SC(¢i(-), ¥, Ai) = Li(Y)Nilpi(y) — iyl <0
i ] (33)

varphi,
varphi,

8 b b b b on » 0 o

AN
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Tools
Main tool :
¢ The extension of our function (15) to the switched systems framework '° :
[ INnxR"xRP — R,
(I',X,go,'(C,'X)) — X/P,'X—|—2(g0/(C,'X))/A,'Q/C,‘X,
e Consider the function Vpin(Xx) = .m}n V(i, Xk, pi(Cixk))
1€y

(34)

o inherits all the basic properties of function (34).

Auxiliary notation :
e Extended system matrices and state vector :
Ai = [ Ai FI 0n><Np ] S Rnx(n+(N+1)p);

Ei=[ Opx(nsin) o Opu(n_ipp ] € RPXTNEDR).

Zi= (% ¢l(Cixk) @4(Cixest) .. ¢h(Cnxesr)) € ROFNTIP),

o Set of Metzler matrices (in discrete time) :
The matrix N € My, where My is the Metzler matrices set :

Md:{HERNXNy 7Tii207 Zm,:1,Vi€IN}~

teTy

10. M. JUNGERS, C. A. C. GONZAGA et J. DAAFOUZ. “Min-Switching Stabilization for Discrete-Time Switching Systems with Nonlinear Modes”.

’ 'QAW&AC Conference on Analysis and Design of Hybrid Systems, ADHS 2012. Eindhoven, The Netherlands, 2012, p. 234-239.
A\
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Global stability with arbitrary switching law

Analogy with not switching Lur'e systems

[ Tools [ Not switching [ Switching
Lyapunov ) iy on O
function V(x: 9(Cx) V(i x; 9i(Cx))
Lv(v) {x eR" V(xi90(Cx)) <7} | N {Xx R V(i xi9i(Cix)) <7}
i€y
# LMls 1 N2
Bounds of Ly Ellipsoids Intersections of Ellipsoids
'a
AN
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Global stability analysis

Global Stability Analysis! If there exists N matrices 0, < P; = P, € R™", N
diagonal matrices 0p < A; € RP*P and diagonal matrices 0, < T;, W; € RP*P,
such that the LMI, ¥(i,j) € {1,--- ,N}?

A
0p>< n
(35)

is verified, then the function V(ox; Xk; ¢ok)(Co(k)Xk)) is @ Lyapunov function and
the origin of system (9)-(10) is globally asymptotically stable.

F/ x -2T, Fi G [W + Aj] | < Ozni2p,

Al [P CGUlTi— A ACYyW +Aj
_|_
Opxn * * —2W;

Main idea :

V(a(k +1), Xk1:9(Cxi+1)) — V(o (K), Xi; ¢(Cxk))
= 2SC(Po(ki1)(+)s Yir1s Wor k1)) — 2SC(@o k) ()s Vi, Toiy) < 0, VX # 0.

No assumption about the variation of ¢, (-) and @k4+1)(:)-

11. C. A. C. GONZAGA, M. JUNGERS et J. DAAFOUZ. “Stability analysis and stabilisation of switched nonlinear systems”. In : International

f ;m'\fcmm/ 85.7 (2012), p. 822-829.
\-‘
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Global stabilization : Min-switching strategy

Assume there exist a matrix I € Mgy ; matrices 0, < P, = P; € R™*" and
diagonal matrices 0, < T;, Wj, 0, < A; € RP*P, (i € Zy), such that the
Lyapunov-Metzler inequalities are satisfied Vi € Zy

Aj(P)p,iAi + He(A/(C'QAE),) — 3 (21E:, W,Eq — He(E, Wquch,-))

q€Iy
P,‘ * *
= (A,‘ = T,')Q,'C,‘ 2T; * < 0n+(N+1)p7 (36)
0Np><n 0Np><p 0Np

where (P)p,i = > ¢z, meiPe, then the min-switching strategy

O’(k) = U(Xk) = arg Ing}r,l V(i, Xk @/(C,’Xk)) (37)

globally asymptotically stabilizes the system (31)-(32).

12. M. JUNGERS, C. A. C. GONZAGA et J. DAAFOUZ. “Min-Switching Stabilization for Discrete-Time Switching Systems with Nonlinear Modes”.

