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Abstract : This paper deals with the estimation quality of nonlinear filters in relation to sensors
losses. In a nonlinear state space representation setting, Central Difference Kalman Filter, Ensemble
Kaman Filter and Particle Filter are tested on a second order system. Their comportment in relation
to the sensors available are then studied, in order to compare the estimation quality by computing
criteria such that variances of estimation errors and observability gramian.

Résumé : Cet article étudie la qualité d’estimation de filtres non linaires en fonction de la perte
de capteurs. Dans un environnement non linéaire décrit par une représentation d’état, les filtres de
Kalman à différence centrale, les filtres de Kalman d’ensemble et les filtres particulaires sont testés
sur un système d’ordre deux. Leur comportement relativement aux capteurs disponibles est alors
étudié, dans le but de comparer leur qualité d’estimation, en calculant des critères tels que la variance
des erreurs d’estimation ainsi que les grammiens d’observabilité.
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1 Introduction

The growing demand for fault tolerance in more and more complex automatic control systems can
only be reached using efficient Fault Detection and Isolation (FDI) algorithms and reconfiguration
concepts. Consequently, estimation techniques are more and more used in fault detection and data
reconciliation of complex industrial processes, like power, aeronautic or chemical ones [Ochi 91] [Ragot
05]. For example, an estimator bank can be used in order to generate residuals sensitive to faults
[Sircoulomb 05]. These residuals are then explored to detect and isolate faults, and to reconfigure
the control law or the FDI algorithm.

As most of complex systems are nonlinear, acceptable amplitudes of residuals directly depend
on the accuracy of the estimators and their robustness, i.e. estimated values must be the closest to
the real values. Moreover, if a sensor loss occurs and the system is still observable, the conservation
of the FDI algorithm performance will depend on the way the estimators are affected by this lost
information. The purpose of this article is to study the estimation quality of nonlinear filters in
relation to sensors losses. In this paper, a problem statement is first presented in section 2. For
evaluating estimation quality, section 3 proposes some criteria, based on variance and observability
Gramian. Then, the nonlinear filters tested are given in section 4. Subsequently, the object of section
5 is the implementation of these estimators on a strongly nonlinear system, in order to analyse and
compare their comportment in relation to sensors losses.
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2 Problem statement

Consider the following nonlinear discrete time system:

{

x(k) = f(x(k − 1), u(k − 1), w(k − 1), k − 1)
y(k) = g(x(k), u(k), k) + v(k)

(1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu the control input vector, y(k) ∈ Rny the mea-
surement vector, w(k) ∈ Rnw the process noise, v(k) ∈ Rnv the measurement noise and k ∈ N the
(discrete) time.

Suppose now that a sensor loss is detected and isolated by the FDI algorithm. The accommoda-
tion possibility depends on the observability of the system by the new set of sensors (i.e. all sensors
except the faulty one). So, it is useful to analyse the observability of the system by each possible
sensor subset. This analysis can then be represented by an oriented graph [Staroswiecki et al.]. In
such a graph, a node represents a sensor subset and an edge between two nodes means a sensor loss.
A color is associated to each node: grey if the system is observable thanks to this sensor subset;
otherwise, the color is white. Figure (1) illustrates such a graph for a sensor set a, b, c, d of cardinal
4.
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Figure 1: Example of an oriented graph

On the example described on figure (1), as each node of level 3 is grey, the system is still observable
even if a sensor becomes faulty, whatever it is. On the one hand, the accommodation task is then
possible, and a necessary condition for using a modified FDI algorithm is checked. On the other
hand, this sensor loss also means that less information are available for estimating the state and
the output of the system, resulting in less accurate estimations. Thus, the residual amplitudes will
increase, leading to two different problems. Firstly, the risk of false alarms will augment if the
detection threshold is not readapted. Secondly, it proves to be impossible to detect a low amplitude
fault, which becomes non significant compared to residual amplitude. The purpose of this article is
then to study the estimation quality of some nonlinear filters in relation to sensors losses.

