
Université de Liège

Faculté des Sciences Appliquées

Département de Chimie Appliquée

Laboratoire d’Analyse et de
Synthèse des Systèmes Chimiques

Optimal synthesis of sensor networks

Carine Gerkens

Thèse présentée en vue de l’obtention du grade de

Docteur en Sciences de l’Ingénieur

Mai 2009

To Marie, Emmanuel and Pierre

Cherchons comme cherchent
ceux qui doivent trouver

et trouvons comme trouvent
ceux qui doivent chercher encore.

Car il est écrit :
celui qui est arrivé au terme
ne fait que commencer.

Saint Augustin

Summary

To allow monitoring and control of chemical processes, a sensor network has to be installed.
It must allow the estimation of all important variables of the process. However, all mea-
surements are erroneous, it is not possible to measure every variable and some types of
sensors are expensive.
Data reconciliation allows to correct the measurements, to estimate the values of unmea-
sured variables and to compute a posteriori uncertainties of all variables. However, a
posteriori standard deviations are function of the number, the location and the precision
of the measurement tools that are installed.
A general method to design the cheapest sensor network able to estimate all process key
variables within a prescribed accuracy in the case of steady-state processes has been devel-
oped. That method uses a posteriori variances estimation method based on the analysis
of the sensitivity matrix. The goal function of the optimization problem depends on the
annualized cost of the sensor network and on the accuracies that can be reached for the
key variables. The problem is solved by means of a genetic algorithm.
To reduce the computing time, two parallelization techniques using the message passing
interface have been examined: the global parallelization and the distributed genetic algo-
rithms. Both methods have been tested on several examples.
To extend the method to dynamic processes, a dynamic data reconciliation method al-
lowing to estimate a posteriori variances was necessary. Kalman filtering approach and
orthogonal collocation-based moving horizon method have been compared. A posteriori
variances computing has been developed using a similar method than the one used for the
steady-state case. The method has been reconciled on several small examples.
On the basis of the variances estimation an observability criterion has been defined for
dynamic systems so that the sensor network design algorithm could be modified for the
dynamic case.
Another problem that sensor networks have to allow to solve is process faults detection
and localisation. The method has been adapted to generate sensor networks that allow to
detect and locate process faults among a list of faults in the case of steady-state processes.

i

ii SUMMARY

Thesis organisation
The thesis begins with an introductive chapter followed by a chapter devoted to the state
of the art.

The first part of the thesis is devoted to the design of sensor networks for steady-state
processes. It is organized this way:

∙ The third chapter is devoted to non linear steady-state data reconciliation. After a
presentation of the necessity of data reconciliation, the problem is formulated. The
constrained optimization problem is transformed into an unconstrained one using
Lagrange method. One obtains the sensitivity matrix of the problem. By writing
the necessary conditions for optimality, it allows the computation of the reconciled
process variables and their a posteriori variances.

∙ In the fourth chapter, the optimization strategy used to solve the sensor network
design problem is described. That problem being combinatorial and generally mul-
timodal, it is solved by means of genetic algorithm.

∙ The five steps of the sensor network design algorithm are described in the fifth chap-
ter.

∙ The sixth chapter is devoted to the algorithm parallelization. It begins with a descrip-
tion of some parallelization notions and routines. Then two parallelization techniques
are described: global parallelization and distributed genetic algorithms.

∙ In the seventh chapter, four examples are presented: an ammonia synthesis loop,
a combined cycle power plant, a ketene cracker and a naphta reformer. For all
those processes, the sensor network design is carried out and the two parallelization
techniques are compared. The parameters of the distributed genetic algorithms are
studied for the ammonia synthesis loop.

∙ The design of sensor networks allowing the detection and the localisation of process
faults occurring in steady-state processes is studied in chapter 8. The first part of the
chapter consists of the description of the fault detection method that is used. Then
the sensor network design algorithm is explained. Finally, the program is applied on
two water networks.

∙ Chapter 9 is devoted to the conclusions of this first part.

In the second part of the thesis, dynamic data reconciliation and estimation of a posteriori
variances are approached. It is divided into six chapters:

∙ In chapter 10, the dynamic data reconciliation problem is formulated.

∙ Chapter 11 is devoted to filtering methods. After a general introduction to those
techniques, the extended Kalman filter is described.

iii

∙ Moving-horizon estimation is approached in chapter 12. The chapter begins by the
description of a moving window. Two methods are studied in this chapter. In the
first method, the dynamic model is integrated by means of the fourth order Runge-
Kutta method while in the second one differential equations are discretized by means
of orthogonal collocations. In both approaches, a successive quadratic algorithm is
used to perform optimization. In the second method, the optimization of collocations
variables and process variables can be carried out sequentially or simultaneously.

∙ Chapter 13 is devoted to the theoretical development of a posteriori variances in
the case of dynamic processes. This development is similar to the one used for the
steady-state case.

∙ Three examples are studied in chapter 14: one tank, a network of five tanks and a
stirred tank reactor with heat exchange. For each cases, the profiles on the entire
horizon are given, a priori and a posteriori standard deviations are compared and
error distributions are drawn.

∙ Chapter 15 is devoted to the conclusions of this second part.

The last part of the thesis has for subject the sensor network design for dynamic processes.

∙ In chapter 16, the sensor network design algorithm developed for steady-state pro-
cesses is adapted to dynamic processes. The frequency of measurement is taken into
account. The program is based on an observability criterion obtained thanks to a
posteriori variances development.

∙ In chapter 17, sensor networks are designed for the three examples studied in chapter
14.

∙ Chapter 18 is devoted to the conclusions of this last part.

General conclusions and future works are presented in chapter 19.

Résumé

Afin de permettre le suivi et le contrôle des procédés chimiques, un réseau de capteurs doit
être installé. Il doit permettre l’estimation de toutes les variables importantes du procédé.
Cependant, toutes les mesures sont entachées d’erreurs, toutes les variables ne peuvent pas
être mesurées et certains types de capteurs sont onéreux.
La réconciliation de données permet de corriger les mesures, d’estimer les valeurs des
variables non mesurées et de calculer les incertitudes a posteriori de toutes les variables.
Cependant, les écarts-types a posteriori sont fonction du nombre, de la position et de la
précision des instruments de mesure qui sont installés.
Une méthode générale pour réaliser le design du réseau de capteur le moins onéreux capable
d’estimer toutes les variables clés avec une précision déterminée dans le cas des procédés
stationnaires a été développée. Cette méthode utilise une technique d’estimation des vari-
ances a posteriori basée sur l’analyse de la matrice de sensibilité. La fonction objectif du
problème d’optimisation dépend du coût annualisé du réseau de capteurs et des précisions
qui peuvent être obtenues pour les variables clés. Le problème est résolu au moyen d’un
algorithme génétique.
Afin de réduire le temps de calcul, deux techniques de parallélisation utilisant une inter-
face de passage de messages (MPI) ont été examinées: la parallélisation globale et les
algorithmes génétiques distribués. Les deux méthodes ont été testées sur plusieurs exem-
ples.
Afin d’étendre la méthode aux procédés fonctionnant de manière dynamique, une méthode
de réconciliation dynamique des données permettant le calcul des variances a posteriori
est nécessaire. La méthode des filtres de Kalman et une technique de fenêtre mobile basée
sur les collocations orthogonales ont été comparées. Le calcul des variances a posteriori a
été développé grâce à une méthode similaire à celle utilisée dans le cas stationnaire. La
méthode a été validée sur plusieurs petits exemples.
Grâce à la méthode d’estimation des variances a posteriori, un critère d’observabilité a
été défini pour les systèmes dynamiques de sorte que l’algorithme de design de réseaux de
capteurs a pu être adapté aux systèmes dynamiques.
Un autre problème que les réseaux de capteurs doivent permettre de résoudre est la détec-
tion et la localisation des erreurs de procédé. La méthode a été adaptée afin de générer
des réseaux de capteurs permettant de détecter et de localiser les erreurs de procédé parmi
une liste d’erreurs dans le cas des procédés fonctionnant de manière stationnaire.

v

vi RÉSUMÉ

Organisation de la thèse
La thèse commence par un chapitre introductif suivi d’un chapitre consacré à l’état de
l’art.

La première partie de la thèse est consacrée au design de réseaux de capteurs pour les
procédés stationnaires. Elle est organisée de cette façon :

∙ Le troisième chapitre est consacré à la réconciliation de données non linéaire dans le
cas des procédés stationnaires. Après une présentation de la nécessité de la récon-
ciliation des données, le problème est formulé. Le problème d’optimisation contraint
est transformé en un problème non contraint grâce à la méthode de Lagrange. On
obtient la matrice de sensibilité du problème. En écrivant les conditions nécessaires
d’optimalité, elle permet le calcul des variables réconciliées et de leur variances a
posteriori.

∙ Dans le quatrième chapitre, la stratégie d’optimisation utilisée pour résoudre le prob-
lème de design de réseaux de capteurs est décrite. Ce problème étant combinatoire
et généralement multimodal, il est résolu au moyen d’algorithmes génétiques.

∙ Les cinq étapes de l’algorithme de design des réseaux de capteurs sont décrites au
chapitre 5.

∙ Le sixième chapitre est consacré à la parallélisation de l’algorithme. Il débute par
la description de certaines notions et routines de parallélisation. Ensuite, deux tech-
niques de parallélisation sont décrites : la parallélisation globale et les algorithmes
génétiques distribués.

∙ Quatre exemples sont présentés au chapitre 7 : une boucle de synthèse d’ammoniac,
une centrale turbine-gaz-vapeur, une unité de crackage de cétènes et une unité de
reforming de naphta. Pour tous ces procédés, le design du meilleure réseaux de
capteurs a été réalisé et les deux techniques de parallélisation sont comparées. Les
paramètres des algorithmes génétiques distribués sont étudiés dans le cas de la boucle
de synthèse d’ammoniac.

∙ Le design de réseaux de capteurs permettant la détection et la localisation de fautes
de procédés dans les procédés fonctionnant de manière stationnaire est étudié au
chapitre 8. La première partie de ce chapitre consiste en la description de la méthode
de détection de pannes qui est utilisée. Ensuite, la méthode de design de réseaux de
capteurs est expliquée. Finalement , l’algorithme est appliqués pour deux réseaux de
distribution d’eau.

∙ Le chapitre 9 est consacré aux conclusions de cette première partie.

Dans la seconde partie de la thèse, la réconciliation de données dynamique et l’estimation
des variances a posteriori sont abordées. Elle est divisée en six chapitres :

vii

∙ Au chapitre 10, le problème de réconciliation de données dynamique est formulé.

∙ Le chapitre 11 est consacré aux méthodes de filtrage. Après une introduction générale
aux techniques de filtrage, le filtre de Kalman étendu est décrit.

∙ Les techniques de fenêtre de temps mobile sont abordées au chapitres 12. Le chapitre
débute par un description d’une fenêtre de temps mobile. Deux méthodes sont
étudiées dans ce chapitre. Dans la première technique, le modèle dynamique est
intégré au moyen de la méthode de Rune-Kutta du quatrième ordre tandis que dans
la seconde méthode les équations différentielles sont discrétisées au moyen de col-
locations orthogonales. Dans les deux approches, un algorithme de programmation
séquentielle quadratique est utilisé pour réaliser l’optimisation. Dans la seconde
méthode, l’optimisation des variables de collocation et des variables du procédé peut
être réalisée de manière séquentielle ou simultanée.

∙ Le chapitre 13 est consacré au développement théorique des variances a posteriori
dans le cas des procédés dynamiques. Ce développement est similaire a celui utilisé
dans le cas stationnaire.

∙ Trois exemples sont étudiés au chapitre 14 : une cuve, un réseau de cinq cuves et un
réacteur à cuve parfaitement mélangée avec échange de chaleur. Pour chaque cas, les
profiles des variables sont donnés pour l’ensemble de l’horizon de temps, les variances
a priori et a posteriori sont comparées et les distributions des erreurs sont dessinées.

∙ Le chapitre 15 est consacré aux conclusions de la seconde partie.

La dernière partie de la thèse a pour sujet le design de réseaux de capteurs pour les procédés
fonctionnant de manière dynamique.

∙ Au chapitre 16, l’algorithme de design de réseaux de capteurs développé pour le cas
stationnaire est adapté aux procédés dynamiques. La fréquence des mesures est prise
en compte. Le programme se base sur un critère d’observabilité obtenu grâce au
développement de la méthode d’estimation des variances a posteriori.

∙ Au chapitre 17, le design de réseaux de capteurs est réalisé pour les trois exemples
étudiés au chapitre 14.

∙ Le chapitre 18 est dédié aux conclusions de cette dernière partie.

Les conclusions générales et des pistes de travaux futures sont présentés au chapitre 19.

Acknowledgements

I would like to take the opportunity that is given to me to sincerely express my gratitude to
everyone who close or by far has collaborated to the realization of this thesis.

I want to sincerely thank Professor Georges Heyen for the confidence he accorded me, by
giving me the opportunity to carry out a Ph.D. within his staff, as well as for the precious
advices he gave me.

I also would like to thank all the members of my thesis committee, particularly the exterior
members, who accepted to participate to this Ph.D.

I am grateful to the Walloon Region and the European Social Funds who funded this research
by way of the convention First-Europe OPTIMES. I also want to thank you Professor Mar-
quardt for allowing me to realize an internship as part of the OPTIMES research project.

I want to thank you Professor Boris Kalitventzeff and Belsim s.a. who accepted to be the
industrial partner of this project. I am grateful to Christophe Pirnay who helped me creat-
ing the interface of the program.

I thank you the members of the LASSC for the working atmosphere. I am particularly
grateful to Christophe Ullrich for the memorable discussions we had about the dynamic
data reconciliation. I also thank him for his writing advices.

Finally I would like to warmly thank my family, especially, my husband Mickaël and my
children Marie, Emmanuel and Pierre for their support and their patience during all those
years of research.

ix

Contents

Summary i

Résumé v

Acknowledgements ix

Table of contents xiv

List of figures xviii

List of tables xx

Nomenclature xxvi

1 Introduction 1
1.1 Problem position . 1
1.2 Objectives . 2
1.3 Summary . 2

2 State of the art 5

I Network design for steady-state processes 15

3 Steady-state data reconciliation 17
3.1 Formulation for non linear steady-state systems 19

4 Algorithm description 23
4.1 Formulation of the reconciliation model and model linearisation 24
4.2 Files of requirements . 25

4.2.1 Sensor database . 25
4.2.2 Precision requirements . 26
4.2.3 Sensor requirements . 27

4.3 Verification of the problem feasibility . 27
4.4 Optimization of the sensor network . 28

xi

xii CONTENTS

4.5 Report generation . 29

5 Case studies 31
5.1 Ammonia synthesis loop . 31

5.1.1 Process description . 31
5.1.2 Solution . 35
5.1.3 Global parallelization . 37
5.1.4 Distributed genetic algorithms . 42
5.1.5 Methods comparison . 48

5.2 Combined cycle power plant . 52
5.2.1 Process description . 52
5.2.2 Solution . 54
5.2.3 Parallelization: methods comparison 59

5.3 Ketene cracker . 64
5.3.1 Process description . 64
5.3.2 Solution . 66
5.3.3 Parallelization: methods comparison 69

5.4 Naphta reformer . 75
5.4.1 Process description . 75
5.4.2 Solution . 77
5.4.3 Parallelization: methods comparison 78

6 Fault detection and localisation 83
6.1 Fault detection and isolation . 83
6.2 Method description . 85

6.2.1 Process and faults simulation . 86
6.2.2 Specification of the sensor database and the sensor requirements . . 86
6.2.3 Verification of the problem feasibility 86
6.2.4 Optimisation of the sensor network 87
6.2.5 Report generation . 87

6.3 Cases study . 88
6.3.1 First example . 88
6.3.2 Second example . 90
6.3.3 Conclusions . 92

7 Conclusions part I 93

II Dynamic data reconciliation 95

8 Formulation dynamic data reconciliation 97

9 Filtering methods 101
9.1 Introduction . 101

CONTENTS xiii

9.2 Extended Kalman Filter . 102
9.2.1 Filtering equations or observation update 104
9.2.2 Prediction equations or time update 104
9.2.3 Diagram of the extended Kalman filter 104

9.3 Disadvantages . 104

10 Moving-Horizon estimation 107
10.1 Explicit integration method . 108
10.2 Method based on orthogonal collocations 113

10.2.1 Description of the moving window algorithm 113
10.2.2 Constraints of the optimization problem 115
10.2.3 Description of the sequential algorithm 116
10.2.4 Description of the simultaneous algorithm 117

11 Calculation of a posteriori variances 121

12 Cases study 133
12.1 One tank . 133

12.1.1 Results for the steps . 135
12.1.2 Results for the linear variations of feed 141
12.1.3 Results for the smooth perturbations dx

dt
= 0.1 (x− xtarget) 147

12.2 Stirred tank reactor with heat exchange . 158
12.2.1 Results . 161

12.3 A network of five tanks . 174
12.3.1 Results . 178

12.4 Conclusions . 182

13 Conclusions part II 185

III Networks design for dynamic processes 187

14 Algorithm description 189
14.1 Introduction . 189
14.2 Observability and variable discretization 189
14.3 Method description . 190

14.3.1 Formulation of the reconciliation model and model linearisation . . 191
14.3.2 Files of requirements . 192
14.3.3 Verification of the problem feasibility 193
14.3.4 Optimization of the sensor network 194
14.3.5 Report generation . 195

15 Case studies 197
15.1 One tank . 197

xiv CONTENTS

15.2 A network of five tanks . 202
15.3 Stirred tank reactor with heat exchange . 204

16 Conclusions part III 209

17 General conclusions and future work 211

Publications 215

Bibliography 224

A Sensor network optimization method 225
A.1 Introduction . 225
A.2 What are evolutionary algorithms ? . 226

A.2.1 Evolution strategy . 227
A.2.2 Evolutionary programming . 228
A.2.3 Genetic programming . 229
A.2.4 Learning classifier systems . 229

A.3 Genetic algorithms . 230
A.3.1 Individuals coding . 231
A.3.2 Natural mechanisms description . 232

A.4 Others optimization methods . 236

B Parallelization 239
B.1 Notions of parallelization . 239
B.2 Algorithms parallelization . 243

B.2.1 Global parallelization (GP) . 244
B.2.2 Distributed genetic algorithms (DGA) 247

C Orthogonal collocations 251
C.0.3 Polynomial approximations . 251
C.0.4 Determination of the collocation nodes 262

List of Figures

3.1 Flow rate measurements . 19

4.1 Flow diagram of the genetic algorithm 24

5.1 Ammonia synthesis loop: evolution of the goal function with the number
of generations . 35

5.2 Ammonia synthesis loop: solution in the case of one operating point . . . 36
5.3 Ammonia synthesis loop: solution in the case of one sensor failure 37
5.4 Ammonia synthesis loop: global parallelization: 20 chromosomes: case of

one operating point . 38
5.5 Ammonia synthesis loop: global parallelization: 40 chromosomes: case of

one operating point . 40
5.6 Ammonia synthesis loop: global parallelization: 100 chromosomes: case of

one operating point . 40
5.7 Ammonia synthesis loop: global parallelization: 20 chromosomes: case of

one sensor failure . 42
5.8 Ammonia synthesis loop: distributed genetic algorithms: influence of the

number of 10 chromosomes sub-populations on the computing time: case
of one operating point . 44

5.9 Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of 10 chromosomes sub-populations on the number of iterations
and on the goal function: case of one operating point 44

5.10 Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of 20 chromosomes sub-populations on the time: case of one op-
erating point . 45

5.11 Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of 20 chromosomes sub-populations on the number of iterations
and on the goal function: case of one operating point 46

5.12 Ammonia synthesis loop: distributed genetic algorithms: influence on the
computing time of the number of generations between 2 migrations: case
of one operating point . 47

5.13 Ammonia synthesis loop: distributed genetic algorithms: influence on the
number of iterations and on the goal function of the number of generations
between 2 migrations: case of one operating point 47

5.14 Ammonia synthesis loop: times comparison 49

xv

xvi LIST OF FIGURES

5.15 Ammonia synthesis loop: number of generations comparison 49
5.16 Ammonia synthesis loop: goal function comparison 50
5.17 Ammonia synthesis loop: efficiency comparison 51
5.18 CC power plant: solution in the case of one operating point 55
5.19 CC power plant: solution in the case of two operating points 57
5.20 CC power plant: solution in the case of one sensor failure 58
5.21 CC power plant: times comparison . 61
5.22 CC power plant: number of generations comparison 61
5.23 CC power plant: goal function comparison 62
5.24 CC power plant: efficiency comparison 63
5.25 Ketene cracker: solution in the case of one operating point (part 1) . . . 68
5.26 Ketene cracker: solution in the case of one operating point (part2) 69
5.27 Ketene cracker: solution in the case of one sensor failure (part 1) 70
5.28 Ketene cracker: solution in the case of one sensor failure (part 2) 71
5.29 Ketene cracker: times comparison . 72
5.30 Ketene cracker: number of generations comparison 73
5.31 Ketene cracker: goal function comparison 74
5.32 Ketene cracker: efficiency comparison . 74
5.33 Naphta reformer: times comparison . 79
5.34 Naphta reformer: number of generations comparison 80
5.35 Naphta reformer: goal function comparison 80
5.36 Naphta reformer: efficiency comparison 81