’ 'Q Ah&AC Conference on Analysis and Design of Hybrid Systems, ADHS 2012. Eindhoven, The Netherlands, 2012, p. 234-239.
\-‘
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Sketch of the proof

The matrix inequalities (36) are formulated in order to :

e Consider the sum of :
o the sector condition at time k + 1 :

©q(Caxk11) Waleg(CaXiy1) — QqCqXis1] <0, (38)
o written in the equivalent form :
72;( (ZE:] WqEq — HC(IE:7 WquCqA,‘)) zx >0,

with 0p < Wy € RP*P diagonal.

e Upper-bound the function Viin(Xk+1) = r&n V(Jj, Xk+1, ¢i(Cixk+1)) by the aid
JE€LN

of these sector conditions ;

e Guarantee, due to properties of the Metzler matrix N € My, that
Vinin(Xk+1) — Vinin(Xk) < 28C(@o(-), ¥k To) < 0.

G
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State space partition

State space partition :
o Let the sets S; allowing to activate the mode i € Zy :
Si={x € R", Vimin(x) = V(i,x,0i(Cix))}, VieIn.

e 0cS,Viely;
* Uicz,,Si = R”, at least one mode reaches the minimum of our function ;
¢ the sets S; are not necessarily disjoint.

1

Remark : Feasibility of Inequalities (36) implies inclusions 72 A; and
1
w7 (Ai + B C;) stable, Vi € Zy.

(39)

G
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Illustration

Example : global stabilization
e Switched Lure systemwith N=n=2,p=1,Q;=0.6;Q, =0.4:

108 0 05] ~ [1].
A= [ 0 —0.72} h= {0.2} G = {0.4] ’

—0.48 0.8 02] ~ [04
A = [ 0 0.8}'5:{0.5]'02*[1}

e The nonlinearities are : ¢1(y) = 0.5Q4y(1 + cos(2y))
and p2(y) = 0.5Qy(1 — sin(2.5y)).

e The numerical results are obtained :

p _ [1.1490 —0.0832] . _[0.3508 —0.4489
1= 1-0.0832 1.9764 |' "2~ |-0.4489 3.1440

Ay = 0.2585; A = 1.0509; with the Meztler matrix M = {82 82}

A
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lllustration
State space partition and a trajectory for xo = (14; 11)’

Set S = §1 NSz and bounding

cones Cs : Ca. Trajectory xx and the modes selected at

each instant k.

With A; # 0p, the state partition exhibits ripples.

RAN
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Switched Lur’e system with input saturation

Discrete-time switched Lur’e systems with control saturation :
X1 = Ao Xk + FokyPo k) (Vi) + Bokysat(Ux), (40)
Yo = CouXk, (41)
where xx € R”, yx € RP and ux € R".

Assumptions :
e The state and the modal nonlinearities are available in real time;
e The switched feedback control law is considered :

Uk = Koo Xk + T ook (Vk)-

Input saturation :
¢ Only local stability can be assured;
e The basin of attraction B, may be non-convex and disconnected.

G
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Tools

Main tools :
e Consider the function Vyin(x) = rgn V(i, x, ¢i(Cix)) as candidate Lyapunov
Ieln

function,
¢ whose the level sets are given by :
Lvya(v) = {Xx €R" Vimin(x) <7}
= U {xeRLViixg(Cx) <7}
J€IN

and the set Ly, (1) will be considered as an estimate of 5.

The approach is similar to the previous one '3

13. M. JUNGERS, C. A. C. GONZAGA et J. DAAFOUZ. “Min-Switching Local Stabilization for Discrete-Time Switching Systems with Nonlinear

QAA” Nonlinear Analysis : Hybrid Systems 9 (2013), p. 18-26.
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lllustration : Local stability analysis

Exemple :

e Luresystemdefinedby N=n=2;p=m=1;p=1.5,
Ci=[09 05];C=[1 —07];2=07;Q=13.

* ¢i(y) = 0.521y(1 +sin(30y)) ; w2(y) = 0.5Q2y(1 + cos(*F*))
04 04 0.5 1
A= [0.2 1 } B = [0.5} Fi= {1.2} '
1.1 0.6 0.7 1.2
Ae = [0.3 0.4} B2 = [o.s} Fe = { 1 }
The switched gains are given as follows :

Ki = [-0.72 —1.01];Ty = —1.2636;
Ko = [-1.27 —0.74] ;T2 = —1.4744.

G
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lllustration
{x e R", V(1;x;,01(C1x) < 1}.

-

*X2)
o

1t

ot

3t

RAN
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lllustration
{x € R"; V(2; x; p2(Cox) < 1}.