3 Quality estimation criteria

There are different criteria for evaluating the quality of a state filter estimation. By the following,
we will only use the filter variance and the observability gramian.
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Figure 2: Filtering principle

3.1 Filter variance

In the following, the filter variance is taken as the Euclidian norm of the estimation error ỹ(k) on
the system output : V (k) =‖ ỹ(k) ‖. The way of computing this value is described on figure (2).

When the variances are mentioned without the notion of time dependency, it means that we
consider the average of the variance over the simulation length, denoted L:

V =
1

L

L
∑

k=1

V (k) (2)

3.2 Observability gramian

The observability gramian G(k) is a nx ×nx positive semi definite symmetric matrix, solution of the
following Lyapunov equation [Wu 00]:

A(k)G(k) + G(k)AT (k) + C(k)CT (k) = 0 (3)

where the Jacobians A(k) and C(k) are computed as follow:

A(k) =
∂f

∂x
|x=x̂(k) C(k) =

∂g

∂x
|x=x̂(k) (4)

Let λi(k) be the ith eigenvalue of G(k)−1 and λmax(k) the greatest eigenvalue of G(k)−1 :

λmax(k) = max
1≤i≤nx

λi(k) (5)

Lower ρ(k) =
√

λmax(k) is, better the quality of the considered filter is [Staroswiecki 02]. Similarly
for the variance, ρ represents the average of ρ(k) over the simulation length:

ρ =
1

L

L
∑

k=1

ρ(k) (6)

4 Nonlinear filtering methods

In a state space representation setting, the most popular estimator is the Kalman filter [Kalman
60], also known as linear Gaussian optimal filter. For nonlinear systems, recent works provided inter-
esting results, with the Unscented Kalman Filter (UKF ) [Julier 97], Central Difference Kalman Filter
(CDKF ) [Norgaard 00] and Ensemble Kalman Filter (EnKF ) [Burgers 98]. These three estimators
overperform the classical Extended Kalman Filter (EKF ), but are based on empirical developments
[Julier 94]. A more general setting is provided by Monte Carlo filters, also called Particle Filters
(PF ) [Doucet 98]. This kind of tool is more powerful, but also more time-consuming and difficult to
synthesize. This section firstly describes the optimal filtering problem. After, the filters tested are
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presented, and their tunings entered.

4.1 Optimal filtering problem

The optimal state filter is described by the probability density p(x(k) | y(1 : k − 1)) [Anderson 79],
which can be recursively calculated by the optimal Bayesian filtering equations:

p(x(k) | y(1 : k − 1) =

∫

p(x(k) | x(k − 1))p(x(k − 1) | y(1 : k − 1)dx(k − 1) (7a)

p(x(k) | y(1 : k)) =
p(y(k) | x(k))p(x(k) | y(1 : k − 1))
∫

p(y(k) | x(k) | y(1 : k − 1))dx(k)
(7b)

where y(1 : k − 1) represents the output stacked from time 1 to time k − 1. Then, the state can be
calculated thanks to one of the two optimality criteria:

o Least squares:

x̂(k) = E(x(k) | y(1 : k)) =

∫

x(k)p(x(k) | y(0 : k)dx(k) (8)

o Maximum likelihood:

x̂(k) = arg{max
x(k)

p(x(k) | y(0 : k − 1))} (9)

Unfortunately, the equations (7) can’t analytically be solved, excepted in the Gaussian case,
where it leads to the Kalman filter. In the other cases, these equations can only be computed by
Monte Carlo simulation, that’s what particle filters do.

4.2 Filters tested

The nonlinear Kalman filters tested in this article are the CDKF and EnKF . Concerning the PF ,
we will restrict our choice to the simplest, which is also the most popular, i.e. using the transition
kernel for importance density. The details of the algorithms used by these filters can be found in
[Sircoulomb 06]. Concerning the choice of the filters parameters, we also adopt the same values, i.e.
500 particles for the EnKF and 1000 for the PF . The PF will also estimate the state via the least
squares optimality, and proceed to resampling step thanks to systematic resampling and entropy
based indicator.