6.1 Flow sheet of the first example of fault detection 88
6.2 Influence on the goal function of the number of measurement times and

the elapsed time from the beginning of the leak until detection 90
6.3 Flow sheet of the second example of fault detection 91

9.1 Diagram of the extended Kalman filter 105

10.1 Reconciliation window . 107
10.2 Flowchart of the explicit integration method 109
10.3 Parameters of the reconciliation window in the case of the explicit integra-

tion method . 110
10.4 Parameters of the reconciliation window: orthogonal collocations 114
10.5 Flowchart of the orthogonal collocations method: sequential algorithm . . 116
10.6 Flowchart of the orthogonal collocations method: simultaneous algorithm 118

12.1 Flowsheet of the tank . 133
12.2 One tank: steps: height: profile . 136
12.3 One tank: steps: feed flowrate: profile . 136
12.4 One tank: steps: outlet flowrate: profile 137
12.5 One tank: steps: height: errors . 138
12.6 One tank: steps: feed flowrate: errors . 138

LIST OF FIGURES xvii

12.7 One tank: steps: outlet flowrate: errors 139
12.8 One tank: steps: height: standard deviation comparison 140
12.9 One tank: steps: feed flowrate: standard deviation comparison 140
12.10 One tank: steps: outlet flowrate: standard deviation comparison 141
12.11 One tank: linear variations of feed: height: profile 142
12.12 One tank: linear variations of feed: feed flowrate: profile 142
12.13 One tank: linear variations of feed: outlet flowrate: profile 143
12.14 One tank: linear variations of feed: height: errors 144
12.15 One tank: linear variations of feed: feed flowrate: errors 144
12.16 One tank: linear variations of feed: outgoing flowrate: errors 145
12.17 One tank: linear variations of feed: height: standard deviation comparison 146
12.18 One tank: linear variations of feed: feed flowrate: standard deviation

comparison . 146
12.19 One tank: linear variations of feed: outgoing flowrate: standard deviation

comparison . 147
12.20 One tank: smooth perturbations: height: profile 148
12.21 One tank: smooth perturbations: feed flowrate: profile 148
12.22 One tank: smooth perturbations: outgoing flowrate: profile 149
12.23 One tank: smooth perturbations: height: errors 150
12.24 One tank: smooth perturbations: feed flowrate: errors 150
12.25 One tank: smooth perturbations: outgoing flowrate: errors 151
12.26 One tank: function: height: standard deviation comparison 152
12.27 One tank: smooth perturbations: feed flowrate: standard deviation com-

parison . 153
12.28 One tank: smooth perturbations: outgoing flowrate: standard deviation

comparison . 154
12.29 One tank: smooth perturbations: schema of the error distributions 155
12.30 One tank: smooth perturbations: height: error distribution 156
12.31 One tank: smooth perturbations: feed flowrate: error distribution 156
12.32 One tank: smooth perturbations: outgoing flowrate: error distribution . . 157
12.33 Flowsheet of the stirred tank reactor with heat exchange 158
12.34 Stirred tank reactor with heat exchange: concentration: profile 161
12.35 Stirred tank reactor with heat exchange: temperature: profile 162
12.36 Stirred tank reactor with heat exchange: feed flowrate: profile 162
12.37 Stirred tank reactor with heat exchange: feed concentration: profile . . . 163
12.38 Stirred tank reactor with heat exchange: feed temperature: profile 163
12.39 Stirred tank reactor with heat exchange: cooling temperature: profile . . 164
12.40 Stirred tank reactor with heat exchange: concentration: standard devia-

tion comparison . 165
12.41 Stirred tank reactor with heat exchange: temperature: standard deviation

comparison . 166
12.42 Stirred tank reactor with heat exchange: feed flowrate: standard deviation

comparison . 167

xviii LIST OF FIGURES

12.43 Stirred tank reactor with heat exchange: feed concentration: standard
deviation comparison . 168

12.44 Stirred tank reactor with heat exchange: feed temperature: standard de-
viation comparison . 169

12.45 Stirred tank reactor with heat exchange: cooling temperature: standard
deviation comparison . 170

12.46 Stirred tank reactor with heat exchange: concentration: error distribution 171
12.47 Stirred tank reactor with heat exchange: temperature: error distribution 171
12.48 Stirred tank reactor with heat exchange: feed flowrate: error distribution 172
12.49 Stirred tank reactor with heat exchange: feed concentration: error distri-

bution . 172
12.50 Stirred tank reactor with heat exchange: feed temperature: error distribution173
12.51 Stirred tank reactor with heat exchange: cooling temperature: error dis-

tribution . 173
12.52 Flowsheet of the network of five tanks . 174
12.53 Network of five tanks: height H1: profile 178
12.54 Network of five tanks: height H2: profile 179
12.55 Network of five tanks: height H3: profile 179
12.56 Network of five tanks: height H4: profile 180
12.57 Network of five tanks: height H5: profile 180

15.1 Flowsheet of the tank . 197
15.2 Flowsheet of the network of five tanks . 202
15.3 Flowsheet of the stirred tank reactor with heat exchange 204

A.1 Roulette wheel . 233
A.2 One-point cross-over . 235
A.3 Two-points cross-over . 236
A.4 Uniform cross-over . 237
A.5 Jump mutation . 237
A.6 Creep mutation . 238

B.1 Message passing model . 240
B.2 Broadcast routine . 241
B.3 Scatter routine . 241
B.4 Gather routine . 242
B.5 Speed up . 243
B.6 Flow diagram of global parallelization . 246
B.7 Flow diagram of distributed genetic algorithms 249

List of Tables

5.1 Ammonia synthesis loop: prescribed standard deviations on key parameters 32
5.2 Ammonia synthesis loop: sensor database 34
5.3 Ammonia synthesis loop: global parallelization: 20 chromosomes: case of

one operating point . 38
5.4 Ammonia synthesis loop: global parallelization: 40 chromosomes: case of

one operating point . 39

5.5 Ammonia synthesis loop: global parallelization: 100 chromosomes: case of
one operating point . 39

5.6 Ammonia synthesis loop: global parallelization: 20 chromosomes: case of
one sensor failure . 41

5.7 Ammonia synthesis loop: distributed genetic algorithms: sub-populations
of 10 chromosomes . 43

5.8 Ammonia synthesis loop: distributed genetic algorithms: sub-populations
of 20 chromosomes . 45

5.9 Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of generations between two migrations 46

5.10 Ammonia synthesis loop: global parallelization 48
5.11 Ammonia synthesis loop: distributed genetic algorithms 48

5.12 CC power plant: prescribed standard deviations on key parameters 53
5.13 CC power plant: sensor database . 53
5.14 CC power plant: global parallelization . 59

5.15 CC power plant: distributed genetic algorithms 60
5.16 Ketene cracker: prescribed standard deviations on key parameters 65
5.17 Ketene cracker: sensor database . 65

5.18 Ketene cracker: global parallelization . 71
5.19 Ketene cracker: distributed genetic algorithms 72
5.20 Naphta reformer: prescribed standard deviations on key parameters 76

5.21 Naphta reformer: sensor database . 76
5.22 Naphta reformer: global parallelization . 78
5.23 Naphta reformer: distributed genetic algorithms 78

6.1 First water network: sensor database . 88
6.2 Cost evolution with the number of measurement times and the detection time 89
6.3 Second water network: sensor database . 91

xix

xx LIST OF TABLES

12.1 One tank: model parameters . 134
12.2 One tank: feed flowrate evolution . 134
12.3 One tank: initial values . 135
12.4 One tank: window parameters . 135
12.5 One tank: smooth perturbations: a posteriori standard deviation reduction

mean factors . 152
12.6 One tank: smooth perturbations: H1: a posteriori standard deviation re-

duction factors in a single window . 152
12.7 One tank: smooth perturbations: F0: a posteriori standard deviation reduc-

tion factors in a single window . 153
12.8 One tank: smooth perturbations: F1 : a posteriori standard deviation re-

duction factors in a single window . 154
12.9 Stirred tank reactor with heat exchange: model parameters 159
12.10Stirred tank reactor with heat exchange: input variables evolution (reduced

variables) . 160
12.11Stirred tank reactor with heat exchange: initial values (reduced variables) . 160
12.12Stirred tank reactor with heat exchange: window parameters 160
12.13Stirred tank reactor with heat exchange: a posteriori standard deviation

reduction mean factors . 165
12.14Stirred tank reactor with heat exchange: concentration: a posteriori stan-

dard deviation reduction factors . 165
12.15Stirred tank reactor with heat exchange: temperature: a posteriori standard

deviation reduction factors . 166
12.16Stirred tank reactor with heat exchange: feed flowrate: a posteriori standard

deviation reduction factors . 167
12.17Stirred tank reactor: C ′

A0: a posteriori standard deviation reduction factors 168
12.18Stirred tank reactor: T ′

0: a posteriori standard deviation reduction factors . 169
12.19Stirred tank reactor with heat exchange: cooling temperature: a posteriori

standard deviation reduction factors . 170
12.20Network of five tanks: model parameters 176
12.21Network of five tanks: feed flowrates evolution 176
12.22Network of five tanks: initial values . 177
12.23Network of five tanks: window parameters 177
12.24Network of five tanks: a posteriori standard deviation reduction mean factors181
12.25Network of five tanks: means and standard deviations of errors 182

15.1 One tank: sensor database . 199
15.2 Stirred tank reactor with heat exchange: sensor database 205

A.1 Roulette wheel: table of values . 233

Nomenclature

Fault detection

퓜 the jacobian matrix of the model equations

Σ the signature matrix

� the noise on the variable

�ij the lowest magnitude of the itℎ residual that allows to distinguish between the noise
and the fault fj

ei the precision of the sensor on the itℎ variable

f the fault on the variable

fi (xj (t)) j = 1, ..., n the itℎ fault at time t

mij the element (ij) of the matrix of the derivatives of the residuals with respect to the
variable

ri (t) the itℎ residual at time t

r�,i the contribution of the noise to the itℎ residual

rf,i the contribution of a unique fault fj affecting the itℎ residual

x the the true value of the variable

xi (t) the itℎ variable at time t

y the measurement of the variable

n the number of functions

Steady-state data reconciliation

A the Jacobian matrix of the measured variables

B the Jacobian matrix of the unmeasured variables

xxi

xxii NOMENCLATURE

C the vector of the independent terms of the constraints

f (x, z) the link equations

W the weight matrix (size= m x m)

x the vector of reconciled variables (size= m)

y the vector of measured variables (size= m)

z the vector of unmeasured variables (size= n)

m the number of measured variables

n the number of unmeasured variables

p the number of equations of the model

var(a) the variance of variable a

Dynamic data reconciliation

Λ the lagrange multipliers

퓔 the jacobian matrix of process and collocation constraints

퓟 the global weight matrix of the process variables

Φ the goal function to minimize

� the precisions of the measurements

�ui,j
the standard deviation on the input variable i at measurement time j

�xi,j
the standard deviation on the differential state variable i at measurement time j

�zi,j the standard deviation on the algebraic state variable i at measurement time j

A the link equations

B the relations between the differential state variables and the Lagrange interpolation
polynomials

C the linear interpolations of the values of input variables

D the residuals of the differential state equations at all collocation nodes

E the continuity constraints of the differential state variables between two discretiza-
tion intervals

NOMENCLATURE xxiii

F the vector of independant terms of the linearisation of the link equations at the
measurement times

f the differential constraints

Fc the vector of independant terms of the linearisation of the link equations at the
collocation times

G the vector of independant terms of the linearisation of the D constraints at the
collocation times

g the unequality constraints

h the equality constraints

M the sensitivity matrix

Pu the global weight matrix for the input variables

Px the global weight matrix for the differential state variables

Pz the global weight matrix for the algebraic variables

Ru the relaxation factor of the input variables at the initial time of the moving horizon

Rx the relaxation factor of the differential state variables at the initial time of the
moving horizon

Wu the weight matrix of the input state variables

Wx is the weight matrix of the differential state variables

Wz the weight matrix of the algebraic state variables

�k the collocation times

Fgoal the the goal function

ℎ1 the measurement frequency

ℎ2 the size of the interpolation interval of the input variables

ℎ3 the size of the discretization interval of the differential state variables

ℎ4 the size of the window

ℎ5 the move of the window

N the size of the sensitivity matrix M

xxiv NOMENCLATURE

n� the degree of Lagrange polynomials

n★
� the number of collocation nodes on each discretization interval

nAc the number of Ac constraints

nA the number of A constraints

nB the number of B constraints

nCc the number of Cc constraints

nC the number of C constraints

ndiscr int the number of discretization intervals on the moving horizon

nD the number of D constraints

nE the number of E constraints

ninterp int the number of interpolation intervals on the moving horizon

ntmes
the number of measurement times on the moving horizon different from the initial
time of the horizon

n★
tmes

the number of measurement times on the moving horizon including the initial time
of the horizon

numes
the number of measured input variables

nu the number of input variables

nxmes
the number of measured differential state variables

nx the number of differential state variables

nzmes
the number of measured algebraic state variables

nz the number of algebraic variables

tj the measurement times

time 0 the initial time of the reconciliation window

time N the last time of the reconciliation window

uCI
i,0 the initial condition of the input variable i. It corresponds to the estimation of that

variable at the same time of the previous reconciliation horizon.

ui,j the estimation of the input variable i at measurement time j

NOMENCLATURE xxv

um
i,j the measurement of the input variable i at measurement time j

var(a) the variance of variable a

xCI
i,0 the initial condition of the differential state variable i. It corresponds to the estima-

tion of that variable at the same time of the previous reconciliation horizon

xi,j the estimation of the differential state variable i at measurement time j

xm
i,j the measurement of the differential state variable i at measurement time j

zi,j the estimation of the algebraic state variable i at measurement time j

zmi,j the measurement of the algebraic state variable i at measurement time j

Filtering methods

xj the mean value of variables x at time step j

yj the mean value of variables y at time step j

f (xj−1,uj−1,vj−1) a set of non linear functions of x, u and v at time step j-1

Fj the Jacobian matrix of partial derivatives of f with respect to x at time step j
(extended Kalman filter)

h (xj,wj) a set of non linear functions of x and w at time step j

Hj the Jacobian matrix of partial derivatives of h with respect to x at time step j
(extended Kalman filter)

Pj∣j−1 the covariance matrix of estimation errors at time step j

Pj∣j the covariance matrix of prediction errors at time step j

Qj the process noises covariance matrix

Rj the measurement noises covariance matrix

uj−1 the vector of input variables at time step j-1

vj−1 the vector of process noises at time step j-1

Vj the Jacobian matrix of partial derivatives of f with respect to v at time step j
(extended Kalman filter)

wj the vector of measurement noises at time step j

Wj the Jacobian matrix of partial derivatives of h with respect to w at time step j
(extended Kalman filter)

xxvi NOMENCLATURE

xj the vector of state variables at time step j

yj the vector of measurements at time step j

x̂j∣j−1 the vector of predicted states at time step j

x̂j∣j the vector of estimated states at time step j

Kj the gain matrix at time step j

Sensor network design

penaltysingular matrix the penalty factor for a singular sensitivity matrix

penaltytarget the penalty factor for the non-respected targets on key parameters

�i the accuracy obtained by the sensor network for the key variable i

�target
i the accuracy required for the key parameter i

Cmax the cost of the most expensive sensor network

fitness the goal function

Nkey variables the number of process key variables

Noperating points the number of operating points

Nwindows the number of reconciliation windows chosen for the sensor network design

N★
tmes

the number of measurement times on the moving horizon including the initial time
of the horizon

Parallelization

kcℎrom the number of individuals estimated by one processor

nsensors the number of sensors in the network

neval the number of goal function evaluations carried out by one processor for one indi-
vidual

Npop the size of the population

rsensors the remainder of the division of the number of sensors in the chromosomes plus
one by the number of processors

rcℎrom the remainder of the division of the number of chromosomes by the number of
processors

T1 the time required to solve a problem B on a sequential computer

Tp the time required to solve a problem B on a cluster of p processors

Chapter 1

Introduction

1.1 Problem position

Nowadays, despite the progress achieved since the invention of the concept of control
charts by Shewhart in the twenties, process control and monitoring remain challenging
problems. Indeed, food and pharmaceutical industries, industries who produce high added
value products, need very pure components. Security and environmental rules become
more and more strict. Moreover, one always wants to produce more and less expensive.
Thus the knowledge of the processes has to be more and more precise and one can not
anymore achieve satisfactory process control by measuring only a few process variables.
Process faults (pipes or tanks failure, catalyst deactivation,...) must be detected and
localised faster, and any deviation from the nominal operating points must be corrected
immediately.
One could imagine to quickly solve the problem by measuring all process variables but this
would not be enough. Indeed, how could the efficiency of a compressor, the productivity
of a plant, a reaction conversion ... be measured by a sensor? Moreover all measurements
are erroneous to some extend and the precision reached on the estimates of unmeasurable
variables is a function of the measurements precision. Furthermore, the measurement of
some variables requires expensive sensors (concentration measurements). So one will prefer,
if the precision constraints on key variables remained satisfied, estimating those variables
from the measurements of other process variables instead of buying expensive measurement
tools.
The technique of data reconciliation allows to estimate unmeasured variables and their
accuracies. If redundant measurements are available, measurements are corrected and the
uncertainty due to measurement errors can be reduced, so that measured variables are
better known.
However, the number, the location and the precision of the sensors influence the accuracy
of the estimates. The choice of the required sensors appears thus to be a very important
task for industrial control and monitoring.
As it would be shown in the state of the art (chapter 2), the problem of sensor networks

1

2 CHAPTER 1. INTRODUCTION

design has been approached by several researchers during the last two decades.

1.2 Objectives

The thesis adresses two main objectives:

∙ The first objective is the development of a systematic method to design the cheapest
sensor network that allows to satisfy all the following constraints for dynamic as well
as steady-state processes:

– all the process variables should be computable, even if they can not be directly
measured (efficiency of a particular unit, reaction conversion...);

– all key variables should be estimated within a prescribed accuracy;

– if the process has several operating modes, the sensor network should be able
to satisfy the two first conditions for all of them;

– sometimes, one may want to be sure that the sensor network will be able to
satisfy the two first conditions even in the case of one sensor failure or if one
sensor is switched off for maintenance. So, one has to test those conditions for
all configurations of the sensor network obtained by switching off one sensor.

A variant of the method should allow the search of the cheapest sensor network that
is able to detect and locate specific process faults in steady-sate processes.

∙ Secondly the development of a method to estimate a posteriori variances in the case of
dynamic processes. That objective requires a dynamic data reconciliation algorithm
that allows to estimate input variables as well as differential state and algebraic
variables, and can generate a linearized sensitivity matrix.

1.3 Summary

In this study a general method to design the cheapest sensor network able to estimate all
process key variables within a prescribed accuracy has been developed for stationary pro-
cesses. It is based on a posteriori variances estimation method developed for steady-state
data reconciliation. Using linearization of the process model at the nominal operating
point, it allows to deal with non linear equations and to treat energy balances as well as
mass balances.
In the suggested method, the problem is formulated as an optimization problem whose
objective function depends on the annualized costs of the chosen sensors and on the accu-
racies achieved for the process key variables. A binary decision is assigned to each possible
sensor (the presence or the absence of the sensor in the final network). Thus the optimiza-
tion problem is not derivable but is often multimodal. We proposed to solve it using a
genetic algorithm. When the process needs to be monitored for a wide range of operating

1.3. SUMMARY 3

conditions, a single linearization might not be adequate for all of them. Thus one should
consider optimizing simultaneously several linearized systems to identify a suitable com-
promise.
The computer time required to reach the solution is rather long with the proposed method
and, because of sensitivity matrix inversions necessary to variances estimation, it increases
more quickly than the size of the problem. Fortunately genetic algorithms can easily be
parallelized. A global method and distributed genetic algorithms are approached in this
study.
A variant of our sensor network design method allowing to detect and locate process fault
is presented. The objective function does not depends anymore on the accuracies reached
for the key variables, but depends on the dectectability and the isolability of the fault.
The algorithm uses a method of process fault detection and localisation similar to the one
described by Ragot (Ragot and Maquin, 2006).