QM ——
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Illustration

Ly(1) and the best estimate with the quadratic Lyapunov approach.

%)
o

€T
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Illustration

Two trajectories with different arbitrary switching laws.

15

1)
Question : what about the gap between Ly(1) and By ?
Four (constant and periodic) switching laws are considered.

o 0a(2k) =1; 0a(2k + 1) = 2Vk € N; o op(k) =1;Vk € N;
o 0o(2k) = 2; 0o(2k +1) = 1 Vk € N; e 04(k) =2;Vk €N,

RAn
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lllustration
Xo ¢ Lv(1) leads to unstable trajectories with oa(k).

2 ++ 4
H R
+ ijar %:&f
15} R BE
+ "
i
10 / + iiﬁﬁi
+ TR 4
oty
0.5¢ tE
S 4
< 0++
-05f
H+ T
+
-1 S /
,%Et;i ++
Fy "t
-1.5 iﬁ& ++ &
% +¢+++++ F o+
+
-2 T : . .
-2 -1 0 2

RAN
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lllustration
Xo ¢ Lv(1) leads to unstable trajectories with oa(k), op(k).

€T
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lllustration
Xo ¢ Lv(1) leads to unstable trajectories with oa(k), ob(k), oc(k).

A
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lllustration
Xo ¢ Lyv(1) leads to unstable trajectories with oa(k), op(k), oc(k), oa(k).

RAN
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Illustration : local stabilization
Example :

e Switched Lur’e system with input saturation with N=n=2,p =1,
p=5;01=07;Q=05:

14 04] _ [1].. [05] . [09]
A= [0.2 1}'H—[mz}'B‘—{o.s}c‘_{o.s]'

11 06 12] 5 _[07] o [
2:[1}'52*{0.5}02*{0.7]'

A = [0.3 1.5} ;
¢ The nonlinearities ;(y) are defined by, Vy € R :

Tl

w1(y) = 0.5Q1y (1 + cos(20y)) ; p2(y) = 0.5y (1 — sin(25y)) .

e The control gains are given by :

Ki = [-0.7168 —1.0136]; 'y = —1.2923;
K: = [-1.2581 —0.7326]; > = —1.4650;

A
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llustrations
State-space partition inside Ly, (1)

mode 1 is the blue region and mode 2 is the red region.

25 8

RAn
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25

[llustrations

2 trajectories, one from xp settled in the disconnected Ly, (1).
Red circle (resp. a black star) means the mode 1 is active (resp. mode 2).

AN
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lllustrations
Mapped x; leading to unstable trajectories.

3

Our estimate is adapted to the shape of By.

RAN
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Outline of the talk

About consistency
Reminder of the consistency for switched linear systems
What about consistency for switched Lur’e systems

CRAN
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Closed-loop performance for linear switched systems
Let us consider here the following switched linear systems

Xkt = Asi) Xk, To(X0) = Z Xk Qo (1) Xk - (42)
ken

If there exist matrices P; > 0, Vi € Zy and N € M solution of the optimization
problem

min (&2 tmce(P,)) , (43)

1
subject to
A muPe)A-Pi+Q <0, Vien (44)
LeTy

then the state feedback switching strategy o(k) = arg rg%n Xy Pixx, called
ely

min-switching strategy, ensures that the origin x = 0 is globally asymptotically
stable and

T (X0) < min xgPiXo = Vinin(X0)- (45)
iI€ELy

’

RAN
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Consistency for switched linear systems

Consistent switching law for linear switched systems '* Consider the class of
switched discrete-time linear systems, where o : N — Zy is the switching law. A
particular switching strategy os(-) is consistent, with respect to the performance
J-(+), if it improves the performance when compared to the performances of
each isolated subsystem supposed to be asymptotically stable.

Tos(20) < MINTo—i(%0). (46)
i€Tn

The min-switching strategy os(k) = arg min x; Pixx, where P; are solution of
gy &) o Xk

Optimization Problem (43) is consistent.

Idea of the proof : The inequality A;P,A; — P; + Q; < 0 is a particular case of the
constraints (44).