5 Results and discussion

In this section, we first describe the system tested and analyse its observability. Then, we compare
how accurately each filter can estimate the system state. This comparison is done for each possible
sensors subset.

5.1 System under consideration

Description of the system. The system we choose to study is an extension of a second order
system commonly used in the particle filtering community [Doucet 98]. It is described by the following
equations:



























x1(k) = 1
2x1(k − 1) +

25x1(k − 1)

1 + x2
1(k − 1)

+ 8 cos(1.2k) + x2(k − 1) + w1(k − 1)

x2(k) = 8 sin(x1(k − 1)) + 8 sin(1.2x2(k − 1)) + w2(k − 1)

y1(k) =
x1(k)

20
+ v1(k)

y2(k) = x2(k) + v2(k)

(10)
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where x1(k) and x2(k) are the two components of the state x(k) at time k, and y1(k) and y2(k)

the measurements done by two sensors arranged on the system. v(k) =
(

v1(k) v2(k)
)T

and

w(k) =
(

w1(k) w2(k)
)T

are the measurement and process noises. These noises are zero mean,
normally distributed, with respective covariance Rvv and Rww.

Observability of the system under test. As each component of x(k) is linearly measured, it is
obvious that the system is observable. Now, let O1(k) and O2(k) be the observability matrix of the
linearized system, observed with only sensor 1 (sensor 2). These matrices are given on equation (11).

O1(k) =

(

c1 0
c1a11 c1a12

)

O2(k) =

(

c2 0
c2a21 c2a22

)

(11)

where A(k) =

(

a11 a12

a21 a22

)

and C(k) =

(

c1 0
0 c2

)

are the Jacobians described in section 32 which are

here defined by:

a11 =
x4

1(k) − 48x2
1(k) + 51

2x4
1(k) + 4x2

1(k) + 2
a21 = 8cos(x1(k)) c1 =

1

20

a12 = 1 a22 = 9.6 cos(x2(k)) c2 = 1

Thanks to Kalman criterion, we can say that the system is locally observable around x̂(k) by
the sensor i if O1(k) is a full rank matrix (i.e. rank O1(k) = nx = 2). One can easily check that
x(k) ∈ R2, rank O1(k)) = 2 and rank O2(k)) = 2 ⇔x1(k) 6= π

2 + nπ, n ∈ Z . We will suppose that
these very particular values are never reached by x1(k). So, as it is locally observable at every point
of the state space, the system (11) is globally observable when using one of the two sensors (figure
3).

Sensors{1,2}

Sensors{1} Sensors{2}

{Φ}

Figure 3: Observability graph of the system tested

Comparison of filters performances. Consider the following covariance matrices: Rww = I,
Rvv = aI , where a ∈ R∗ and I denotes the identity matrix of appropriate size. The noise covari-
ances are supposed known. Consequently, the filter covariances can be set to these values. By the
following, VF ilter (6), with Filter = {CDKF,EnKF,PF}, will denote the variance of the considered
filter. ρF ilter (7) will stand for the square root of the greatest eigenvalue of the observability gramian
inverse matrix, calculated thanks to the values given by the considered filter.

Results obtained using the two sensors. The different values of VF ilter and ρF ilter in relation
to a are given on tables (1) and (2).

a 1 10 50 100 500 1000

VCDKF 7.78 9 12.15 14.84 28 39.65
VEnKF 0.8 2.9 7.63 11.25 25.88 37.91
VPF 1.31 3.07 7.59 11.32 25.94 37.96

Table 1: Filters variance in function of measurement noise covariance, using sensors 1 and 2
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a 1 10 50 100 500 1000

ρCDKF 8.82 9.72 10.22 10.05 9.7 9.39
ρ

EnKF 8.54 9.28 8.85 10.22 10.11 9.59
ρ

P F 8.56 9.74 9.49 9.64 9.97 10.31

Table 2: Filters ρ in function of measurement noise covariance, using sensors 1 and 2