Several techniques to correct dynamic data exist. Most of them seek the estimation of
states or parameters. Other include the possibility to correct input variables. The main dy-
namic data reconciliation techniques are filtering methods and moving-horizon approaches.
Nowadays, no dynamic data reconciliation method has proved is superiority on the other
ones for all cases.
To transpose the sensor design method to dynamic data reconciliation, a posteriori vari-
ances must be evaluated analytically. We derived the equations allowing to estimate them
in a general way.
The method proposed in this thesis is a moving-horizon approach. The discretization of dif-
ferential equations is carried out by orthogonal collocations. The optimization of process
and discretization variables is carried out simultaneously using the successive quadratic
programming algorithm developed by Kyriakopoulou (Kyriakopoulou, 1997). The method
provides a linearized system of equations like in the steady-state case. A sensitivity matrix
can thus be evaluated and its non singularity is an a posteriori observability criterion of
the system.

The thesis begins with an introductive chapter followed by a chapter devoted to the state
of the art. The study is divided in three parts. The first part of the thesis (chapters 3 to
9) is devoted to the problem of sensor networks design for steady-state processes. Before
developing the method based on steady-state data reconciliation and genetic algorithms,
the problem of steady-state data reconciliation is formulated, a posteriori variances esti-
mation is clarified and evolutionary algorithms are described.
Message passing interface algorithms are then used to develop parallelization techniques
allowing to reduce the computing time. Global parallelization and distributed genetic al-
gorithms are described and tested on several examples.
The sensor network design algorithm is finally modified to detect and locate process faults
from a list of simulated faults.

The second part of the study (chapters 10 to 15) approaches the problems of dynamic
data reconciliation and a posteriori variances estimation. First of all, the dynamic data

4 CHAPTER 1. INTRODUCTION

reconciliation problem is formulated. Then several filtering and moving horizon techniques
are described: the extended Kalman filter and two moving horizon methods coupled with
a successive quadratic programming optimization. In the first moving window method the
integration of differential equations is carried out by means of the fourth order Runge-
Kutta method. In the case of the second moving horizon technique, differential equations
are discretized by means of orthogonal collocations. The process and discretization vari-
ables can be optimized sequentially or simultaneously. Those methods are compared on
two examples.
The simultaneous orthogonal collocations based method being the most advantageous for
the remaining of the project, it is chosen.
A method to estimate a posteriori variances from the discretized differential equations is
developed: the constrained discretized optimization problem is transformed into an un-
constrained one using Lagrange multipliers. If the optimality conditions are satisfied, one
obtains the sensitivity matrix of the problem from which a posteriori variances can be
deduced. The method is validated on several small examples.

The last part of the thesis (chapters 16 to 18) addresses the design of sensor networks for
dynamic processes. A method based on the analysis of the sensitivity matrix is proposed
like for the steady-state case. An a posteriori observability criterion is defined on the bases
of that analysis. The algorithm is tested on the same examples that the dynamic data
reconciliation method developed in the second part.

The general conclusions and future perspectives are presented in chapter 19.

Chapter 2

State of the art

This chapter is devoted to a bibliography study concerning the four main research areas
useful to reach the objectives aimed by the thesis.

Sensor network design

During the last two decades, several researchers have pprposed methods to solve the prob-
lem of sensor network design. In 1987, Kretsovalis and Mah (Kretsovalis and Mah, 1987)
developed methods based on linear algebra to design sensor networks that maximise the
estimation accuracy. As they assumed that all variables are observable, their objective was
to optimize the placement of redundant sensors.
Some years after, Madron (Madron, 1992) solved the problem of the design of the cheapest
sensor network by using a graph oriented-method.
Ali and Narasimhan (Ali and Narasimhan, 1993) introduced the concept of reliability of
estimation of a variable which is the probability with which a variable can be estimated
when sensors are likely to fail. They have applied it to the design of observable sensor
networks for stationary linear processes. They extended their work to redundant sensor
networks (Ali and Narasimhan, 1995). They used a branch and bound optimization method
to minimize the cost.
Sen et al (Sen et al., 1998) combined the concepts of graph theory and genetic algorithm
in the case of linear processes. Their algorithm allowed to optimize a single criterion,
either minimal cost, or maximum estimation accuracy. They limited their research to non-
redundant sensor networks.
Bagajewicz (Bagajewicz, 1997) proposed a MINLP method to solve the problem of the
cheapest sensor network for linear processes that can be submitted to constraints like a
prescribed precision. The method is based on graph theory and linear algebra. He estab-
lished with Sanchez (Bagajewicz and Sanchez, 1999b) the duality between the model of the
maximum precision and the model of the minimum cost. They also presented a method
for upgrading a sensor network with the goal of achieving a certain degree of observability
or redundancy for a specified set of variables (Bagajewicz and Sanchez, 1999a).

5

6 CHAPTER 2. STATE OF THE ART

Heyen et al proposed (Heyen and Gerkens, 2002), (Heyen et al., 2002) a general formula-
tion for the sensor placement problem. Their goal is to reduce the noise while computing
the estimates of all key variables within a prescribed accuracy. Studied problems are no
longer limited to flow measurements and linear constraints. Optimization is carried out by
means of genetic algorithms.
Carnero et al (Carnero et al., 2005) used an evolutionary technique based on genetic algo-
rithms. It combines the use of structured populations in the form of neighborhood and a
local search strategy. This method was applied to mass balances only.
Bhushan et al (Bhushan et al., 2008) used the concept of lexicographic optimization to
solve the problem of the design of robust sensor network for fault diagnosis. Wailly at al
(Wailly and Héraud, 2005), (Wally et al., 2008) also used the lexicographic programming
and the Groëber bases to solve the sensor placement problem. The advantage of those
methods is to allow to extend the mathematical process to the n-linear case.
Muradore et al presented (Muradore et al., 2006) a method for determining the optimal
location of sensor in distributed sensor systems. This method has the advantage not do
require an explicit model of the process. It is based on a sequential algorithm that selects
the most informative measurement input at each iteration and updates the input and out-
put spaces by subtracting information coming from the regressor.
Singh and Hahn (Singh and Hahn, 2005) proposed a method to determine the position of
the sensor inside the process unit. This technique can be applied to linear and non-linear
systems, to determine the optimal sensor network for states or for parameters estimation.
It combines the computation of the observability covariance matrix with established mea-
sures for locating sensors in the case of linear processes. Van de Wouwer et al (de Wouwer
et al., 2000) developed a criterion based on the test of independence between the response
of the sensors in the case of state estimation or between the parameters sensitivities in
the case of parameter estimation. That independence is measured by means of the Gram
determinant. The advantage of this technique is avoiding the manipulation of covariance
matrices. Waldraff et al (Walfraff et al., 1998) presented several observability measures
based on observability matrix, observability gramian and the Popov-Belevitch-Hautus rank
test. Those measures are only possible if input variables are considered as perfectly known.
The authors used them to choose the optimal location of sensors in a tubular reactor.
Wong et al (Wang et al., 2002) optimized sensor location in a way to ensure fault ob-
servability and the fault resolution. Their technique is based on graph and on principal
component analysis.
In the case of the dynamic processes, Benqlilou et al (Benqlilou et al., 2003), (Benqlilou,
2004) and (Benqlilou et al., 2005) solved the problem of sensor placement in the case where
the dynamic reconciliation is made by means of Kalman filter. This involves that input
variables are considered as perfectly known. Only mass balances were solved in his study.
Genetic algorithms are used to perform optimization.

7

Heuristic algorithms

In the sixties, Fogel (Fogel et al., 1966) developed evolutionary programming to design state
machines for predicting sequences and symbols. This method evolved in the eighties and
became similar to evolution strategy. That method developed by Rechenberg (Rechenberg,
1971) and Schwefel (Schwefel, 1974) is based on the ideas of adaptation and evolution.
In the beginning of the seventies, John Holland and his colleagues described the learning
classifiers systems and developed genetic algorithms (Holland, 1975). Those algorithms are
described and illustrated in the book of Goldberg (Goldberg, 1989). In their paper, Herrera
et al (Herrera et al., 1999) described several methods to distribute genetic algorithms,
especially the method that is used in section B.2.2.
Other heuristic methods similar to genetic algorithms have been developed at the end of
the eighties and at the beginning of the nineties. One can cite

∙ Greedy randomized adaptive search procedures developed by Feo and Resende in
1989 (Feo and Resende, 1995). Those algorithms consist of successive constructions
of a greedy randomized solution improved by means of a local search. A greedy
randomized solution is generated by choosing elements from a list in which they are
ranked by a greedy function according to the quality they can achieve. Solution
variability is achieved by placing good elements in a restrictive list from which they
are chosen at random.

∙ Tabu search developed by Fred Glover (Glover and Laguna, 1997). This optimiza-
tion method is based on the premise that an intelligent technique to solve problem
must incorporate adaptive memory and responsive exploration. It is inspired by the
traditional transmission of tabus by means of social memory which is subject to
modifications over time. The status of the forbidden elements of tabu search being
related to evolving memory can be changed according to time and circumstances.

∙ Ant algorithms developed by Dorigo (Colorni et al., 1996), (Dorigo et al., 2000).
Those metaheuristics are multi-agents systems inspired by the observation of the
behavior of ant colonies searching for food. Ants are able to solve shortest path
problem in their natural environment: they can find shortest path to reach a food
source from their nest without a good vision. Indeed, they use an aromatic essence
called pheromone to give information to their colony about the food source. While
an ant moves to the food source, it lays pheromone on the ground. The quantity of
the deposit of pheromone depends on the quality of the food source and of the length
of the path. As ants have a tendency to follow pheromone trails instead of choosing
a new path, they will choose the path containing the largest amount of pheromone.
After a certain period of time, shorter paths will be traversed more often than longer
ones and will thus obtain larger amount of pheromone so that other ants will be
attracted by those trails who will then be intensified. New ants will than be stimu-
lated and the trails will be reinforced once more. Roughly speaking pheromone trails
leading to rich, nearby food sources will be more frequented and will grow faster

8 CHAPTER 2. STATE OF THE ART

than trails leading to poor, far away food sources. Travelling salesman, quadratic
assignment, vehicle routing, job shop scheduling, graph coloring, time tabling... are
some examples of ant algorithms applications. Gutjahr (Gutjahr, 2000) described a
general framework based on construction graph for solving combinatorial optimiza-
tion problem by way of ant strategies. Ant algorithms can be parallelized like genetic
algorithm as shown in the papers from Bullnheimer et al (Bullnheimer et al., 1997),
Talbi et al (Talbi et al., 2001) and Shekolar et al (Shelokar et al., 2004).

∙ Simulated annealing invented by Kirkpatrick et al, (Kirkpatrick et al., 1983) and V.
Cerny (Verny, 1985). This method is a generic probalistic metaheuristic algorithm for
the global optimization problem. It is based on the analogy between the simulation
of annealing of solids and the problem of solving large combinatorial optimization
problems. In metallurgy, annealing is a physical process in which a solid is heated up
in a heat bath by increasing the temperature of the bath to a maximum temperature
at which all the particles of the solids arrange themselves randomly in the liquid
phase. This heating is followed by a controlled cooling during which the temperature
of the bath is slowly decreased. If the maximum temperature is high enough and the
cooling is slow enough, all particules arrange themselves in the lowest energy state of
a corresponding lattice. At each temperature of the cooling phase, the solids reach a
thermal equilibrium characterized by a probability of being in a state with energy E
given by the Boltzmann distribution:

P{E = E} =
1

Z (T)
exp

(
− E

kBT

)
(2.1)

where

– Z (T) is a normalization factor called the partition function;

– exp
(
− E

kBT

)
is the Boltzmann factor;

– kB is the Boltzmann constant: kB = 1.38 10−23J/K

When the temperature decreases, the Boltzmann distribution gives higher probabil-
ities to the lowest energy states. When the temperature is close to zero, only the
minimum energy state has a probability of occurrence higher than zero. However, if
the cooling is too quick, the solid can not reach thermal equilibrium for all tempera-
tures and a metastable amorphous structure is obtained instead of the lowest energy
cristalline lattice structure. Metastable amorphous structures also appear when a
quench is applied to the material namely when the heat bath temperature is lowered
instantaneously.
A similar optimization method to simulated annealing is quantum annealing. In this
method, thermal fluctuations are replaced by quantum fluctuations. It can outper-
forms simulated annealing if potential goal function landscape consists of very high
but thin barriers surrounding shallow local minima.

9

Data reconciliation

Kuehn and Davidson (1961) first used steady-state data reconciliation in industry. Their
objective was to correct process data in a way to satisfy mass balances. Some years later,
Vaclavek (Vaclavek, 1968), (Vaclavek, 1969) also worked on the variable classification prob-
lem and on the formulation of the reconciliation model. Mah et al. suggested a procedure of
variable classification based on graph theory (Mah et al., 1976). Crowe (Crowe, 1989) pro-
posed an analysis based on a projection matrix method allowing to obtain a reduced system.
A classification algorithm for general non linear equation systems was proposed by Joris
and Kalitventzeff (Joris and Kalitventzeff, 1987). Heyen et al (Heyen et al., 1996) proposed
a method based on the Jacobian matrix analysis to perform sensibility analysis: influence
of the measurements and their accuracies on the accuracies of state variables, detection of
state variables influenced by the accuracy of a particular measurement. Narasimhan and
Jordache (Narasimhan and Jordache, 2000) provide a detailed perspective on the history
of data reconciliation.

In the case of dynamic data reconciliation, several techniques exists. We were first in-
terested in filtering techniques , in particular the Kalman filters, then our attention was
turned on the moving horizon methods.
Kalman filter is said to be proposed by Kalman in 1960 (Kalman, 1960), (Kalman and
Bucy, 1961) though Thiele and Swerling developed a similar algorithm earlier. That algo-
rithm was first implemented by Schmidt (Schmidt, 1980) to solve the trajectory estimation
problem for the Apollo program. This linear Kalman filter is used to carry out the recon-
ciliation of linear dynamic processes.
It has been extended to deal with non linear systems (Karjala and Himmelblau, 1996),
(Narasimhan and Jordache, 2000): the non linear part of the model is linearized thanks to
a first order Taylor serie around the current estimated. This second filter is called extended
Kalman filter. Kalman filter are well described in (Rousseaux-Peigneux, 1988) and (Welch
and Bishop, 2001). Some authors, compared the extended Kalman filter with the moving
horizon estimation (Jang et al., 1986), (Albuquerque and Biegler, 1995), (Haseltine and
Rawlings, 2005). They showed that the results obtained by the moving horizon estimation
are better than the one obtained with the extended Kalman filter but at the cost of more
computing ressources.
A third method based on second order divided differences is also used in the case of non
linear systems (Norgaard et al., 2000).
Nowadays, a wide variety of filtering methods has been developed (see for example (Bai
et al., 2006), (Moraal and Grizzle, 1995), (Chen et al., 2008))and is widely used in engi-
neering applications such as radars, computer vision, autonomous or assisted navigation.

Jang et al (Jang et al., 1986) introduced in 1986 the notion the moving horizon technique.
It has been used afterwards by several authors like (Kim et al., 1991), (Liebman et al.,
1992), (McBrayer et al., 1998), (Kong et al., 2000), (Barbosa et al., 2000), (Vachhani et al.,
2001), (Abu-el zeet et al., 2002).
Differential equations can be discretized by means of orthogonal collocations. Frazer, Jones

10 CHAPTER 2. STATE OF THE ART

and Skan and Lanczos applied for the first time collocation methods to differential equa-
tions in the thirties. Villadsen and his coauthor (Villadsen and Michelsen, 1978) have
shown that the collocation nodes chosen at the zeros of orthogonal polynomials give the
best results for the solving of differential equations. Other authors like Mingfang et al.
(Kong et al., 2000) proposed to choose the measurement times as collocation nodes in the
case of dynamic data reconciliation.
Biegler (Biegler, 1984) used orthogonal collocations to reduce the dynamic optimization
problem to a constrained non linear optimization problem. He solved the resulting opti-
mization problem thanks to a successive quadratic programming method. He also proposed
to solve simultaneously collocation and process equations. Later, he presented with Albu-
querque (Albuquerque and Biegler, 1995), (Albuquerque and Biegler, 1996) a method for
decomposing the optimization algorithm in a way to reduce the computing effort. Their
approach is based on line search, hessian update (Gauss-Newton or BFGS), and quadratic
programming subproblem solving in the parameters space. Some years after, Biegler and
his colleagues (Cervantes et al., 2000), (Biegler et al., 2002) applied an interior point
method to non linear programming problem: they developed a reduced space decompo-
sition for the NLP problem and applied quasi-Newton methods to the reduced Hessian.
That approach allowed them applying their decomposition method to orthogonal colloca-
tions but it requires analytical derivatives. Kameswaran and Biegler (Kameswaran and
Biegler, 2006), presented the advantages of simultaneous dynamic optimization strategies.
Biegler and Lang (Biegler, 2007), (Lang and Biegler, 2007) described their simultaneous
dynamic optimization method. In this method, they discretized state and input variables
using collocations on finite elements. The differential equations are discretized by means
of Radau collocations because they allow constraints to be set at the end of each element
so that the system is better stabilized. Those authors also presented a description of their
moving window.
Kabouris and Georgakakos (Kabouris and Georgakavos, 1996) extended the simplified max-
imum likelihood estimators for linear moving-window proposed by Maybeck in 1982. This
technique is theoretically advantageous compared to the bayesian estimation approach that
leads to the extended Kalman filter.
Barbosa et al (Barbosa et al., 2000) also transformed the differential equations using or-
thogonal collocations. They solved the constrained non linear problem using a successive
quadratic programming method. BFGS (Broyden-Fletcher-Goldfrab-Shanno) technique
was used to update the hessian matrix.
Vacchani et al (Vachhani et al., 2001) proposed a two-level approach to perform non lin-
ear dynamic data reconciliation and parameter bias detection. The first level consists of
identifying biased parameter by means of fault diagnosis methods. In the second level,
the non linear programming problem is solved so that measurement are reconciled and
the biased parameter is estimated. In 2006, they combined the unscented Kalman filter
used for non linear systems with recursive non linear dynamic data reconciliation (Vach-
hani et al., 2006). Their approach called the unscented recursive non linear dynamic data
reconciliation is able to achieve state and parameter estimation. Accuracies of estimates is
improved because the non linearity is not approximated during state and error covariance

11

matrix estimation.
Kim et al (Kim et al., 1990) compared three non linear error-in-variables parameter es-
timation: simultaneous parameter estimation and data reconciliation, two-stage error-in-
variables using non linear programming and nested error-in-variables using non linear pro-
gramming. They concluded that two-stage error-in-variables using non linear programming
is superior with respect to robustness and computing efficiency, and is recommended in
very non linear regions. They proposed a sequential approach based on numerical inte-
gration for parameter estimation and compared it with least-square based methods and
non linear dynamic estimation using orthogonal collocations (Kim et al., 1991). Their non
linear dynamic error-in-variable model gave better estimates than the least-square based
methods, especially in presence of measurement bias. It is faster than the approach using
orthogonal collocations and the optimization problem to be solved is smaller. Liebman
et al (Liebman et al., 1992) presented a similar technique which is no longer limited to
problem without constraints on the states. The method is able to performs as well dynamic
data reconciliation as steady-state data reconciliation, it can estimate unknown parameters
and unmeasured input variables. Liebman et al described the discretization of the differ-
ential equations by means of orthogonal collocations, thus generating a set of algebraic
constrained equations. The time horizon is briefly described as well as the jacobian matrix
of the constraints. The method is illustrated on a reactor test case that has become a well
known reference. The approach was extended by McBrayer et al (McBrayer et al., 1998)
so that it allowed measurement bias detection.
Renfro et al suggested (Renfro et al., 1987) to use the spline collocations instead of or-
thogonal collocations. The advantage of those collocations is that they allow to optimize
larger and more difficult systems. Like Kameswaran and Biegler (Kameswaran and Biegler,
2006), they recommended a simultaneous approach for optimization and discretization.
Chen and Romagnoli (Chen and Romagnoli, 1998) suggested a formulation of dynamic
data reconciliation that includes the outlier information so that dynamic data reconcilia-
tion and outliers detection can be carried out simultaneously.
Raff et al (Raff et al., 2005) suggested a moving window state estimation approach with
global guaranteed convergence. In that method, they integrated optimization-based esti-
mators and observability maps in the moving window approach.
Bagajewicz and Jiang (Bagajewicz and Jiang, 1997) presented a technique for dynamic
data reconciliation based on an integral form of the equation system. This approach can
be used in the presence of gross errors.
Binder et al (Binder et al., 1998) presented a deterministic formulation of the dynamic data
reconciliation problem. That formulation is based on the theory of inverse problems. They
also proposed a mathematical framework based on multiscale techniques for the discretiza-
tion of the problem and for the solution of the discretized non linear equation system.
Then they proposed a method to generate automatically a hierarchy of discretization grids
to reach the best compromise between data and regulation error (Binder et al., 2002).
Wongrat et al (Wongrat et al., 2005) solved the problem of non-linear steady-state data
reconciliation using genetic algorithm. In this method, the parameters of the genetic algo-
rithm are first of all searched before the data reconciliation problem is solved. The method

12 CHAPTER 2. STATE OF THE ART

is more time consuming than the other ones.