14. J.C. GEROMEL, G.S. DEAECTO et J. DAAFOUZ. “Suboptimal Switching State Feedback Control Consistency Analysis for Switched Linear

r, RA In : 18th IFAC World Congress. 2011, p. 5849-5854.
\-“ a /

Discrete-time switched Lur'e systems M. Jungers 54 /68




Closed-loop performance for switched Lur’e systems

If there exist matrices P; > 0, Vi € Iy and Tl € M solution of the optimization
problem, with (P)p,i = Y miPe,

(ETy . .

e, (47)

subleetto o e s <o, (48)
Bi(P)p,iAi a4 S,‘Q,'C,- Bi(P)p,iBi _ 23,

then the state feedback switching strategy o (k) = arg r&n Xy Pixx ensures that
€N
the origin x = 0 is globally asymptotically stable and

T (X0) < min xgPiXo = Vinin(X0)- (49)
i€ELy

.

?
Tos(X0) < Vimin(X0) < minT,—i(xo).
i€Zy

The answer is NO! This is due to the dependency of 7, (xo) with respect to the
nonlinearity o, (-) '

15. J. Louis, M. JUNGERS et J. DAAFOUZ. “Switching control consistency of switched Lur'e systems with application to digital control design

l Qh oNniform sampling”. In : 14th annual European Control Conference, ECC 2015. Linz, Austria, 2015, p. 1748-1753.
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Extension of Consistency concept

Consider switched Lur’e systems, a particular switching strategy os(-) is
consistent, with respect to the performance 7., if it improves the upper bound of
the performance when compared to the upper bounds of performances of each
isolated subsystem.

Tos(%0) < Vinin(X0) < minTo=i(Xo), (50)
i€y

The min-switching strategy o (k) = arg rg{rn X, Pixx, given by last theorem is
I€Lin

consistent according this revised definition.

. 16. J. Louis, M. JUNGERS et J. DAAFOUZ. “Switching control consistency of switched Lur'e systems with application to digital control design

QhANryorm sampling”. In : 14th annual European Control Conference, ECC 2015. Linz, Austria, 2015, p. 1748-1753.
\-“
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lllustration : consistency for switched Lur’e systems

Consider a switched Lur'e system defined by

09 0 -0.58 —0.8 0.5 o2
A= [0.4 —0.72} Ao = { 0 —0.8} » Br=- [o.z}  Be = {0.5] ’
Q
Ci=[06 024], Co=[04 11],01(yi) = ;yk(1 + cos(2yk)),
Qoyk

. —4
wa(yk) = 5 (1 —sin(5.5y«)), 21 =06, Qo =12, X = ( 5 ) .

Q = qgilhawithi € I,

=

Tos Vinin (XO) T T2 T J>
52 96 175 | 231 121 59
76 168 782 | 231 484 | 59
121 175 175 | 927 || 121 | 238

= A=l

A==

A
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Outline of the talk

Application to sampled-data Lur'e systems with nonuniform sampling

RAn
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Sampled-data Lur’e system with nonuniform sampling
Sampled-data Lur’e system :

{ X(t) = Ax(t)+ Bo(y(1)) + FU(t), teR*
SC : y(t) = CX(O?
) = u(t) = Kiyx(t) + Foo(y(t), [t bl

where
e x(t) € R" is the state, y(t) € R” the output &(t) € R’ the control input.
e (-) is a nonlinearity verifying the cone bounded sector condition

©(0)=0;  o(y)Mely)—Qy) <O.

with A € RP*P any diagonal positive definite.
e The sampling times {}, . verify

k1 — e € {7—/}16{1;...;/\/}, Vk € N.

Issue 1 : Design jointly a control law &i(t) and a sequence of (nonuniform)

(51)

(52)

(53)

sampling periods, ensuring that the origin x = 0 is globally asymptotically stable.

Remark : uniform sampling consists in assuming {7i};c ... vy = {T1 }-

G
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Stability of a samped-data system with nonuniform sampling

Consider S; with a finite family of sampling
period {Ti};c (;.....ny» @nd a given control law

e (A1) If there exits a function 8 € KL such AX()

thatVk > ko > 0, Jﬂ(llxo)
Il < 8 (bl & — k),

o (A2) If there exist N k; € Koo, satisfying
Vi € {1 Feoo g N}, Vit e [tinit; tinit + T/];

XN < i (lIx(tine) 1) 5

then the sampled-data system S; is globally
uniformly asympotically stable and there exists
B € KL, such thatVt > tiny > 0

X1 < B (X (Gni) I, t — tine) -

v

17. D. S. LAILA, D. NESIC et A. ASTOLFI. “Advanced topics in control systems theory II". In : sous la dir. d'A. LORIA, F. LAMNABHI-LAGARRIGUE
et E. PANTELEY. T. 328. Lecture notes from FAP 2006. Springer, 2005. Chap. Sampled-Data Control of Nonlinear Systems, p. 91-137.