Results obtained using one sensor. Now, let study the quality estimation of the filters in relation
to a, but when using only one sensor. The results obtained with sensor 1 are presented in tables (3)
and (4), and those given with sensor 2 are exposed in tables (5) and (6).

a 1 10 50 100 500 1000

VCDKF 7.83 9.27 12.71 15.28 29.54 41.04
VEnKF 6.66 8.09 10.93 14.23 29.21 40.94
VPF 6.85 8.15 10.96 14.24 29.25 40.92

Table 3: Filters variance in function of measurement noise covariance, using sensor 1

a 1 10 50 100 500 1000

ρCDKF 106 126.5 123.62 127.2 113.77 108.09
ρEnKF 376 321.97 260.27 254.5 209.66 242.3
ρPF 156 175.35 181.44 268.59 235.05 277.67

Table 4: Filters ρ in function of measurement noise covariance, using sensor 1

5.1.1 Analysis of the results obtained

From these tables, we can say that the results provided by the PF and EnKF are quite similar,
whatever the situation. Moreover, in a normal functioning (i.e. with two sensors available), they
overperform the CDKF for a low measurement noise covariance, leading to the same results than
those presented in [Sircoulomb 06]. The variations of filters variance and values of ρ are provided by
figures (4) and (5).

Figure 4: Evolution of filters variance for each sensors combination, in respect to a

On the one hand, according to the evolution of ρ and the filters variance, we can clearly see that
the loss of sensor 1 doesn’t affect very much the filters accuracy. On the other hand, a default on
sensor 2 will penalize the estimations, as attest the elevation of ρ value, and PF and EnKF variance
augmentation. Lastly, thanks to figure (5), we can also notice that the CDKF doesn’t seem to be
affected by any sensor loss. These results are confirmed on figures (6) and (7), for a low covariance
level ( : the PF and EnKF estimations are very precise if both sensors are available (figures 6c )and
7c), and a little bit affected if only sensor 2 is available (Figures 6b and 7b). If only sensor 1 is safe,
the PF ′ and EnKF accuracy for estimating tend to be of the same quality than the CDKF one
(Figure 6a). Contrary to the CDKF one, their estimations of are always close to 0 (Figure 5a).
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a 1 10 50 100 500 1000

VCDKF 8.37 9.32 12.15 15.21 28.48 40.68
VEnKF 0.84 3.07 7.73 11.24 26.57 39.37
VPF 1.31 3.26 7.81 11.3 26.72 39.41

Table 5: Filters variance in function of measurement noise covariance, using sensor 2

a 1 10 50 100 500 1000

ρCDKF 13.22 12.67 14.94 13.64 12.07 15.63
ρEnKF 13.61 14.01 12.88 15.13 14.36 15.47
ρPF 14.69 14.52 13.65 14.86 14.91 16.45

Table 6: Filters ρ in function of measurement noise covariance, using sensor 2

Figure 5: Evolution of filters value of ρ for each sensors combination, in respect to a

Figure 6: Real and estimated, 1st state. From left to right: with sensor 1, sensor 2, both sensors

Figure 7: Real and estimated, 2nd state. From left to right: with sensor 1, sensor 2, both sensors

6 Conclusion

On the system tested, the filters accuracies are not affected by the loss of sensor 1. But, the loss
of sensor 2 depreciates the quality estimations of the PF and EnKF , especially on the second
state component. The CDKF is the only one filter, which conserves its performances in relation
to sensors losses. So, the EnKF is proving to be the best choice, because on one hand, it always
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provides better or equivalent results than the CDKF (especially in the case of low measurement
noise). On the second hand, its estimation quality is approximately the same than the PF one,
with only half of particles (so a less important computation time), and on top of that, is simpler to
parameterize. As outlook of this work, two points can be distinguished. First, it is to improve the
EnKF by computing the square root of the covariance matrices instead of theses matrices. Second,
it is to study the sensitivity of generated residuals using these filters with respect to sensors faults,
with an adaptive threshold.
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