Fault detection

Gross errors and systematic biases must generally be eliminated before data reconciliation
is carried out.
In the twenties, Shewhart invented the concept of control charts.
In the sixties and the seventies three types of statistical tests have been proposed for
gross error detection (Reilly and Carpani, 1963), (Almasy, 1975) and (Mah et al., 1976).
They are based on the residuals, individually or collectively (chi-square tests). Mah and
Tamhane (Mah and Tamhane, 1982) proposed an identification test to identify the sources
and location of gross errors.
Romagnoli and Stephanopoulos (Romagnoli and Stephanopoulos, 1981) presented a tech-
nique to analyse a set of measurements in the presence of gross errors. Based on the
criterion of satisfaction of mass and energy balances, the method allows to quickly identify
the source of errors. It work by serial deletion of one or more measurements from the set
without requiring each time a new computation of the problem because available informa-
tion coming from the original problem is used.
Narasimhan and Mah (Narasimhan and Mah, 1987) proposed a general method for iden-
tifying gross errors for steady-state processes. Their generalized likelihood ratio technique
is based on the likelihood ratio statistical test. It allows the identification of all types of
gross errors. They also developed a strategy that allows to identify multiple gross errors
by using serial compensation of gross errors. Those authors extended their method to
dynamic processes (Narasimhan and Mah, 1988).
Amand et al (Amand, 1999) and (Amand et al., 2001) developed a method to detect fault
in chemical processes based on principal component analysis combined with data reconcili-
ation. This method allows to reduce the number of variables that have to be monitored. It
is decomposed in two steps: the fault detection (if some components are out of their con-
fidence region) and the cause localisation (by estimation of the effect of those components
on the original variables). In 2002, Wang et al (Wang et al., 2002) improved the principal
component analysis technique. They replaced the Q statistic used in conventional prin-
cipal component analysis by two new statistics: the principal-component-related variable
residuals and the common variables residuals.
Jia et al (Jia et al., 1998) proposed a non linear principal component analysis technique
based on the input-training neural network. They defined multivariate statistical process
control charts with non-parametric control limits instead of the traditional limits based on
the normality assumption.
Ragot et al proposed (Ragot et al., 2003) a blind approach to detect and isolate sensor
faults. That method does not need any knowledge about the process model. It is only
based on the analysis of the data so that it requires strong hypothesis about the input sig-
nals of the studied process. Later (Ragot and Maquin, 2006), they developed a technique
for fault measurement detection in an urban water network. We used this method based

13

on the analysis of the signature matrix and fuzzy rules for the design of sensor networks
allowing to detect and locate process faults.
Mc Brayer and Edgar (McBrayer and Edgar, 1995) proposed a method for bias detection
and estimation for dynamic processes. Their method is based on the examination of the
residuals.
Kong et al (Kong et al., 2004) developed a gross error identification strategy based on
parameter estimation. This method suits for dynamic processes and allow the detection of
simultaneous measurement gross errors. They described the condition for which a system
is identifiable for gross error detection: let the system of equations:

{
dx
dt

= f (x, u)
dx
dt

= f (x+ �x, u+ �u)

If the column vectors of ▽f are linearly independent, the system of equations has a unique
solution of �x and �u and then the system is identifiable for gross error detection. The
authors obtained the same conclusion for differential algebraic equation systems.
Bagajewicz and Jiang (Bagajewicz and Jiang, 1998) developed a technique for multiple
gross error detection based on the integral approach for linear dynamic data reconciliation
they presented earlier (Bagajewicz and Jiang, 1997).
Wang et al (Wang et al., 2004) presented an improvement in the measurement test - nodal
test proposed by Yang. Their approach is used to solve the decrease of matrix rank in gross
error detection and data reconciliation. Gross errors are detected before being corrected
by successive iterations.
Bhagwat et al (Bhagwat et al., 2003a), (Bhagwat et al., 2003b) presented a method to
detect process fault during the transition operations. In this model-based fault detection
scheme, non linear transient systems are decomposed into multiple linear modeling regimes.
State estimation and residuals computation are carried out by means of Kalman filters and
open-loop observers. On-line detection and localisation of faults are enabled thanks to
residuals analysis by means of thresholds, fault tags and logic charts.

Part I

Network design for steady-state

processes

15

Chapter 3

Steady-state data reconciliation

Chemical plants must be efficiently monitored to allow production accounting as well as
for the enforcement of safety and environmental rules. Process control can only take place
if enough measurements are carried out on the plant. Those measurements and laboratory
analysis are generally erroneous. So information about the process is inaccurate, the state of
the process at a certain time is misrepresented and the control of the plant is not as efficient
as it could be so that the process conditions may be not met, the efficiency indicators may
be badly estimated and the safety rules may be unsatisfied. Some errors come from the
measurement tool itself: indeed, each sensor has a limited precision. Moreover, most of
the sensors must be calibrated regularly to avoid systematic errors due to a sensor giving
always an under or an over estimated value. Finally, during the transmission and the
conversion of the signal, noise is added to the initial measurement value. Another source
of error comes from the fact that the measurement frequency depends on the kind of sensor:
the fastest measurements are carried out in some seconds while compositions analysis can
take up to several hours. It is thus impossible to have the information about the whole
plant at a precise time. This problem can be partly solved by taking average values of
measurements that can be done in the case of steady-state processes. The location of the
sensors in the unit is also important for the validity of measurements: indeed, the value
will be different following, for example, if the sensor is placed in the middle of a reactor or
near its walls, or if the region where the sensor is placed is turbulent or not. Finally gross
errors can appear if a sensor fails.
The relationship between a measurement of a variable and its true value can be represented
as follow:

ymeasured = ytrue + ey (3.1)

where

∙ ymeasured is the measured value of the variable y;

∙ ytrue is the true value of the variable y;

∙ ey is the error on the variable y.

17

18 CHAPTER 3. STEADY-STATE DATA RECONCILIATION

Errors on the measurements can be of three kinds:

∙ random errors: those errors are typically assumed to be zero-mean and normally
distributed (Gaussian errors). This kind of error is generally attributed to the non
reproducibility of the measurement tool. Moreover, neither its magnitude nor its
sign can be predicted. Those errors can not be completely eliminated and are always
present in the measurements.

∙ systematic errors: this second type of error appears when the sensor gives system-
atically incorrect values that are always higher or lower than the true value. Their
mean error is never zero. A bad calibration of the measurement tool can lead to
those errors.

∙ gross errors: those errors are generally caused by non random events. In this case,
the value of the measurement is very different from the expected one. They can be
produced by sensor or process failures.

Statistical methods based on the process model, such as data reconciliation, have been
developed to analyse and reconcile plant measurements. The objective of such method
is to reduce errors on measurements as much as possible and to estimate all variables
of the process whatever they are measured or not. Doing this way, key parameters of
the plant can be estimated from the corrected measurements and the model equations.
Such performance indicators can be efficiencies of turbines or compressors, productivities,
reaction conversions, catalyst deactivations or other performances or safety indicators. To
perform data reconciliation, the number of available measurements should be larger than
the number of degrees of freedom of the model. However, it may happen that the number
of measurements is higher than the number of degrees of freedom of the model so that the
key variables can be obtained in different ways using different measurement combinations.
Those measurement redundancies are not a problem but is a source of information: indeed,
using the concept of data reconciliation, they allow to detect and quantify the errors and
to reduce the uncertainty on the measurements and the estimated variables. The data
reconciliation algorithm corrects only the redundant variables. The redundancies can be
of three types:

∙ temporal: the same measurement is carried out at different times. This type of
redundancy is used in dynamic data reconciliation which is described in chapter 8;

∙ spacial: this type of redundancy is obtained when several identical sensors are in-
stalled to mesure the same variable;

∙ structural: this type of redundancy consists of estimating the same variable with
different sensors of different types. For example (figure 3.1), a flow rate can be
estimated by the measurement of a flow meter, as a function of the pressure drop
between two pressure measurements, or by the following ratio Q

Cp(T2−T1)
where T1 and

T2 are two temperature measurements, Cp is the specific heat of the stream and Q is
the heat load of the exchanger.

3.1. FORMULATION FOR NON LINEAR STEADY-STATE SYSTEMS 19

F

F1 ΔP

F2 = f(ΔP)

T1 T2

F3 =
Q

Cp
(T2 − T1)

Q

Figure 3.1: Flow rate measurements

Kuehn and Davidson (Kuehn and Davidson, 1961) were the first to use steady-state data
reconciliation in industry. Their objective was to correct process data so that the mass
balances were satisfied. Nowadays data reconciliation methods correct energy balances as
well as mass balances.

3.1 Formulation for non linear steady-state systems

This section on data reconciliation treats non linear steady-state problems where all vari-
ables are not necessary measured. The equations of the model are mass, component and
energy balances, equilibrium equations and link equations that relates measurements to
state or key variables. This reconciliation problem can be formulated this way:

min
x,z

(x − y)T W (x − y)

s.t. f (x, z) = 0 (3.2)

where

∙ x is the vector of estimated variables (size= m);

∙ y is the vector of measured variables (size= m);

∙ z is the vector of unmeasured variables (size= n);

∙ W is the weight matrix (usually the inverse of the measurements errors covariance)
(size= m x m);

∙ f (x, z) are the link equations.

This constrained minimization problem can be transformed into an unconstrained mini-
mization problem using the vector of Lagrange multipliers Λ:

min
x,z,Λ

L (x, z,Λ) = (x − y)T W (x − y) + 2 ΛT f (x, z) (3.3)

20 CHAPTER 3. STEADY-STATE DATA RECONCILIATION

The solution must verify the optimality conditions:

� L

� x
= W (x − y) + AT

Λ = 0

� L

� z
= BT

Λ = 0

� L

� Λ
= f (x, z) = 0 (3.4)

where

∙ A = � f(x,z)
� x

is the Jacobian matrix of the measured variables

∙ B = � f(x,z)
� z

is the Jacobian matrix of the unmeasured variables

∙ C is the vector of the independent terms of the constraints

The last optimality condition can be linearized this way:

� L

� Λ
= A x + B z + C (3.5)

The equation system 3.4 is non linear and has to be solved iteratively. For small size
problems, the Newton-Raphson method can be used. It requires a solution for successive
linearizations of the initial equation system 3.4:

⎛
⎝

x
z
Λ

⎞
⎠ = M−1

⎛
⎝

W y
0
-C

⎞
⎠ (3.6)

where M is the Jacobian matrix of the equation system 3.4 called the sensitivity matrix :

M =

⎛
⎝

W 0 AT

0 0 BT

A B 0

⎞
⎠ (3.7)

For larger size problems numerical algorithms like Powell’s dogleg method give generally
good results (Chen and Stadherr, 1981). If the problems are very large, the sparsity of the
sensitivity matrix has to be taken into account and the algorithm has to be modified as
described, for example, by Chen and Stadherr (Chen and Stadherr, 1984). In that case,
the measurements are generally considered as independent from one another so that the
weight matrix W is reduced to a diagonal matrix whose elements are the inverse of the
variances of the measured variables.
If the problem contains inequality constraints, the NLP problem is solved directly using a
sequential quadratic programming algorithm (Kyriakopoulou, 1997). In SQP algorithms,
an approximation of the original problem is solved at each iteration. The quadratic objec-
tive function is retained and the contraints of the model are linearized around the current

3.1. FORMULATION FOR NON LINEAR STEADY-STATE SYSTEMS 21

estimate of the solution.
Once the problem has converged, a sensitivity analysis can be carried out using the lin-
earized equation system 3.6. This equation system shows that the reconciled values of
variables x, z and Λ are linear combinations of the measurements. So, the sensitivity
matrix M allows to evaluate how the reconciled values of the model variables depend on
the measurements and their standard deviations. x and z variables are thus estimated this
way:

xi =

m+n+p∑

j=1

(M)−1
i,j

⎛
⎝

W y
0
-C

⎞
⎠

j

=
m∑

j=1

(M)−1
i,j Wi,j yj −

p∑

j=1

(M)−1
i,m+n+j Cj (3.8)

zi =

m+n+p∑

j=1

(M)−1
m+i,j

⎛
⎝

W y
0
-C

⎞
⎠

j

=
m∑

j=1

(M)−1
m+i,j Wi,j yj −

p∑

j=1

(M)−1
m+i,m+n+j Cj (3.9)

where

∙ m is the number of measured variables;

∙ n is the number of unmeasured variables;

∙ p is the number of equations of the model.

Knowing that the variance of a linear combination LC of several variables xi is given by:

LC =
m∑

i=1

ai xi (3.10)

var (LC) =

m∑

i=1

ai
2 var (xi) (3.11)

22 CHAPTER 3. STEADY-STATE DATA RECONCILIATION

the variances of the variables of the model are estimated this way:

var (xi) =

m∑

j=1

{
(M)−1

i,j Wj,j

}2

var (yj)

=

m∑

j=1

[
(M)−1

i,j

]2

var (yj)
(3.12)

var (zi) =
m∑

j=1

{
(M)−1

m+i,j Wj,j

}2

var (yj)

=
m∑

j=1

[
(M)−1

m+i,j

]2

var (yj)
(3.13)

The analysis of the variances of the reconciled variables gives the effect of each measurement
in the estimation of the variables of the problem. It is then possible to find out the
measurements that have a great importance and must be carried out precisely and those
that do not contribute a lot in the variables calculation.
The ratio between the variance of the reconciled value and the corresponding measurement
gives the confidence improvement given by the reconciliation. Only the measured variables
can be improved by reconciliation. Nevertheless, the reliability of the estimates of the
unmeasured variables is also quantified.
The sensitivity analysis also allows to locate sensors whose accuracy should be improved to
reduce the uncertainty on the process key parameters. Indeed, for each variable, a list of all
measurements used to estimate the variables is drawn up. The variance of the reconciled
variable is then estimated as well has its sensitivity with respect to the variances of the
measurements.
In the case of the sensor placement algorithm, all measurements will be considered as
measured but a very high variances will be attributed to the unmeasured variables (10+30).
Thus the equation system 3.6 becomes:

(
x
Λ

)
= M−1

(
W y
-C

)
(3.14)

with the sensitivity matrix M:

M =

(
W AT

A 0

)
(3.15)

This uncertainty of unmeasured variables is so high that the algorithm will consider their
inverse equal to zero in the sensitivity matrix and the contribution of those variables with
respect to the reconciled variables and their variances estimations will be null. All variables
will then be estimated thanks to equation 3.8 and the corresponding variances thanks to
equation 3.12.

Chapter 4

Description of the optimal sensor

network design algorithm

In this chapter, a method to design the best sensor networks for the steady-state case will
be proposed. The networks suggested by the method should be the less expensive ones
that allow to satisfy all the following constraints:

∙ all the variables of the process should be computable, even unmeasurable variables
(efficiency of a particular unit, reaction conversion...);

∙ all key variables should be estimated within a prescribed accuracy;

∙ if the process has several operating modes, the sensor network should be able to
satisfy the two first conditions for all of them;

∙ sometimes, one may want to be sure that the sensor network will be able to satisfy the
two first conditions even in the case of one sensor failure or if one sensor is switched
off for maintenance. So, one has to test those conditions for all configurations of the
sensor network obtained by switching off one sensor.

In most of the cases, the objective function of this problem is multimodal. Moreover, the
problem is not derivable and contained a large number of binary parameters (the sensors
are chosen or not) so that a genetic algorithm is used to perform the optimization. The
implementation that is adopted is based on the freeware code developed by Carroll (Carroll,
2001). The selection of individuals involves tournament selection with a shuffling technique
for choosing pairs for mating. The evolution algorithm includes single-point cross-over and
jump mutation. Evolution algorithms are described in annex A.

The optimal sensor network design algorithm is carried out in five steps, which are described
in details in this chapter:

1. Formulation of the reconciliation model and model linearisation;

2. Specification of sensor database, precision requirements and sensor requirements;

23

24 CHAPTER 4. ALGORITHM DESCRIPTION

Figure 4.1: Flow diagram of the genetic algorithm

3. Verification of the problem feasibility;

4. Optimization of the sensor network;

5. Report generation.

A flow diagram of the algorithm is drawn on figure 4.1.

4.1 Formulation of the reconciliation model and model

linearisation

The reconciliation model of the process is first built with the Vali4 software data reconcilia-
tion (Belsim, 2004). In this software, the icons that represent the common unit operations
are drawn in a process flow diagram and linked together by means of material and en-
ergy streams. For material streams, a model for physical and thermodynamic properties
is chosen from the proposed list: ideal, Soave, Redlich-Kwong, NBS, Peng-Robinson...

4.2. FILES OF REQUIREMENTS 25

The values of some measurements are specified in the Vali4 software. The number of the
measurements must at least be equal to the number of degrees of freedom of the process
to allow the equation system to be solved. Redundancy gives supplementary information
and the reconciliation algorithm gives a least square solution. As all variables are not
state variables (enthalpy, pressure, partial molar flow rate...), the Vali4 software writes
automatically the link equations for standard measurements types that are not state vari-
ables (mass flow rates, molar fractions, temperatures...). For non-standard unmeasured
variables (heat transfert coefficient, compressor efficiency, pressure drop, reaction conver-
sion...), which need often to be known within a prescribed accuracy, links equations have
to be created. Once the process is modeled, the reconciliation problem is solved using
either the Lagrange multiplier method or the SQP solver. When the solution is obtained,
the sensitivity analysis is carried out (Heyen et al., 1996) and a report file is generated. It
contains the value of all variables and their reconciled accuracy, the linearised equations
and the non-zero coefficients of the jacobian matrix. As the equations of the model are
linearised at the operating point, a report is needed for each operating point for which
the measurement system has to be designed. Moreover, a report is necessary for the first
operating point calculated with ideal thermodynamics. Indeed, in certain thermodynamic
models, the enthalpy is lightly influenced by the pressure. So, in the jacobian matrix of
the constraints, zeros are replaced by the contributions of the pressures on the enthalpies.
The sensitivity matrix is thus a little different from the one obtained with the ideal ther-
modynamic. To ensure that the observability criterion, which is the non singularity of the
sensitivity matrix, is satisfied, the chosen sensor network has to be tested on the sensitiv-
ity matrix corresponding to the ideal thermodynamic. The thermodynamic specific to the
model are used to estimate properly the values of a posteriori variances.

4.2 Specification of sensor database, precision require-

ments and sensor requirements

Besides the Vali4 reports, the program needs three data files. Those files contain the sensor
database, the precision requirements and the sensor requirements.

4.2.1 Sensor database

The sensor database is a list of sensors from which the algorithm must choose all the
possible sensor placements for the studied plant. It must include, for each sensor, the
following information:

∙ the name of the sensor;

∙ the annualized cost of the sensor. This cost must take into account:

26 CHAPTER 4. ALGORITHM DESCRIPTION

– the annualized purchase cost;

– the annualized installation cost;

– the annualized operating cost.

All those costs depend on the studied process: indeed, for example, the cost of the
sensor will be different if it is placed in a flow of water or if it must resists to acid or
base.

∙ the parameters �Ai
and �Bi

that allow the estimation of the sensor standard deviation
�j for the measured variable X

′

j :

�j = �Ai
+ �Bi

∗X ′

j (4.1)

∙ the type of measurement place:

– S for a stream variable (temperature, pressure);

– M for a mixing variable (flowrate, concentration);

– U for a unit variable (efficiency of the unit);

∙ the minimal and maximal values of the sensor measurement range;

∙ the type of variable the sensor is able to measure. Types of variable are defined as
in Vali4 :

– T for a temperature;

– P for a pressure;

– DP* for a pressure drop;

– MF* for a molar fraction;

– MOLF for a molar flow rate;

– MASSF for a mass flow rate.

4.2.2 Precision requirements

In this file, key variables that have to be known precisely are listed with their required
target accuracy (maximum standard deviation). Those variables are, for instance, turbine
efficiency, catalyst deactivation, productivity, reactive conversion...
At each generation of the genetic algorithm, it is checked whether the key variables accu-
racies are achieved or not. In the case they are not acceptable, a penalty is added to the
goal function of the optimization problem; otherwise, a bonus is added.