18. J. Louis, M. JUNGERS et J. DAAFOUZ. “Stabilization of sampled-data Lur'e systems with nonuniform sampling”. In : proceedings of the

’ Q?{K Conference on Decision and Control. Osaka, Japan, 2015, p. 2881-2886.
A\\A
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First consequence and reformulation of Problem 1

Guideline :
e (A2) is always satisfied for Lur'e systems here.

e Problem 1 reduces to verify (A1).
= introduction of the exact discretized system

T
FS (Xk) = Xe + / (Ax(T) + Bo(y(r)) + FEl(tk)) dr, VKeN. (54)

t

Reformulation 1 of Problem 1 : Determine jointly a control law and a switching
law stabilizing the nonlinear switching system :

]
Xert = F7_0

(xx), keN, (55)

where the switching law o : N — {1;--- ; N} select the active sampling period in
{ﬂ}i€{1;<-< N}

G
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Further discussion

Among all the solutions, it may be interesting to add to Problem 1 a criterion and
to consider an optimization problem.
Performance criterion : Degree of freedom to select the nonuniform sampling
time

jU(X()) = ZX;QQJ(k)Xk. (56)

keN

For instance, Q,-#%, vie{l,---,N}
I

Difficulty : due to the presence of the non-linearity ¢(-) :
* Itis not possible to obtain an analytical value of the function F%.(-);
e F%(-) is not of Lur’e type structure.

Question :

How to handle (easily) the function F%,(-) ?

A
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Reformulation of the issue :

Reformulation 2 of Problem 1 : Design jointly the switching gains (Kj, I';) and the
switching law ensuring that the discrete-time Lur'e system with norm bounded
uncertainties written as 3A ;, Az, such that

Xeri = (Ag et Azﬂ(k)) X+ B 2 (Cx) + (In+ Do) F2 gy Uk
1A < (Ti)2hn,
Dy iDoi < 1a(Ti)2h,
uc = KopoXk + Tope(Cxk)

is globally asymptotically stable and that minimize the cost 7 ().
Solution given by the optimization problem

min(_min ~—trace(P;"")), (57)
ie{
under LMI constraints provided in '°. Then the switching law
o(k) = argmin (X}, P;x), leads to
Totg(x0) < T(x0) = _min  (xPixo) (58)

and is consistent to the quadratic upper bound taking into account all the
nonlinearities and all the uncertainties.

19. J. Louls, M. JUNGERS et J. DAAFOUZ. “Stabilization of sampled-data Lur'e systems with nonuniform sampling”. In : proceedings of the

’ qﬂvﬁﬁ Gonference on Decision and Control. Osaka, Japan, 2015, p. 2881-2886.
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Numerical example

Let

o 16] 5 [0,25] - [oO _ B
A:[_O,S _01},57{025},/:7[020},cf[o,1 0,15],

p(yIk]) = 4 (1 + cos(By[K] + 0, 1y°[K])),

Q:§7 on(g>7 T1:071 T2:0737

and R; =3, R2=1,Q1 =3hetQ = b.

Then the optimization problem leads to

p, _ [358,42 280,49] , 383,91 260,67 03 w0
"7 |280,49 671,26)' "2~ |260,67 548,82 T 2T

Ki=[-1,46 —4,04] K, =[-4,50 -18,57], 1= -0,14, [ =—1,74.

A
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Numerical example : the trajectory
State partition for the choice of the sampling period

G
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Numerical example : the performance
Uniform sampling 71, Uniform sampling T, Nonuniform sampling,
Ti(x0) = 13247 To(x0) = 17363 Jo (%) = 10895

Nonuniform sampling, J&(xo) = 10895

X

61
4
2
0
-2

z1(t) 1 4+ @a(t)

Improvement
I PR B Ti(00) — 7o (%) e
{—Uﬁ : : J1(Xo) T
e 0 D e DS R S
A B

R _
. Jungers 66 /68
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Conclusion

Discrete-time Lur’e system have been studied :

A new discrete-time Lyapunov-Lur’e function suitable has been provided ;
Global stability analysis and Global stabilization ;

Local stability analysis and local stabilization ;

Revision of the notion of consistency taking into account all the nonlinearities ;
Application to sampled-data Lur’e systems.

G
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Thank you very much for your attention !

Marc.Jungers@univ-lorraine.fr

€T
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