4.3. VERIFICATION OF THE PROBLEM FEASIBILITY 27

4.2.3 Sensor requirements

A file is proposed to list

∙ existing sensors that should not be removed;

∙ plant locations where sensor placements have to be avoided;

∙ plant locations where sensor locations are mandatory.

4.3 Verification of the problem feasibility

This step of the program begins by computing the list of all the sensors that can be placed
in the plant. Each chromosome created by the algorithm will contain a number of binary
decisions equal to the maximum number of sensors. The binary genes take the value 1 or 0
depending if the corresponding sensors are chosen or not. To check the problem feasibility,
the algorithm first generates an individual whose genes are all set to "1", thus implementing
all possible sensors. This is the most expensive solution, but it should also result in the
most precise estimates for the key process variables. Thus, if the required precision is not
archived for this solution, one may conclude that the problem has no solution. If several
sensors measure the same variables, only the variance of the most accurate one is taken
into account.
To ensure there exists a solution to the studied problem, the two following conditions have
to be met:

∙ The sensitivity matrix of the problem is non-singular for the ideal thermodynamic
case as well as for all operating points. If this condition is not met, the program
stops.

∙ The accuracies on all key parameters have to be acceptable. If this condition is not
met, the program may continue, but a penalty is added to the goal function.

There are different ways to cure those problems:

∙ adding more accurate sensors to the data base;

∙ adding sensors able to measure other types of variable;

∙ adding more extra measurable variables so that more variables can be measured.

Individuals of the first generation are chosen randomly by biasing the initial chromosome:
to be sure that the number of chosen sensors is at least equal to the number of degrees of
freedom of the problem, a high probability of selection if fixed for each sensor. A value
of 80 % is typically chosen but this parameter appears not to be critical for the problem
of optimal sensor design. For the other parameters of the genetic algorithm, the following
values are generally chosen:

28 CHAPTER 4. ALGORITHM DESCRIPTION

∙ the population size, which does not either appear to be critical , was most of the
time chosen to 20 individuals per population;

∙ the probability of reproduction was fixed to 50 %;

∙ the probability of single-point cross-over was chosen to 50 %

∙ the probability of jump mutation after reproduction and cross-over is 1 %.

4.4 Optimization of the sensor network

Knowing that a feasible solution exists, the search for the optimal sensor configuration can
begin. The fitness function is evaluated as follows:

∙ If the sensitivity matrix is singular:

Fitness = −Cmax penaltysingular matrix (4.2)

where

– Cmax is the cost relative to the most expensive sensor network which corresponds
to the first chromosome;

– penaltysingular matrix is the penalty factor for a singular sensitivity matrix and is
generally chosen equal to 2.

∙ otherwise

Fitness = −cost −
Nkey variables∑

i=1

⎧
⎨
⎩

− �i

�
target
i

�2

i(
�
target
i

)
2

Cmax penaltytarget

Nkey variables

102
Cmax penaltytarget

Nkey variables

if �i

�
target
i

≤ 1

if 1 < �i

�
target
i

< 10

if �i

�
target
i

≥ 10

(4.3)
where

– Nkey variables is the number of process key variables;

– penaltytarget is the penalty factor for the targets on key parameters that are not
respected and is fixed equal to 2;

– �i is the accuracy obtained by the sensor network for the key variable i ;

– �target
i is the accuracy required for the key parameter i.

In this second case, a penalty is added to the objective function if the required
accuracy on a key parameter is not satisfied. Otherwise a gain is added.

4.5. REPORT GENERATION 29

If the sensor network has to be available for several operating points, the fitness becomes:

Fitness =

Noperating points∑

j=1

fitnessj − (Noperating points − 1) cost (4.4)

where Noperating points is the number of operating points.
If a measurement system observable in the case of one sensor failure has to be carried out,
the fitness is evaluated for all configurations obtained by eliminating successively one of
the sensors, and the worst one is kept.
Once the population has been generated the goal function has to be evaluated. In or-
der to estimate reconciled variances of all variables, the sensitivity matrix corresponding
to the specific thermodynamic has to be inverted before a posteriori variances are esti-
mated by means of equations 3.6. The sensitivity matrix being symmetric, the subroutine
"MA29AD" from Harwell library (Harwell, 1990), which allows to factorize a symmetric
matrix, was first used. However, the problem that is attempted to be solved contains a
large number of variables and equations and its sensitivity matrix is very sparse. Thus a
sparse matrix factorisation code, available in Belsim, was selected. This code is based on
the algorithm proposed by Chen and Stadherr (Chen and Stadherr, 1984). It allows to
reduce the computing time by 25 for matrices of size 300 so that it was finally chosen.
At each generation, the best individual is kept and duplicated in the case it would mutate
during the next generation.
If after a specified number of generations (n) the best chromosome remains unchanged, it
is considered has the solution of the problem. There is no certainty that this solution is
the best one, but it is available and much better than the first individual.
The computing times to reach the solution with the algorithm can be very important for
large scale problems has it is illustrated in annex B. That is why parallelization has been
used as described in chapter 5. Parallelization results are presented on chapter 6.

4.5 Report generation

At the last step, the programme generates a report containing the list of all possible sensors
and the list of chosen sensors with their location. It also gives, for the key parameters,
a comparison between the accuracies obtained by the best network and the target ones.
Finally, files containing the name of the variables with their values, a priori accuracies and
physical units are generated. Those files can be used as measurements files directly in the
Vali4.

Chapter 5

Case studies

Several processes have been studied to test the performance of the algorithm and compare
the ways it has been parallelized. Four of them are described in this chapter:

∙ an ammonia synthesis loop: this process is a middle size problem (224 variables)
whose data have been obtained by simulation;

∙ a combined cycle electricity generation plant: the size of this problem is similar to
the ammonia synthesis loop (260 variables) but the values of the variables have been
collected by measurement;

∙ a ketene cracker: this problem is a quite larger size problem (631 variables) whose
variables have also been measured;

∙ a naphta reformer: this process is a larger size problem (1263 variables) whose data
have been obtained by simulation;

For all the examples, genetic algorithm as been stopped after 200 generations without any
progress.

5.1 Ammonia synthesis loop

5.1.1 Process description

The gas interring into the plant (see figure 5.2), composed of nitrogen, hydrogen, argon and
methane, is compressed to 280 bar by a two stages compressor with two intercoolers. A
third compressor stage allows to compress the recycled gas. The gas is then heated before
entering the reactor where the ammonia synthesis takes place. The reactor product must
be cooled and partially condensed to recover the ammonia. This cooling takes place in four
steps: the gaseous products first go through a waste heat boiler, then they heat the reactor
feed, they are chilled in a water cooled exchanger, and finally in the evaporator of an
ammonia refrigeration loop. The condensation product is later flashed to a lower pressure

31

32 CHAPTER 5. CASE STUDIES

so that ammonia with a purity of 99.9 % can be obtained at the exit of the flash drum.
The gaseous stream that exits the liquid-vapor separator is recycled to recover unreacted
hydrogen. A part of this stream must however be purged to avoid accumulation of inerts.
This process is composed of:

∙ 14 units: 1 two-stage compressor with two intercoolers, 1 ammonia converter, 1
recycle mixer, 1 recycle compressor, 1 reactor preheater, 1 waste heat boiler, 1 waste
heat condenser, 1 purge divider, 1 liquid-vapor separator and 1 flash drum;

∙ 19 material streams composed of ammonia, argon, methane, hydrogen and nitrogen;

∙ 10 utility streams composed of steam and cooling water;

∙ 4 mechanical streams;

∙ 224 variables;

∙ 177 constraints equations.

Key parameters

The process comprises 52 key parameters to be monitored. They are listed with their
prescribed standard deviations in the table below (Table 5.1).

Table 5.1: Ammonia synthesis loop: prescribed standard deviations on key parameters

Variable name Standard deviation
Ammonia partial molar flow rate of stream AM1 5 %
Mass flow rate of stream BFW 2 %
Temperature of stream BFW 1 K
Pressure of stream BFW 0.5 bar
Mass flow rate of stream CW1 2 %
Temperature of stream CW1 1 K
Pressure of stream CW1 0.1 bar
Temperature of stream CWR1 1 K
Pressure of stream CWR1 1 %
Mass flow rate of stream CW2 2 %
Pressure of stream CWR2 1 %
Mass flow rate of stream CW3 2 %
Pressure of stream CWR3 1 %
Temperature of stream STM 1 K
Pressure of stream STM 0.5 bar

continued on next page

5.1. AMMONIA SYNTHESIS LOOP 33

Variable name Standard deviation
Mass flow rate of stream 1 5 %
Argon molar fraction of stream 1 0.001
Hydrogen molar fraction of stream 1 0.001
Methane molar fraction of stream 1 0.001
Nitrogen molar fraction of stream 1 0.001
Temperature of stream 1 1 K
Argon molar fraction of stream 6 0.002
Hydrogen molar fraction of stream 6 0.005
Ammonia molar fraction of stream 14 0.005
Argon molar fraction of stream 14 0.005
Hydrogen molar fraction of stream 14 0.005
Nitrogen molar fraction of stream 14 0.005
Mass flow rate of stream 15 1 %
Ammonia molar fraction of stream 18 0.005
Argon molar fraction of stream 14 0.005
Hydrogen molar fraction of stream 14 0.005
Nitrogen molar fraction of stream 14 0.005
Thermal power of heat intercooler E-101 2 %
Heat transfert coefficient of intercooler E-101 10 %
Thermal power of heat intercooler E-102 5 %
Heat transfert coefficient of intercooler E-102 15 %
Thermal power of heat intercooler E-103 2 %
Heat transfert coefficient of intercooler E-103 5 %
Thermal power of heat intercooler E-104 2 %
Heat transfert coefficient of intercooler E-104 5 %
Thermal power of heat intercooler E-105 5 %
Heat transfert coefficient of intercooler E-105 10 %
Thermal power of heat intercooler E-106 3 %
Heat transfert coefficient of intercooler E-106 10 %
Extent of the reaction at reactor R-101 1 %
Temperature deviation from equilibrium at reactor R-101 5 K
Mechanical power of compressor C-101 5 %
Efficiency of compressor C-101 0.02
Mechanical power of compressor C-102 5 %
Efficiency of compressor C-102 0.02
Mechanical power of compressor C-103 5 %
Global mechanical power WCOMP 5 %

34 CHAPTER 5. CASE STUDIES

Sensor database

The sensor database describes 15 sensor types:

Table 5.2: Ammonia synthesis loop: sensor database

Sensor types Annualized Accuracies Minimum Maximum
costs values values

Thermocouple A 10 0.5+0.1% 200 K 400 K
Thermocouple B 30 0.2+0.05% 375 K 800 K
Thermocouple C 50 0.2+0.1% 750 K 2000 K
Pressure Gauge A 20 1% 0 bar 20 bar
Pressure Gauge B 30 0.01+1% 15 bar 300 bar
Delta_p 0 0.001+1% -0.5 bar 300 bar
Poly-Analyser 140 0.001+1% 0 1
Chromatograph A 400 0.0001+0.5% 0 1
Chromatograph B 200 0.001+1% 0 1
Molar Flowmeter 60 2% 0 mol/s 200 mol/s
Mass Flowmeter A 40 5% 0 kg/s 25 kg/s
Mass Flowmeter B 60 2% 20 kg/s 75 kg/s
Mass Flowmeter C 100 1% 50 kg/s 200 kg/s
Mass Flowmeter D 150 2% 175 kg/s 1000 kg/s

The initial solution that is obtained with this list of sensors costs 8600 cost units and
counts 117 sensors:

∙ 14 chromatographs;

∙ 7 poly-analysers (One means by poly-analyser a measurement tool that is able to
measure the concentration of several specified components in one stream. In this
case, the poly-analyser will give the concentrations in ammonia, methane and argon);

∙ 30 mass flowmeters;

∙ 31 thermocouples;

∙ 29 pressure-gauges;

∙ 6 virtual pressure drop meters (Those sensors do not exists in reality. They are
virtually created because Vali4 requires the specification of the units pressure drops).

This sensor network allows to identify all key parameters with acceptable accuracy.

5.1. AMMONIA SYNTHESIS LOOP 35

5.1.2 Solution

Case of one operating point

When a sensor schedule is designed for a single operating point, a feasible sensor network is
obtained after 76 seconds on a processor M dothan (1.6 GHz). This requires 361 generations
and 7241 goal function evaluations for a population of 20 individuals. That corresponds to
100 goal function evaluations per second. This measurement system costs 1591 costs units
and counts 45 sensors:

∙ 1 chromatograph;

∙ 7 mass flowmeters;

∙ 20 thermocouples;

∙ 11 pressure-gauges;

∙ 6 virtual pressure drop meters.

This sensor network is represented on figure 5.2. As it can be seen on figure 5.1, the solution
is quickly reached: the optimal sensor network is already obtained after 160 generations.
This solution is much better than the initial one but there is no guarantee that it is the
absolute optimum. To be sure to find the best solution, all configurations should be tested.
That corresponds to 2117 = 1.66 1035 configurations.

Figure 5.1: Ammonia synthesis loop: evolution of the goal function with the number of
generations

36 CHAPTER 5. CASE STUDIES

Figure 5.2: Ammonia synthesis loop: solution in the case of one operating point

Case of one sensor failure

When the goal is to design, a sensor network that remains feasible even in the case of
one sensor failure, the solution is obtained after 1 hour and 45 minutes on a processor M
dothan (1.6 GHz). That requires 407 generations and 487899 goal function evaluations for
a population of 20 individuals. This measurement system costs 3900 cost units and counts
81 sensors:

∙ 2 chromatographs;

∙ 1 poly-analyser;

∙ 16 mass flowmeters;

∙ 1 molar flowmeter;

∙ 32 thermocouples;

∙ 17 pressure-gauges;

∙ 12 virtual pressure drop meters.

5.1. AMMONIA SYNTHESIS LOOP 37

This sensor network is represented on figure 5.3.

Figure 5.3: Ammonia synthesis loop: solution in the case of one sensor failure

5.1.3 Global parallelization

For the ammonia synthesis loop, parallelization results have been obtained thanks to the
computer cluster of the Hemeris Society. This cluster is composed of 64 nodes (Apple
Power Mac G4 bi-processors) interconnected by fast and giga Ethernet.

Case of one operating point

In the case of the obtention of a redundant sensor network, global parallelization has been
applied to populations of respectively 20, 40 and 100 individuals. The search was stopped
after 200 generations without progress in all cases. In the case of a population of 20
individuals, the results are presented on table 5.3 and on figure 5.4.

38 CHAPTER 5. CASE STUDIES

Table 5.3: Ammonia synthesis loop: global parallelization: 20 chromosomes: case of one
operating point

Number of Master processor Elapsed Efficiency
processors CPU time (s) time (s) %

2 278 300 100
4 140 164 91.4
5 111 133 90.2
10 57 71 84.5
20 30 45 66.7

Figure 5.4: Ammonia synthesis loop: global parallelization: 20 chromosomes: case of one
operating point

It can be seen that the elapsed time and the master processor CPU are linearly dependent
on the inverse of the number of processors.
The efficiency has been calculated this way: it was not possible to obtain the elapsed time
for a single processor on the Hemeris cluster, the reference time was taken equal to twice the
reference time for two processors, so that the efficiency is equal to 100% for two processors.
If the time for one processor had been available, all efficiencies would have been lower. It
appears that the efficiency decreases with the number of processors. It decreases sharply
when the number of processors is near or equal to the number of individuals. Indeed, in
that case, as each processor evaluates one individual, processors that are in charge with an
individual corresponding to a singular sensitivity matrix remain idle while the others are
calculating a posteriori variances. As the number of individuals per processor increases, the
individuals corresponding to singular matrices are better distributed between the different

5.1. AMMONIA SYNTHESIS LOOP 39

processors. This loss of efficiency can not be predicted precisely a priori. Other losses of
efficiency come from the connections between processors and from the sequential part of
the program. In this case efficiency losses are less important than the one coming from the
singular matrices, but their contribution to the total loss of efficiency increases when the
number of processors decreases.
Results are presented on table 5.4 and on figure 5.5 in the case of a population of 40
individuals, and on table 5.5 and on figure 5.6 in the case of a population of 100 individuals.
The same conclusions as in the case of a population of 20 chromosomes can be made. When
the number of processors is equal to the number of individuals, it appears that the efficiency
decreases more in the case of 40 chromosomes than in the case of 20, and in the case of
100 than in the case of 40.

Table 5.4: Ammonia synthesis loop: global parallelization: 40 chromosomes: case of one
operating point

Number of Master processor Elapsed Efficiency
processors CPU time (s) time (s) %

2 382 408 100
4 191 216 94.4
5 153 178 91.7
8 96 117 87.2
10 77 96 85
20 40 52 78.5
40 22 41 49.8

Table 5.5: Ammonia synthesis loop: global parallelization: 100 chromosomes: case of one
operating point

Number of Master processor Elapsed Efficiency
processors CPU time (s) time (s) %

2 1454 1506 100
4 723 790 95.3
5 580 643 93.7
10 291 345 87.7
20 147 183 82.3
25 118 155 77.7
50 63 108 55.8
100 41 86 35

Case of one sensor failure

When designing a measurement system that remains redundant in the case of one sensor
failure, the global parallelization results are given on table 5.6 and on figure 5.7 for a

40 CHAPTER 5. CASE STUDIES

Figure 5.5: Ammonia synthesis loop: global parallelization: 40 chromosomes: case of one
operating point

Figure 5.6: Ammonia synthesis loop: global parallelization: 100 chromosomes: case of one
operating point

5.1. AMMONIA SYNTHESIS LOOP 41

population of 20 chromosomes and a stop criterion after 200 generations without progress.
It appears that the elapsed time and the master processor CPU are linearly dependent on
the inverse of the number of processors.
The efficiency decreases with the number of processors, but more slowly than in the pre-
ceding cases. Indeed, if the number of processors is equal to the size of the population,
each processor must carry out a number of goal function evaluations equal to the number
of chosen sensors plus one, or one if the sensor network corresponds to a singular sensitivity
matrix. So, the waiting times between the different processors are better distributed. The
loss of efficiency increases more rapidly when the number of processors is higher than the
number of individuals, namely, when the number of goal function evaluations per processor
approaches one.

Table 5.6: Ammonia synthesis loop: global parallelization: 20 chromosomes: case of one
sensor failure

Number of Master processor Elapsed Efficiency
processors CPU time (s) time (s) %

2 14444 14642 100
4 7238 7541 97.1
5 5797 6108 95.9
10 2906 3208 91.3
20 1464 1730 84.6
40 814 1044 84.4
60 567 808 72.7
80 428 711 62

42 CHAPTER 5. CASE STUDIES

Figure 5.7: Ammonia synthesis loop: global parallelization: 20 chromosomes: case of one
sensor failure

5.1.4 Distributed genetic algorithms

In this section, three parameters of the distributed genetic algorithms are discussed:

∙ the size of the sub-populations;

∙ the number of sub-populations;

∙ the number of generations between two migrations.

Two size of sub-populations have been studied (10 and 20 individuals) for different numbers
of processors. The results are presented on table 5.7 and on figures 5.8 and 5.9 for the
sub-populations of 10 chromosomes, and on table 5.8 and on figure 5.10 and 5.11 for the
sub-populations of 20 chromosomes. Those results have been obtained for a number of
generations between to migrations equal to 5, a number of migrating agents equal to 2 and
a stop criterion equal to 40*5 generations.
The elapsed time and the master process CPU time evolve in the same way with respect to
the number of sub-populations for the two sizes of sub-populations, but the goal function
is not always the best one for the number of sub-populations corresponding to the higher
number of generations. Indeed, as the sub-populations evolve independently from one
another and start with different individuals, the way followed to find the solution may
be very different from one case to another, so that the algorithm stops at different local
minima. The solutions would approach each other if the stop criterion is increased, but
there is no way to know a priori how to fix it. Indeed 100 may be enough in one case while
500 would not be enough in another one.

5.1. AMMONIA SYNTHESIS LOOP 43

It does not seem to be interesting to take too many sub-populations. Indeed, if the number
of sub-populations increases, the elapsed time does not always decreases. Moreover, the
total work (elapsed time ∗ number of processors) generally increases with the number of
processors. An increase of the number of sub-populations has always for impact a use
of more computing ressources to obtain, after a more important work, a solution that is
not always better than in the case of a smaller number of sub-populations. A number of
sub-populations of five seems to be a good compromise.
The goal function values variate in the same intervalle following that sub-populations
contains 10 or 20 chromosomes. The computing time being smaller for sub-populations of
10 chromosomes, it is favorable to take sub-populations of 10 chromosomes. If a too small
size of sub-populations is taken, information contained in the initial individuals can be lost
quite fast and the algorithm may converge quickly to a local minimum far away from the
global minimum.

Table 5.7: Ammonia synthesis loop: distributed genetic algorithms: sub-populations of 10
chromosomes

Number of Master processor Elapsed Goal Number of
processors CPU time (s) time (s) function generations

2 387 421 1521 765
3 211 226 1491 395
4 303 328 1611 550
5 238 258 1591 435
6 434 459 1541 825
7 504 551 1490 980
8 374 421 1551 720
9 345 385 1551 650
10 383 433 1470 745
12 257 305 1511 555
14 193 231 1470 360
16 371 450 1511 730
18 435 516 1470 850
20 265 332 1470 515

44 CHAPTER 5. CASE STUDIES

Figure 5.8: Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of 10 chromosomes sub-populations on the computing time: case of one operating

point

Figure 5.9: Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of 10 chromosomes sub-populations on the number of iterations and on the goal

function: case of one operating point

5.1. AMMONIA SYNTHESIS LOOP 45

Table 5.8: Ammonia synthesis loop: distributed genetic algorithms: sub-populations of 20
chromosomes

Number of Master processor Elapsed Goal Number of
processors CPU time (s) time (s) function generations

2 583 607 1501 545
3 496 521 1470 475
4 480 513 1551 440
5 680 716 1590 610
6 416 451 1471 390
7 656 710 1470 625
8 578 638 1511 555
9 454 528 1471 445
10 393 434 1540 345
12 898 1001 1511 850
14 574 650 1470 555
16 783 881 1470 770
18 490 564 1470 460
20 417 499 1470 395

Figure 5.10: Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of 20 chromosomes sub-populations on the time: case of one operating point

46 CHAPTER 5. CASE STUDIES

Figure 5.11: Ammonia synthesis loop: distributed genetic algorithms: influence of the
number of 20 chromosomes sub-populations on the number of iterations and on the goal

function: case of one operating point

To study the influence of the number of generations between two consecutive migrations,
the size of the global population was fixed to 50, the size of the sub-populations to 10 and
the stop criterion to 200. The results can be seen on table 5.9 and on figures 5.12 and 5.13.

Table 5.9: Ammonia synthesis loop: distributed genetic algorithms: influence of the num-
ber of generations between two migrations

Number of generations Master processor Elapsed Goal Number of
between 2 migrations CPU time (s) time (s) function generations

2 221 226 1491 455
5 238 258 1591 435
10 289 322 1591 540
20 309 320 1541 560

The value of the goal function, the computing time and the total number of generations
vary independently of the number of generations between two successive migrations. The
value of five generations between two successive migrations found in the literature seems
to be a good compromise.

5.1. AMMONIA SYNTHESIS LOOP 47

Figure 5.12: Ammonia synthesis loop: distributed genetic algorithms: influence on the
computing time of the number of generations between 2 migrations: case of one operating

point

Figure 5.13: Ammonia synthesis loop: distributed genetic algorithms: influence on the
number of iterations and on the goal function of the number of generations between 2

migrations: case of one operating point

48 CHAPTER 5. CASE STUDIES

5.1.5 Methods comparison

To decide which parallelization method is the most efficient, the times, the number of
iterations, the final values of the goal function and the efficiencies have been compared.
In all the cases, the global size of the population was fixed to 50 individuals and the stop
criterion was taken equal to 200 for global parallelization and 40∗5 for distributed genetic
algorithms. For distributed genetic algorithms, the number of generations between two
successive migrations was fixed to 5 and the number of migrating individuals was taken
equal to 2. The results are given in the tables 5.10 for global parallelization and 5.11 for
distributed genetic algorithms.

Table 5.10: Ammonia synthesis loop: global parallelization

Global parallelization
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (s) time (s) function generations (%)

2 766 798 1591 543 100
5 305 349 1591 543 91.5
10 154 199 1591 543 80.2

Table 5.11: Ammonia synthesis loop: distributed genetic algorithms

Distributed genetic algorithms
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (s) time (s) function generations (%)

2 652 676 1471 466 118
5 238 258 1591 431 123.7
10 77 133 1470 381 120

It can be seen on figure 5.14 that the elapsed time and the master processor CPU time are
better for the distributed genetic algorithms. The same tendency is observed in the case
of the total number of generations (figure 5.16).
The goal function values are also better in the case of distributed genetic algorithms (figure
5.16). Indeed, they do not change with the number of processors in the case of global
parallelization because the evolution of the population does not depend on that number in
that case. In contrary, for distributed genetic algorithms, the global population evolution
depends on the number of sub-populations: indeed,

∙ the size of the sub-populations depends on the number of sub-populations;

∙ individuals migrate from one sub-population to another one so that mating chromo-
somes is different in function of the way they move.

5.1. AMMONIA SYNTHESIS LOOP 49

Figure 5.14: Ammonia synthesis loop: times comparison

Figure 5.15: Ammonia synthesis loop: number of generations comparison

50 CHAPTER 5. CASE STUDIES

Figure 5.16: Ammonia synthesis loop: goal function comparison

Thus, the way followed to obtain the solution is different for each sub-population number,
so that, as the optimal solution found by the algorithm may not be the best one, values of
the goal function may be a little different.
It appears on figure 5.17 that the efficiency is much better in the case of distributed
genetic algorithms. The efficiency is even better than 100% in some cases. Indeed, as
sub-populations are subject to migrations and contain different initial individuals, the way
followed by the algorithm to reach the solution is different. Moreover, the gain of time
given by the reduction of the number of iterations is higher than the loss of time caused
by the migration operations between sub-populations.
In the case of the ammonia synthesis loop, both parallelization methods allowed to reduce
the computing time, but distributed genetic algorithms are better in all points of view.

5.1. AMMONIA SYNTHESIS LOOP 51

Figure 5.17: Ammonia synthesis loop: efficiency comparison

52 CHAPTER 5. CASE STUDIES

5.2 Combined cycle power plant

5.2.1 Process description

The second process is a combined cycle power plant. In this process, air is compressed
before entering the combustion chamber where it reacts with the fuel (natural gas, modeled
as a methane-ethane mixture). The combustion gas is later expanded in two successive
turbines. Then it is cooled in a steam generator before being rejected to the environment.
The generator allows to raise super heated steam at two pressure levels. Superheated steam
feeds two turbines and is condensed before being recirculated to a boiler.
This process is composed of:

∙ 28 units: 1 air compressor, 1 combustion chamber, 2 turbines at the exit of the
combustion chamber, 1 high pressure superheater, 1 high pressure vaporiser, 2 high
pressure economizers, 1 low pressure superheater, 1 low pressure vaporiser, 1 low
pressure economizer, 1 heater, 5 pumps, 1 high pressure turbine, 1 low pressure
turbine, 1 condenser, 2 steam drums, 2 liquid-vapor separators, 1 stream divider, 2
stream mixers and 1 purge divider;

∙ 17 material streams composed of oxygen, water, nitrogen, methane, ethane and car-
bon dioxide;

∙ 28 utility streams composed of vapor and cooling water;

∙ 10 mechanical streams;

∙ 1 thermal stream;

∙ 260 variables;

∙ 216 constraints equations.

This example will be first studied in the case of the nominal operating point. Secondly, it
will be studied considering two operating points simultaneously: the nominal conditions
and the summer operating conditions. Performance of the parallelized algorithm will be
analyzed for this later case.

Key parameters

The process comprises 10 key parameters which are listed with their prescribed standard
deviations in the table below (Table 5.12).

5.2. COMBINED CYCLE POWER PLANT 53

Table 5.12: CC power plant: prescribed standard deviations on key parameters

Variable name Standard deviation
Mechanical power of the air compressor 5 %
Efficiency of the air compressor 5 %
Mechanical power of the first gas turbine 5 %
Efficiency of the first gas turbine 5 %
Mechanical power of the second gas turbine 5 %
Efficiency of the second gas turbine 5 %
Mechanical power of the high pressure steam turbine 5 %
Efficiency of the high pressure steam turbine 2 %
Vapor fraction at the exit of the low pressure vaporizer 2 %
Vapor fraction at the exit of the high pressure vaporizer 2 %

Sensor database

The sensor database describes the following sensor types:

Table 5.13: CC power plant: sensor database

Sensor types Annualized Accuracies Minimum Maximum
costs values values

Thermocouple A 10 0.5+0.1% 0 K 250 K
Thermocouple B 10 0.5+0.1% 200 K 400 K
Thermocouple C 30 0.2+0.05% 375 K 800 K
Thermocouple D 50 0.2+0.1% 750 K 2000 K
Pressure Gauge A 20 1% 0 bar 20 bar
Pressure Gauge B 30 0.01+1% 15 bar 300 bar
Delta_p 0 0.001+1% -0.5 bar 300 bar
O2 Gauge 50 0.0005+0.5% 0 1
CO2 Gauge 50 0.0005+0.5% 0 1
Poly-Analyser 140 0.001+1% 0 1
Chromatograph A 400 0.0001+0.5% 0 1
Chromatograph B 200 0.001+1% 0 1
Molar Flowmeter 60 2% 0 mol/s 200 mol/s
Mass Flowmeter A 40 5% 0 kg/s 25 kg/s
Mass Flowmeter B 60 2% 20 kg/s 75 kg/s
Mass Flowmeter C 100 1% 50 kg/s 200 kg/s
Mass Flowmeter D 150 2% 175 kg/s 1000 kg/s
Mass Flowmeter E 200 2% 1000 kg/s 5000 kg/s

The initial solution that is obtained with this list of sensors costs 14790 cost units and
counts 206 sensors:

54 CHAPTER 5. CASE STUDIES

∙ 8 chromatographs;

∙ 3 oxygen gauges;

∙ 3 carbon dioxide gauges;

∙ 98 mass flowmeters;

∙ 48 thermocouples;

∙ 45 pressure-gauges;

∙ 1 virtual pressure drop meters.

This sensor network allows to satisfy all accuracies on key parameters. In this example,
the solution space counts 2206 = 1.03 ∗ 1062 different solutions.

5.2.2 Solution

Case of one operating point

In the case of one operating point, a feasible sensor network is obtained after 587 seconds
on a processor Celeron (2.2 GHz) for a population of 48 individuals. This requires 933
generations and 44785 goal function evaluations. That corresponds to 76 goal function
evaluations per second. This measurement system costs 1820 cost units and counts 49
sensors:

∙ 2 oxygen gauges (one for air and one for combustion gas);

∙ 2 carbon dioxide gauges (one for fuel and one for combustion gas);

∙ 9 mass flowmeters;

∙ 24 thermocouples;

∙ 11 pressure-gauges;

∙ 1 virtual pressure drop meter.

This sensor network is represented on figure 5.18.

5.2. COMBINED CYCLE POWER PLANT 55

Figure 5.18: CC power plant: solution in the case of one operating point

56 CHAPTER 5. CASE STUDIES

Case of two operating points

In the case of two operating points, a feasible sensor network is obtained after 1595 seconds
on a processor Celeron (2.2 GHz) for a population of 48 individuals. This requires 1343
generations and 128930 goal function evaluations. This measurement system costs 1820
cost units and counts 44 sensors:

∙ 1 chromatograph for the combustion gas (replacing one oxygen and one carbon diox-
ide gauges);

∙ 1 oxygen sonde for the air;

∙ 1 carbon dioxide sonde for the fuel;

∙ 7 mass flowmeters;

∙ 23 thermocouples;

∙ 10 pressure-gauges;

∙ 1 virtual pressure drop meter.

This sensor network is represented on figure 5.19.

Case of one sensor failure

In the case of one operating point, an observable sensor network in the case of one sensor
failure is obtained after 486 minutes on a processor Celeron (2.2 GHz) for a population of
48 individuals. That requires 823 generations and 3139426 goal function evaluations. This
measurement system costs 3840 cost units and counts 78 sensors:

∙ 2 chromatographs;

∙ 2 oxygen gauges (one for the air and one for the combustion gas);

∙ 16 mass flowmeters;

∙ 37 thermocouples;

∙ 19 pressure-gauges;

∙ 2 virtual pressure drop meters.

This sensor network is represented on figure 5.20.

5.2. COMBINED CYCLE POWER PLANT 57

Figure 5.19: CC power plant: solution in the case of two operating points

58 CHAPTER 5. CASE STUDIES

Figure 5.20: CC power plant: solution in the case of one sensor failure

5.2. COMBINED CYCLE POWER PLANT 59

5.2.3 Parallelization: methods comparison

For this example and the two following ones, the parallelization has been carried out
by running MPI services on the computer network available for students in the chemical
engineering department. This is composed of 12 computers: 8 have Celeron 2.2 GHz
processors and 4 have Pentium 4.3 GHz processors. They are linked by a 100 Mps ethernet
network to a switch. For a number of processors until 8, the work was shared between the 8
Celeron processors, the other 4 being used only for a number of processors equal to twelve.
As those 4 computers work faster, their use has not introduced loss of elapsed time. The
times obtained can not be reproduced exactly: indeed, as the computers are connected
to the University network and not to a dedicated hub, the connection times can increase
when the network is used by other persons. Moreover, some Windows services or updates
runs at some times during the day time and make the processor work more slowly than
at another time. For those reasons, only the best times have been kept in the analysis.
To obtained less biased times, the computers should be connected to each other only and
contain only the logiciels that are necessary for the application.
In all the cases (except 8∗ and 12∗), the global size of the population was fixed to 48
individuals and the stop criterion was taken equal to 200 for global parallelization and
40∗5 for distributed genetic algorithms. For distributed genetic algorithms, the number of
generations between two successive migrations was fixed to 5 and the number of migrat-
ing individuals was taken equal to 2. The results are given in the tables 5.14 for global
parallelization and 5.15 for distributed genetic algorithms.

Table 5.14: CC power plant: global parallelization

Global parallelization
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (s) time (s) function generations (%)

1 1589 1595 1807 1343 100
2 760 819 1807 1343 97.4
3 512 569 1807 1343 93.4
4 387 439 1807 1343 90.8
6 257 331 1807 1343 80.3
8 197 252 1807 1343 79.1
12 134 173 1807 1343 76.8

60 CHAPTER 5. CASE STUDIES

Table 5.15: CC power plant: distributed genetic algorithms

Distributed genetic algorithms
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (s) time (s) function generations (%)

1 1589 1595 1807 1343 100
2 446 468 1997 881 170.4
3 177 236 1848 481 225.3
4 175 202 1898 731 197.4
6 109 127 1907 601 209.3
8 144 173 2218 1161 115.2
8∗ 157 201 1908 421 99.2
12 67 85 2087 761 156.4
12∗ 112 153 1847 561 86.9

As it can be seen on figure 5.21 both parallelization techniques allows for this example
to reduce the computing time which remains inversely proportional to the number of pro-
cessors in the case of global parallelization. The elapsed times and the master processor
CPU times are better for distributed genetic algorithms. The solution is reached after less
generations for distributed genetic algorithms (figure 5.22). We note nevertheless that the
total number of generations is different for each number of sub-populations, that is due to
the fact that, as already mentioned for the first case study, sub-populations evolve inde-
pendently from one another so that the way followed by the global population is different
in each case. This phenomemon explains the difference in the total number of iterations.
Those different ways followed by the populations can also explain the different local optima
reached for a same stop criterion (figure 5.23).
The goal function values are for this example better in the case of global parallelization
(figure 5.23). For distributed genetic algorithms, when the number of processors increases,
the size of the sub-populations decreases and is equal to 4 individuals in the case of 12
processors, and 6 for 8 processors. In those cases, the size of sub-populations became
too small and the algorithm converges to quickly to a local minimum probably by lack of
diversity in the genotype of the individuals. That explains that high value of goal function
and the so small elapsed times and numbers of generations. To avoid this local convergence,
for cases 8∗ and 12∗ the global population was multiplied by 2 being equal to 96 and the
stop criterion was divided by 2 becoming equal to 20∗5 generations so that the number of
fitness evaluations remains the same but the sub-populations contains more individuals: 8
instead of 4 for 12 processors and 12 instead of 6 for 8 processors. In can be observed that
the goal function values are better for the two ∗ cases but the computing times are bigger.
The numbers of generations are smaller for the ∗ cases but each of them corresponds to a
number of goal function evaluations twice bigger.
In the case of global parallelization, the efficiency decreases with the number of processors
(5.24). It is much better in the case of distributed genetic algorithms, but this better
efficiency does not always correspond to optimal values of the goal function. The efficiency

5.2. COMBINED CYCLE POWER PLANT 61

Figure 5.21: CC power plant: times comparison

Figure 5.22: CC power plant: number of generations comparison

62 CHAPTER 5. CASE STUDIES

Figure 5.23: CC power plant: goal function comparison

is smaller for the two ∗ cases but the solution is much better. So, it seems preferable to
increase the size of the sub-populations and decrease the stop criterion when the number
of individuals per sub-populations becomes to small.
For this example, distributed genetic algorithms are better than global parallelization con-
cerning the computing times, but give worse goal function values. The ∗ cases are situated
in between, their computing times is higher than for the standard cases but smaller than
for global parallelization, and their goal function is better than for the standard cases but
worse than for global parallelization. They seem to be a good compromise between the
value of the goal function and the computing time.

5.2. COMBINED CYCLE POWER PLANT 63

Figure 5.24: CC power plant: efficiency comparison

64 CHAPTER 5. CASE STUDIES

5.3 Ketene cracker

5.3.1 Process description

The third example is a ketene cracker. The plant model has been provided by Belsim
company. It has been developed for Wacker Chemie and represent the ketene plant on
their Burghausen site.
In this process, acetic acid is evaporated in a preheater before it enters into a furnace where
the catalytic pyrolysis occurs. The catalyst, triethyl phosphate (TEP), allows the cracking
of acetic acid into ketene and water. TEP is first transformed into phosphoric acid, which
loses a water molecule. Acetic acid is then added to meta phosphoric acid and, finally,
acetic anhydride is rearranged into ketene and phosphoric acid. TEP is used as catalyst
instead of phosphoric acid because if phosphoric acid is directly injected in the furnace, it
reacts with itself to form a dimer. If TEP is injected at the right place, this dimerisation
does not occur.
The furnace is heated so that the outlet gas reaches a temperature of approximately 700∘C.
The exhaust gas is cooled rapidly in two chillers (a water one and a brine one). The
liquid phase (containing mainly water and unconverted acetic acid) is separated from the
vapor phase (containing mainly ketene) to avoid backward reaction. This vapor phase
is further purified in distillation columns. Although the pyrolysis reaction is catalyzed,
parallel reactions occur and ketene contains impurities such as ethene, methane, carbon
monoxide, carbon dioxide... The ketene contained in the liquid phase is then transformed
into acetic anhydride, itself transformed into acetic acid that will be reused in the plant.
This process is composed of:

∙ 23 units: 1 compressor, 1 ketene cracker, 4 reactors, 7 heat exchangers, 5 liquid-vapor
separators, 4 stream mixers and 1 pump;

∙ 34 material streams composed of keten, triethylphosphate, phosphoric acid, acetic
acid, acetic anhydride, water, carbon dioxide, carbon monoxide, oxygen, nitrogen,
methane, ethane, ethene, propadiene, propylène, normal-butane, ammonium phos-
phate and ammonia;

∙ 12 utility streams composed of vapor and water;

∙ 2 mechanical streams;

∙ 4 thermal streams;

∙ 631 variables;

∙ 557 constraints equations.

5.3. KETENE CRACKER 65

Key parameters

The process comprises 5 key parameters which are listed with their prescribed standard
deviations in the table below (Table 5.16).

Table 5.16: Ketene cracker: prescribed standard deviations on key parameters

Variable name Standard deviation
Acetic acid conversion at the exit of the cracker 1 %
Selectivity at the exit of the cracker 1 %
Acetic acid conversion after quench 1 %
Selectivity after quench 1.5 %
Global yield 1.5 %

Sensor database

The sensor database describes the following sensor types:

Table 5.17: Ketene cracker: sensor database

Sensor types Annualized Accuracies Minimum Maximum
costs (e) values values

Thermocouple A 2000 3 K 200 K 400 K
Thermocouple B 2000 3 K 375 K 800 K
Thermocouple C 2000 3 K 750 K 1500 K
Pressure Gauge A 2000 2% 0 bar 2.5 bar
Pressure Gauge B 3000 2% 0 bar 20 bar
Pressure Gauge C 3000 2% 15 bar 300 bar
Delta_p 0 0.001+1% 0 bar 200 bar
O2 Gauge 3000 0.0005+0.5% 0 1
CO2 Gauge 3000 0.0005+0.5% 0 1
CO Gauge 3000 0.0005+0.5% 0 1
Poly-Analyser UV 15000 0.001+1% 0 1
Chromatograph 50000 0.001+0.5% 0 1
Molar Flowmeter 2000 3% 0 mol/s 2000 mol/s
Mass Flowmeter A 2000 3% 0 kg/s 25 kg/s
Mass Flowmeter B 2000 3% 20 kg/s 75 kg/s
Mass Flowmeter C 2000 3% 50 kg/s 200 kg/s
Density meter 2000 0.05+1% 0 2000
Cold density meter 2000 0.005+1% 0 2
Pitot tube 6000 3% 0.1 m3/s 10 m3/s

The initial solution that is obtained with this list of sensors costs 201800 e and counts
276 sensors:

66 CHAPTER 5. CASE STUDIES

∙ 27 chromatographs;

∙ 11 poly-analysers (measurement tool able to give the concentration in acetic acid,
keten and acetic anhydride);

∙ 1 oxygen gauge;

∙ 1 carbon monoxide gauge;

∙ 88 mass flowmeters;

∙ 8 molar flowmeters;

∙ 47 thermocouples;

∙ 78 pressure-gauges;

∙ 1 Pitot tube;

∙ 1 density meters;

∙ 2 cold density meters;

∙ 8 virtual pressure drop meters.

This sensor network allows to satisfy all accuracies on key parameters. In this example,
the solution space counts 2276 = 1.21 ∗ 1083 different solutions.

In the case of the ketene cracker, four sensors have to be placed in the plant at the operator’s
request:

∙ 1 Pitot tube on stream keten2;

∙ 1 density meter on stream dunnsr6;

∙ 1 cold density meter on stream dunnsrd;

∙ 1 cold density meter on stream 3essig1.

5.3.2 Solution

Case of one operating point

In the case of one operating point, a feasible sensor network is obtained after 9 hours
40 minutes on a processor Celeron (2.2 GHz) for a population of 48 individuals. This
requires 1550 generations and 74401 goal function evaluations. That corresponds to 124
goal function evaluations per minute. This measurement system costs 168000 e and counts
65 sensors:

5.3. KETENE CRACKER 67

∙ 1 chromatograph;

∙ 1 carbon dioxide gauge;

∙ 13 mass flowmeters;

∙ 1 molar flowmeter;

∙ 25 thermocouples;

∙ 11 pressure-gauges;

∙ 1 Pitot tube;

∙ 1 density meter;

∙ 2 cold density meters;

∙ 8 virtual pressure drop meters.

This sensor network is represented on figures 5.25 and 5.26.

Case of one sensor failure

In the case of one operating point, a feasible sensor network in the case of one sensor failure
is obtained after 61 hours on computer network composed of four processors Pentium4 (3
GHz) for a population of 48 individuals. That requires 1281 generations and 4 242 413 goal
function evaluations. This measurement system costs 260000 e and counts 81 sensors:

∙ 2 chromatographs;

∙ 1 carbon dioxide gauge;

∙ 12 mass flowmeters;

∙ 20 thermocouples;

∙ 35 pressure-gauges;

∙ 1 Pitot tube;

∙ 1 density meter;

∙ 2 cold density meters;

∙ 14 virtual pressure drop meters.

This sensor network is represented on figures 5.27 and 5.28.

68 CHAPTER 5. CASE STUDIES

Figure 5.25: Ketene cracker: solution in the case of one operating point (part 1)

5.3. KETENE CRACKER 69

Figure 5.26: Ketene cracker: solution in the case of one operating point (part2)

5.3.3 Parallelization: methods comparison

In all the cases, the global size of the population was fixed to 48 individuals and the stop
criterion was taken equal to 200 for global parallelization and 40∗5 for distributed genetic
algorithms. Calculation were run on the 12 computers of the student network. As for
the combined cycle power plant, distributed genetic algorithms have also been tested for a
total population of 96 individuals and a stop criterion equal to 20∗5 generations (for 8 and
12 processors). For distributed genetic algorithms, the number of generations between two
successive migrations was fixed to 5 and the number of migrating individuals was taken
equal to 2. The results are given in the tables 5.18 for global parallelization and 5.19 for
distributed genetic algorithms.

70 CHAPTER 5. CASE STUDIES

Figure 5.27: Ketene cracker: solution in the case of one sensor failure (part 1)

5.3. KETENE CRACKER 71

Figure 5.28: Ketene cracker: solution in the case of one sensor failure (part 2)

Table 5.18: Ketene cracker: global parallelization

Global parallelization
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (s) time (s) function generations (%)

1 35780 35910 168000 1550 100
2 17227 18076 168000 1550 99.3
3 11585 12480 168000 1550 95.9
4 8568 9540 168000 1550 94.1
6 5728 6655 168000 1550 89.9
8 4332 5140 168000 1550 87.3
12 2854 3551 168000 1550 84.3

72 CHAPTER 5. CASE STUDIES

Table 5.19: Ketene cracker: distributed genetic algorithms

Distributed genetic algorithms
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (s) time (s) function generations (%)

1 35780 35910 168000 1546 100
2 8905 9438 160000 721 190.2
3 7611 8272 160000 1001 144.7
4 5519 6109 171000 1041 147.0
6 4245 5010 159000 1121 119.5
8 1589 2119 160000 641 211.8
8∗ 2982 3997 160000 641 112.3
12 2134 2674 167000 1321 111.9
12∗ 2258 2589 160000 521 115.6

It can be seen on figure 5.29 that the elapsed time and the master processor CPU time are
inversely proportional to the number of processors in the case of global parallelization. The
computing times are better in the case of distributed genetic algorithms. For the ∗ cases,
the computing times are similar or higher than for the standard cases. Concerning the
global number of generations (figure 5.30), it is smaller for distributed genetic algorithms.

Figure 5.29: Ketene cracker: times comparison

The goal function is better in most of the cases for distributed genetic algorithms (figure
5.31). We can note that as for the other examples, the optimum reached with distributed
genetic algorithm is different for each number of sub-populations as well as the total number

5.3. KETENE CRACKER 73

Figure 5.30: Ketene cracker: number of generations comparison

of generations. The explanation remains the independent evolution of the sub-populations.
For the ∗ cases, it is better or equal than for the standard cases. It appears that an increase
in computing time for the ∗ cases does not necessary implies a better goal function for this
example.
In this example, the efficiency also decreases with the number of processors (figure 5.32)
in the case of global parallelization. It is always better for distributed genetic algorithms.
For this example, distributed algorithms are better than global parallelization in all points
of view. The ∗ cases are sometimes better and sometimes worse than the standard cases.
This depends mainly on the way followed to reach the solution which is different for every
case while distributed genetic algorithms are used.

74 CHAPTER 5. CASE STUDIES

Figure 5.31: Ketene cracker: goal function comparison

Figure 5.32: Ketene cracker: efficiency comparison

5.4. NAPHTA REFORMER 75

5.4 Naphta reformer

5.4.1 Process description

The last example is a naphta reformer. This catalytic reforming process is a typical refining
process. Its original function is to upgrade low octane straight-run naphtha to higher
octane number, by converting n-paraffins to iso-paraffins and naphtenes to aromatics. The
hydrogen generated by the aromatic producing reactions also plays a major role in various
hydrotreating units. The key performance indicators of the catalytic reforming process are,
among others, the C5+ yields as well as the yields of light compounds, and especially H2.
This process is made of 4 main sections:

∙ the preheat of the feed;

∙ the reaction section, with intermediate reheaters between the reactors;

∙ the gas-liquid separation (and compression) section;

∙ the stabilizer section were the liquid from the gas-liquid separation section is frac-
tionated into the product streams.

This process is composed of:

∙ 80 units;

∙ 104 material streams composed of hydrogen, methane, ethane, propane, iso-butane,
normal-butane, 2-methylbutane, normal-pentane, 2-2-dimethylbutane, normal-hexane,
cyhexane, benzene, methylcyhexane, 1-1-dimethylcyhexane, 2-2-dimethylpentane, normal-
heptane, toluene, ethylbenzene, normal-octane, 2-2-dimethylhexane, 2-2-3-trimethylhexane,
3-3-5-trimethylheptane, normal-nonane, normal-decane, normal-propylcyclohexane,
iso-butylcyclohexane, 1-ethyl-2-methylbenzene and 1-3-diethylbenzene;

∙ 10 utility streams composed of steam and water;

∙ 12 mechanical streams;

∙ 21 thermal streams;

∙ 1263 variables;

∙ 1116 constraints equations.

Key parameters

The process comprises 9 key parameters which are listed with their prescribed standard
deviations in the table below (Table 5.20).

76 CHAPTER 5. CASE STUDIES

Table 5.20: Naphta reformer: prescribed standard deviations on key parameters

Variable name Standard deviation
Hydrogen yields (weight %) 10 %
Methane yields (weight %) 10 %
Ethane yields (weight %) 10 %
Propane yields (weight %) 10 %
Normal-butane yields (weight %) 10 %
Iso-butane yields (weight %) 10 %
Normal-pentane yields (weight %) 10 %
2-methylbutane yields (weight %) 10 %
C+

5 (weight %) 10 %

Sensor database

The sensor database counts the following types of sensors:

Table 5.21: Naphta reformer: sensor database

Sensor types Annualized Accuracies Minimum Maximum
costs values values

Thermocouple A 20 0.2+0.1% 0 K 200 K
Thermocouple B 10 0.5+0.1% 200 K 400 K
Thermocouple C 30 0.2+0.05% 375 K 800 K
Thermocouple D 50 0.2+0.1% 750 K 2000 K
Pressure Gauge A 20 1% 0 bar 20 bar
Pressure Gauge B 30 0.01+1% 15 bar 300 bar
Pressure Gauge C 30 0.01+1% 290 bar 3000 bar
Delta_p 0 0.001+1% -0.5 bar 300 bar
Chromatograph A 400 0.0001+0.5% 0 1
Chromatograph B 200 0.001+1% 0 1
Molar Flowmeter 60 2% 0 mol/s 20000 mol/s
Mass Flowmeter A 40 5% 0 kg/s 25 kg/s
Mass Flowmeter B 60 2% 20 kg/s 75 kg/s
Mass Flowmeter C 100 1% 50 kg/s 200 kg/s
Mass Flowmeter D 150 2% 175 kg/s 10000 kg/s
Volume Flowmeter 60 2% 0 m3/ℎ 20000 m3/ℎ
Cold Volume Flowmeter 60 2% 0 m3/ℎ 2000 m3/ℎ
Density Meter C 60 2% 0 kg/s 2000
CFDP Meter D 10 1% -0.5 300

The initial solution that is obtained with this list of sensors costs 20930 cost units and
counts 276 sensors:

∙ 24 chromatographs;

∙ 176 mass flow meters;

5.4. NAPHTA REFORMER 77

∙ 20 molar flow meters;

∙ 106 thermocouples;

∙ 102 pressure-gauges;

∙ 7 density meters;

∙ 1 volume flow meter;

∙ 12 cold volume flow meters;

∙ 25 virtual pressure drop meters.

This sensor network allows to satisfy all accuracies on key parameters. In this example,
the solution space counts 2473 = 1.21 ∗ 1083 different solutions.
This example is more complex than the previous ones: more sensors can be selected and
the process involves more variables and equations.

5.4.2 Solution

Case of one operating point

In the case of one operating point, a feasible sensor network is obtained after 6 days and
4 hours on a processor Celeron (2.2 GHz) for a population of 48 individuals. This requires
1618 generations and 77665 goal function evaluations. That corresponds to 9 goal function
evaluations per minute. This measurement system costs 1960 cost units and counts 97
sensors:

∙ 3 chromatographs;

∙ 10 mass flow meters;

∙ 45 thermocouples;

∙ 13 pressure-gauges;

∙ 1 density meter;

∙ 25 virtual pressure drop meters.

Case of one sensor failure

The case of the obtention of a redundant sensor network in the case of one sensor failure
has not been treated. Indeed, it was estimated that the computing time would have been
in the order of three months if the computing work was shared on the twelve available
computers.

78 CHAPTER 5. CASE STUDIES

5.4.3 Parallelization: methods comparison

In all the cases, the global size of the population was fixed to 48 individuals and the stop
criterion was taken equal to 200 for global parallelization and 40∗5 for distributed ge-
netic algorithms. As for the two other examples, distributed genetic algorithms have also
been tested for a global population of 96 individuals and a stop criterion equal to 20∗5
generations (for 8 and 12 processors). For distributed genetic algorithms, the number of
generations between two successive migrations was fixed to 5 and the number of migrat-
ing individuals was taken equal to 2. The results are given in the tables 5.22 for global
parallelization and 5.23 for distributed genetic algorithms.

Table 5.22: Naphta reformer: global parallelization

Global parallelization
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (min) time (min) function generations (%)

1 8888 8905 1955 1618 100
2 4368 4527 1955 1618 98.3
3 2910 3044 1955 1618 97.5
4 2107 2341 1955 1618 95.1
6 1548 1619 1955 1618 91.7
8 1042 1240 1955 1618 89.8
12 711 845 1955 1618 87.8

Table 5.23: Naphta reformer: distributed genetic algorithms

Distributed genetic algorithms
Number of Master processor Elapsed Goal Number of Efficiency
processors CPU time (min) time (min) function generations (%)

1 8888 8905 1955 1618 100
2 2853 3007 2066 1041 148.1
3 1562 1904 2067 1161 155.9
4 1694 1832 2335 1281 121.5
6 891 1019 1978 1081 145.6
8 957 1227 1708 1961 90.7
8∗ 1647 1731 1976 1281 64.3
12 545 603 2237 1361 123.1
12∗ 1250 1354 1846 1461 54.8

It can be seen on figure 5.33 that the elapsed time and the master processor CPU time are
inversely proportional to the number of processors in the case of global parallelization. The
computing times are better in the case of distributed genetic algorithms. For the ∗ cases,
the computing times are the worst. Concerning the global number of generations (figure

5.4. NAPHTA REFORMER 79

5.34), it is generally smaller for distributed genetic algorithms. It is sometimes better for
the ∗ cases and sometime worse than for the standard cases.

Figure 5.33: Naphta reformer: times comparison

The final value of the goal function is generally better for global parallelization (figure5.35).
For the ∗ cases, it is sometimes better and sometimes worse than for the standard cases.
The independent evolution of the sub-populations is the reason of the different local optima
and the different total numbers of iterations reached when the number of sub-populations
changes.
In this last example, the efficiency also decreases with the number of processors in the case
of global parallelization (figure 5.36). It is the best for the standard cases of distributed
genetic algorithms and the worst for the ∗ cases.
In the case of this example, global parallelization and the ∗ cases seem to be the most
adapted if good goal function values are desired. If the computing time is privileged, the
standard cases of the distributed genetic algorithms must be chosen. For this example,
distributed algorithms are better than global parallelization in all points of view. The ∗
cases are sometimes better and sometimes worse than the standard cases. This mainly
depends on the way followed to reach the solution which is different for every case while
distributed genetic algorithms are used.
We can conclude that industrial size problems can be handled by the proposed algorithm.
Even if the global optimal solution is not always located, a significant cost reduction with
respect to the worst case solution is always achieved. Computer time grows significantly for
larger size problems but parallelization provides an alternative that can be implemented
on a small network of standard computers.

80 CHAPTER 5. CASE STUDIES

Figure 5.34: Naphta reformer: number of generations comparison

Figure 5.35: Naphta reformer: goal function comparison

5.4. NAPHTA REFORMER 81

Figure 5.36: Naphta reformer: efficiency comparison

Chapter 6

Fault detection and localisation

Fault detection and isolation is another important subject in process monitoring. We will
handle here an example where the objective is to detect leaks in a pipe network, based on
flow measurements. Indeed, fluid leaks are expensive and must be detected as quickly as
possible. However, all measurements are erroneous and the sensor precision has a great
influence on the detectability and isolability of process faults, so that the sensor precision
must be taken into account when a network is chosen. In this chapter, a general method
to design the cheapest sensor network able to detect and locate a list of faults in a given
process is proposed. The method is based on the fault detection method proposed by
J. Ragot and D. Maquin (Ragot and Maquin, 2006). Those authors use the notion of
sensibility to fault to decide weather a residual is influenced or not by a specified fault on
the process.
The problem is similar to the problem of design of the cheapest sensor network allowing to
reconcile the process and estimate all process key parameters within a prescribed accuracy:
it is also multimodal, not derivable and involves many binary variables. That is why the
genetic algorithm has been used with a different goal function.
The method is illustrated for two water networks of different sizes. The detected faults are
leaks from pipes and storage tanks leaks but other types of fault could also be simulated
and detected.

6.1 Fault detection and isolation

The objective of fault detection is to determine whether the measurements remain in the
range of the values given by the process model for a chosen operating mode of the plant. If
the distance between measurements and estimations is too important, a fault is detected.
The fault detection and localisation techniques are carried out in two steps: the estimation
of the residuals and the decision. In a way to be sure that all the faults that can occur
in a process are detectable, the signature matrix Σ must be analysed. This matrix is the
occurrence matrix of the variables in the residual equations. As an example, let us consider

83

84 CHAPTER 6. FAULT DETECTION AND LOCALISATION

the following process containing four residuals and six variables at time t:

r1 (t) = f1 (x1 (t) , x2 (t) , x5 (t) , x6 (t))

r2 (t) = f2 (x1 (t) , x2 (t) , x3 (t) , x5 (t) , x6 (t))

r3 (t) = f3 (x3 (t) , x5 (t) , x6 (t))

r4 (t) = f4 (x2 (t) , x4 (t) , x5 (t)) (6.1)

The corresponding signature matrix has the form:

Σ =

∣∣∣∣∣∣∣∣

X X 0 0 X X
X X X 0 X X
0 0 X 0 X X
0 X 0 X X 0

∣∣∣∣∣∣∣∣
(6.2)

A fault is detectable if the corresponding column in the signature matrix contains at
least one non-zero element. A fault can be located if the corresponding column in the
signature matrix is different from all other columns of the signature matrix. The fault
localisation consists of deducing what is the fault from the values of the residuals. For
that purpose, fuzzy rules are elaborated from the signature matrix. They are linguistic
"if-then" constructions of the general form "if A then B" where A are the premises and B
the consequences of the rule.
As noise influences the value of the residuals, some random perturbations which are not
caused by any fault in the process can reach magnitude such that the corresponding resid-
uals are then associated to faults. Thus faults may be detected even when none occurs
and false alarms are then triggered. Taking into account temporal persistence allows to
improve the detection procedure. For that purpose, one takes the average of the values of
the variables for the k last measurement times, instead of instantaneous measurements.
The sensitivities of residuals to a given fault situation are different so that the magnitude
of the residual deviations allows to characterize a fault situation. The detectability and
isolability of faults can then be improved by using this difference of sensitivity. Let y(t)
be the measurement of a variable of the process at measurement time t. It is always the
sum of the true value x(t), the noise �(t) and the fault f(t):

y(t) = x(t) + �(t) + f(t) (6.3)

The true value satisfying completely the process model, the residual is composed of two
terms: the contribution of the noise r� and the contribution of the fault rf so that the effect
of the fault can be masked by the effect of the noise according to their relative magnitudes.
The noise contribution to the itℎ residual is defined as follows:

r�,i =
n∑

j=1

mij�j (6.4)

where mij are the elements of the matrix ℳ of the derivatives of the residuals with respect
to the variables. If the errors are replaced by the precision of the sensors ej, one obtains

6.2. METHOD DESCRIPTION 85

the upper bound of the contribution of the noise on the itℎ residual:

r�,i =
n∑

j=1

∣mij ∣ej (6.5)

In the same way, the contribution of a unique fault fj affecting the itℎ residual is defined
as follows:

rf,i = mijfj (6.6)

The lowest magnitude of the itℎ residual that allows to distinguish between the noise and
the fault fj is defined by the bound:

�ij =

n∑

j=i

∣mij ∣ej

∣mij∣
(6.7)

So, the itℎ residual is sensitive to fault fj if the magnitude of that fault is higher than �ij .
A fault fj will be located if for all non-zero element of the signature matrix, the absolute
value of the corresponding residual has a value higher than the corresponding bound �ij
and for each zero element of the signature matrix, the absolute value of the corresponding
residual has a value smaller than a fixed high value. Let, for example, the jacobian matrix
of the model equations 6.1:

퓜 =

∣∣∣∣∣∣∣∣

1 −0.5 0 0 1 −2.5
2 −4 2 0 3 1
0 0 3 0 −2 −1
0 6 0 −5 −4 0

∣∣∣∣∣∣∣∣
(6.8)

For the following error vector e = (0.5, 1, 0.8, 0.4, 1, 0.4) , the corresponding bounds matrix
is given by:

� =

∣∣∣∣∣∣∣∣

3 6 ∞ ∞ 3 1.2
5 2.5 5 ∞ 3.3 10
∞ ∞ 1.6 ∞ 2.4 4.8
∞ 2 ∞ 2.4 3 ∞

∣∣∣∣∣∣∣∣
(6.9)

So, the third fault will be detected and located if the second residual has an absolute value
higher than 5 and the third one an absolute value higher than 1.6.

6.2 Method description

The optimal sensor network that allows to detect and locate all the specified faults is
carried out in five steps:

86 CHAPTER 6. FAULT DETECTION AND LOCALISATION

∙ Process and faults simulation;

∙ Specification of the sensor database and the sensor requirements;

∙ Verification of the problem feasibility;

∙ Optimisation of the sensor network;

∙ Report generation.

6.2.1 Process and faults simulation

We consider here processes consisting in tanks, pipes, mixers and dividers, such as the one
shown in figure 6.3. The process is first simulated for a normal, fault free operating. The
differential balance equations are integrated by means of the fourth order Runge-Kutta
method. Then, for each possible fault one decides the minimal magnitude of the fault that
should be detected by the sensor network, for example a leak of 1% of a stream flow rate.
The faults are simulated one by one by increasing progressively their magnitude until the
minimal fault that should be detected is reached. The values of the flowrates at both ends
of each pipe are recorded for each fault. No noise is added to the variables at this step
because the noise will depend on the precision of the measurement tools. The number of
time measurements that are used for computing the variables mean values depends on the
frequency of the measurements and the speed at which the fault should be detected. If
the number of measurement times is higher, the fault detection and localisation is slower
and better. If this number is too small, the noise influences more the magnitude of the
residuals and the fault detection is more difficult. The value of that parameter has been
chosen to five. This parameter, as well as the time at which the fault should be detected,
is studied for the first example presented here after.

6.2.2 Specification of the sensor database and the sensor require-
ments

The sensor database and the sensor requirements files contain the same information as the
ones defined in the first part of the thesis.

6.2.3 Verification of the problem feasibility

The step of feasibility of the problem verification begins by listing all the sensors that can
be placed in the plant. For each sensor of this list, a binary gene is created. If a variable
is measured by more than one sensor, the precision of the most accurate one is taken into
account for the bounds calculation. The residual bounds and the residuals are estimated
for the initial sensor network: indeed, a noise bounded by the accuracy of the sensor is

6.2. METHOD DESCRIPTION 87

added to each variable for each measurement time before the mean of the variables and
the residuals are calculated. The noise on the variables and then their values depend thus
on the sensor network as well as on the residual bounds. To ensure that a solution exists
to the studied problem, the next condition has to be met: the initial sensor network has
to be able to detect all the simulated faults. If it is not the case, new sensor types that are
more precise can be added to the data base or the minimal magnitudes of the faults that
should be detected should be increased.

6.2.4 Optimisation of the sensor network

Once one is sure that a solution exists, it can be optimized. The objective function to be
minimized is evaluated this way:

∙ if all the faults can be detected and located, the goal function is the sum of the costs
of all the sensors in the chosen network;

∙ if at least one fault can not be detected or located, the goal function is a multiple (2
has been chosen) of the maximum cost .

The goal function being generally multimodal, the problem being not derivable and con-
taining only binary parameters, the genetic algorithm is still used for this version of the
program. The probabilities of the evolution mechanisms remain unchanged as well as the
size of the population:

∙ probability for each gene to be chosen at first generation: 80%;

∙ size of the population: 20 individuals;

∙ probability of reproduction: 50%

∙ probability of single-point cross-over: 50%;

∙ probability of jump mutation: 1%.

The goal function of each individual of the new population is evaluated. The best one
is then kept and duplicated. The solution is still reached if after a specified number of
generations the goal function of the best one remains unchanged.

6.2.5 Report generation

The report generated here contains the same information as the one generated for the first
version of the program. The only difference is that there is no prescribed accuracy on key
variables.

88 CHAPTER 6. FAULT DETECTION AND LOCALISATION

6.3 Cases study

In this paragraph, two water networks are studied.

6.3.1 First example

This first one is composed of five storage tanks and ten water pipes (6.1).

F0

F1A F1B

F1

H1

F2A F2B

F2

H2

F3

H3

F5

H5

F4

H4

Figure 6.1: Flow sheet of the first example of fault detection

The fifteen faults that should be detected and located are water leaks in the storage tanks
or in the pipes. In the storage tanks, the level meters can be situated at one place and
the flow rate in the pipes can be measured at the beginning and at the end of each pipe,
which means 25 possible sensor locations. The sensor database contains three level meters
with different accuracies and prices, and 10 flowmeters with different accuracies, prices and
measurement domains:

Table 6.1: First water network: sensor database

Sensor types Annualized Accuracies Minimum Maximum
costs values values

Height A 40 0.05 0 m 70 dm
Height B 50 0.03 0 m 70 dm

continued on next page

6.3. CASES STUDY 89

Sensor types Annualized Accuracies Minimum Maximum
costs values values

Height C 60 0.01 0 m 70 dm
Mass Flowmeter B 50 5% 20 kg/s 75 kg/s
Mass Flowmeter BB 70 2% 20 kg/s 75 kg/s
Mass Flowmeter BBB 90 1% 20 kg/s 75 kg/s
Mass Flowmeter BBBB 110 0.5% 20 kg/s 75 kg/s
Mass Flowmeter BBBBB 130 0.2% 20 kg/s 75 kg/s
Mass Flowmeter C 60 5% 50 kg/s 200 kg/s
Mass Flowmeter CC 80 2% 50 kg/s 200 kg/s
Mass Flowmeter CCC 100 1% 50 kg/s 200 kg/s
Mass Flowmeter CCCC 120 0.5% 50 kg/s 200 kg/s
Mass Flowmeter CCCCC 140 0.2% 50 kg/s 200 kg/s

With this database, it is possible to place 135 sensors. That corresponds to a solution
space of 2135 = 4.4 ∗ 1040 solutions. This most expensive measurement system has a total
cost of 11950 cost units.
The number of measurement times and the time until the leak is detected are examined
on figure 6.2 and table 6.2 here after:

Table 6.2: Cost evolution with the number of measurement times and the detection time

Time needed 4 measurements 5 measurements 6 measurements 7 measurements
to detect leak times times times times

6 s 2510 2600 - -
7 s 2370 2420 2510 2620
8 s 2250 2330 2370 2460
9 s 2110 2230 2250 2280
10 s 2090 2100 2170 2220
11 s 1960 2080 2000 2070
12 s 1950 1950 1930 2030
13 s 1900 1920 1880 1980
14 s 1900 1860 1840 1930
15 s 1900 1860 1840 1860
16 s 1900 1860 1840 1880
17 s 1900 1860 1840 1830
18 s 1900 1860 1840 1830
19 s 1900 1860 1840 1830
20 s 1900 1860 1840 1830

It appears that for a same number of measurement times taken for the means calculation,
the cost of the optimum sensor network decreases when the fault increases and becomes
easier to detect. Once the fault is maximum, the cost of the network remains unchanged
with the elapsed time. If the elapsed time is small, the leaks are not maximum and the

90 CHAPTER 6. FAULT DETECTION AND LOCALISATION

sensor network found is more expensive when the number of measurement times increases:
indeed for the highest number of measurement times, the mean is not very different from
the normal case. Thus the fault can not be detected easily. On the other hand, the sensor
network is cheaper for a higher number of measurement times when the fault is maximum
and is easier to detect. For a passed time of 16 s and 7 measurement times, the cost
does not decrease as expected: this can be due to the fact that the noise which is a little
different for each case: indeed the noises on several measurement times may cancel each
other, making the fault more difficult to detect.

Figure 6.2: Influence on the goal function of the number of measurement times and the
elapsed time from the beginning of the leak until detection

Obtaining the solution requires 14770 generations (295421 goal function evaluations) for a
stop criterion of 6000 generations, a number of measurement times equal to five and passed
time from the beginning of the escape of 9 s. The optimal sensor network is obtained after
301 seconds on a 1.6 GHz computer. This solution costs 1860 costs unit and counts 25
sensors: one for each possible sensor location. It allows to detect and locate all the 15 faults.
In this case of the design of the optimal sensor network that is able to detect and locate
all the faults, the optimization consists of choosing one sensor for each sensor location in
a way that the faults can be detected and located, while minimizing the annualized cost.
The most expensive of those network costs 3100 cost units (1240 cost units more than the
optimal one).

6.3.2 Second example

The second water network (6.3) is composed of 14 storage tanks and 31 pipes so that
there are 76 possible sensor locations and 45 fault to be detected and located. The sensor

6.3. CASES STUDY 91

F0A

F1A F1B

F1

H1

F2A F2B

F2

H2

F3

H3

F5

H5

F4

H4

F10

H10

F11

H11

F12

H12

F13

H13

F13B

F13A

F14

H14

F0B

F6A F6C

F6

F6B

H6

F7

H7

F8A F8B

F8

H8

F9A F9B

F9

H9

F7A

F15

Figure 6.3: Flow sheet of the second example of fault detection

database contains this time three level meters with different accuracies and prices, and 15
flowmeters with different accuracies, prices and measurement domains.

Table 6.3: Second water network: sensor database

Sensor types Costs Accuracies Minimum Maximum
values values

Height A 40 0.05 0 m 70 dm
Height B 50 0.03 0 m 70 dm
Height C 60 0.01 0 m 70 dm
Mass Flowmeter A 40 5% 0 kg/s 25 kg/s
Mass Flowmeter AA 60 2% 0 kg/s 25 kg/s
Mass Flowmeter AAA 80 1% 0 kg/s 25 kg/s
Mass Flowmeter AAAA 100 0.5% 0 kg/s 25 kg/s
Mass Flowmeter AAAAA 120 0.2% 0 kg/s 25 kg/s
Mass Flowmeter B 50 5% 20 kg/s 75 kg/s
Mass Flowmeter BB 70 2% 20 kg/s 75 kg/s
Mass Flowmeter BBB 90 1% 20 kg/s 75 kg/s
Mass Flowmeter BBBB 110 0.5% 20 kg/s 75 kg/s
Mass Flowmeter BBBBB 130 0.2% 20 kg/s 75 kg/s
Mass Flowmeter C 60 5% 50 kg/s 200 kg/s
Mass Flowmeter CC 80 2% 50 kg/s 200 kg/s

continued on next page

92 CHAPTER 6. FAULT DETECTION AND LOCALISATION

Sensor types Costs Accuracies Minimum Maximum
values values

Mass Flowmeter CCC 100 1% 50 kg/s 200 kg/s
Mass Flowmeter CCCC 120 0.5% 50 kg/s 200 kg/s
Mass Flowmeter CCCCC 140 0.2% 50 kg/s 200 kg/s

The initial network counts 392 possible sensors. This corresponds to a solution space
of 2392 = 10118 solutions. This sensor network has a total cost of 34100 costs units.
Obtaining the solution requires 26104 generations (522101 goal function evaluations) for
a stop criterion of 6000 generations, a number of measurement times equal to five and
a detection time from the beginning of the leak of 15 s. The optimal sensor network is
obtained after 5667 seconds on a 1.6 GHz computer. This solution costs 6200 cost units
and counts 76 sensors: one by possible sensor location and allows to detect and locate all
the 45 faults. In this case also the design of the optimal sensor network able to detect and
locate all the faults consists of optimizing the selection of one sensor for each location in
a way that the faults can be detected and located, while minimizing the annualized cost.
The most expensive of those networks costs this time 9000 cost units (2800 cost units more
than the optimal one).

6.3.3 Conclusions

The proposed method allows to determine a sensor network that is able to detect and
locate a specified list of tank and pipe leaks. This network is much cheaper than the initial
one but due to the optimization method, there is no guarantee that it is always the best
one.
The number of measurement times required to declare a fault must be chosen as a function
of the problem. It should not be to high because it increases the time elapsed between the
occurrence of the fault and its detection, or the sensor network required is more expensive.
On the other hand, a too small number of measurement times may cause the detection of
faults that does not exists.
This method could be transposed for other types of faults such as the catalyst deactivation
or the loss of efficiency in a compressor.
As computing times becomes important when the size of the problem increases, a paral-
lelisation of the method could be envisaged for larger size problems.

Chapter 7

Conclusions part I

The proposed method allows to achieve an important progress in the design of sensor
networks in the case of steady-state processes. Indeed, the method using the linearised
equations of the model at the operating point can be treated easily for models including
energy balances and non linear equations in addition to the mass balances. Moreover, the
calculation of a posteriori standard deviations based on steady-state data reconciliation
allows to introduce a term in the goal function that takes into account the accuracy of some
key variables of the process that have to be known precisely for the efficient monitoring of
the plant.
The design of sensor networks allowing to detect a specified list of process faults has also
been envisaged and gives good results. A compromise has to be done between the speed
of fault detection and the necessity to make the difference between punctual measurement
error and process faults.
The optimization method based on genetic algorithms allows to find a solution which is
much better than the initial one for all the studied examples. This solution found light
differs from the global optimum since all possible solutions are not tested but it is reached
within a computing time that is reasonable in comparison to the one required for the
evaluation of all possible solutions.
The systematic application of such a method while creating a new plant should allow to
achieve important savings. Indeed, sensor networks installed on the industries are generally
reduced to the minimum because of the cost of the sensors. Some variables that seem to be
without interest at a moment can however appear to be very important for the control of
the process or for the evaluation of a key performance parameter. It is then very expensive
to install new sensors after the plant has been put in operation. Moreover the global cost
of a sensor network upgrade can then reveal to be more important than the one that would
have been determined by design method.
The method also allows to treat in a unique calculation several operating points and thus
find sensor networks that limit the uncertainty on key performance indicators when the
plant changes its operating point to obtain, for example, a product with other specifications.
Being able to design a sensor network that remains efficient in the case of one sensor failure
is also interesting: indeed, it improved the system availability and allows to repair without

93

94 CHAPTER 7. CONCLUSIONS PART I

interrupting the plant operation.
The parallelization of the program allowed to reduce the computing time whatever the
method that is used and the studied example. In the case of global parallelization, the
computing time is always inversely proportional to the number of processors and the ef-
ficiency decreases when the number of processors increases. The efficiency loss increases
more quickly when the number of processors becomes nearer to the number of goal func-
tions that has to be evaluated at each generation. So that, a compromise has to be found
between the number of processors and the computing time.
In the case of distributed genetic algorithms, those tendencies can not be reproduced.
Indeed, since the path followed to reach the solution is different, the network that is found
differs from the one found with global parallelization if local minima are reached instead
of the global solution. The computing time can also be different according to the number
of generations needed to produce by random evolution an efficient solution. Following the
studied example, distributed genetic algorithms are sometimes better and sometimes worse
than global parallelization. For a same example, the choice between global parallelization
and distributed genetic algorithms is not always clear-cut. One method may need less
time to detect convergence, but remain stuck in a local optimum, but the ranking may
change when a different number of processors is used. Moreover, it also appears from the
examples, that it is usually preferable if the size of the sub-populations is small in the case
of distributed genetic algorithms to decrease the stop criterion and increase the size of the
sub-populations by the same factor. So, when the user decides to use a parallelised version
of the software, he never knows in advance if he has chosen the best method but he is sure
to reach the solution within a shorter computing time.

Part II

Dynamic data reconciliation

95

Chapter 8

Formulation of the dynamic data

reconciliation problem

The dynamic data reconciliation allows to use temporal redundancies by taking into ac-
count several discrete measurements for some state variables. The general dynamic data
reconciliation problem can be formulated as in (Liebman et al., 1992), (Rao, 2000):

min
xi,j ,zi,j ,ui,j

Φ
[
xi,j , x

m
i,j, zi,j, z

m
i,j, ui,j, u

m
i,j, �

]
(8.1)

subject to

∙ differential constraints:

f

(
dxi,j

dt
, xi,j , zi,j, ui,j

)
= 0 (8.2)

∙ equality constraints:
h [xi,j , zi,j, ui,j] = 0 (8.3)

∙ inequality constraints:
g [xi,j , zi,j, ui,j] ≥ 0 (8.4)

with the initial conditions:

xi,0 = xCI
i,0 (8.5)

where

∙ xi,j is the estimation of the differential state variable i at measurement time j;

∙ xm
i,j is the measurement of the differential state variable i at measurement time j;

∙ xCI
i,0 is the initial condition of the differential state variable i. It corresponds to the

estimation of that variable at the same time of the previous reconciliation horizon.

97

98 CHAPTER 8. FORMULATION DYNAMIC DATA RECONCILIATION

∙ zi,j is the estimation of the algebraic state variable i at measurement time j;

∙ zmi,j is the measurement of the algebraic state variable i at measurement time j;

∙ ui,j is the estimation of the input variable i at measurement time j;

∙ um
i,j is the measurement of the input variable i at measurement time j;

∙ � are the precisions of the measurements.

For most applications, the objective function is the sum for all the times and all the
measurements of weighted square residues:

Φ
[
xi,j, x

m
i,j, zi,j , z

m
i,j, ui,j, u

m
i,j, �

]
=

time N∑

j=time 0

nxmes∑

i=1

(
xi,j − xm

i,j

�xi,j

)2

+
time N∑

j=time 0

nzmes∑

i=1

(
zi,j − zmi,j

�zi,j

)2

+
time N∑

j=time 0

numes∑

i=1

(
ui,j − um

i,j

�ui,j

)2

(8.6)

where

∙ nxmes
is the number of measured differential state variables;

∙ nzmes
is the number of measured algebraic state variables;

∙ numes
is the number of measured input variables;

∙ �xi,j
is the standard deviation on the differential state variable i at measurement time

j;

∙ �zi,j is the standard deviation on the algebraic state variable i at measurement time
j;

∙ �ui,j
is the standard deviation on the input variable i at measurement time j.

When the objective function is formulated this way, all the measurements that are carried
out between time 0 and time N are reconciled simultaneously. When the time horizon
increases (when new measurements are carried out), the calculation efforts increase. At
time N, the measurements carried out in time zero are reconciled N+1 times with different
neighboring measurements. The choice of the best reconciled values remains an open
question: for on-line control, one should probably choose the value corresponding to the
last measurement time; for archiving or for off-line calculations, the values of the middle
of the time horizon are preferred.

99

In the filtering method which is described in chapter 9, the information contained in the
N − 1 first times is summarized in the prediction vector. So that, only the measurements
carried out at the last time step of time horizon is used at each reconciliation time.
In chapter 10, the moving window methods are explained. They also allow to use only a
part of the measurements carried out during the time horizon.

Chapter 9

Filtering methods

9.1 Introduction

In this chapter, some generalities are given concerning filtering methods. Then the ex-
tended Kalman filter is described. This is a sequential estimation algorithm that produces
minimum variance linear estimates of state variables.
Kalman filter is said to be invented by Rudolf E. Kalman in 1960 (Kalman and Bucy,
1961), (Kalman, 1960) though Thorvald N. Thiele and Peter Swerling developed a similar
algorithm earlier. The first implementation of Kalman filter was carried out by Stanley
Schmidt (Schmidt, 1980) to solve the trajectory estimation problem for the Apollo program.
This first filter called linear Kalman filter is used to the reconciliation of linear dynamic
processes. The Kalman filter has then been extended to deal with non linear systems
(Karjala and Himmelblau, 1996), (Narasimhan and Jordache, 2000): the non linear part
of the model is linearized thanks to a first order Taylor serie around the current estimated.
This second filter is called extended Kalman filter. An other method based on second
order divided differences is also used in the case of non linear systems (Norgaard et al.,
2000). Nowadays, a wide variety of Kalman filters has been developed and is widely
used in engineering applications such as radars, computer vision, autonomous or assisted
navigation.

Dynamic systems can be described by means of two models:

∙ the dynamic model;

∙ the observation model.

Filtering methods proceed in two steps for each estimation:

∙ the time update: the state variables and the covariance matrix of the prediction
errors are predicted from the dynamic model;

∙ the observation update: the gain matrix is first calculated by weighting measurements
with predicted state. The states and the covariance matrix of the estimation errors
are then carried out.

101

102 CHAPTER 9. FILTERING METHODS

9.2 Extended Kalman Filter

In the case of the extended Kalman filter, the dynamic model is a set of non linear dynamic
difference equations:

xj = f (xj−1,uj−1,vj−1) (9.1)

and the observation model:

yj = h (xj ,wj) (9.2)

In those equations,

∙ xj is the vector of state variables at time step j;

∙ uj−1 is the vector of input variables at time step j-1;

∙ vj−1 is the vector of process noises at time step j-1;

∙ yj is the vector of measurements at time step j;

∙ wj is the vector of measurement noises at time step j;

∙ f (xj−1,uj−1,vj−1) is a set of non linear functions of x, u and v at time step j-1;

∙ ℎ (xj,wj) is a set of non linear functions of x and w at time step j;

∙ v and w are assumed to be white noises, independent from one another and with
zero mean:

E
[
vj wT

l

]
= 0 ∀j, l (9.3)

E [vj] = 0 ∀j (9.4)

E
[
vj vT

l

]
= Qj�j,l (9.5)

E [wj] = 0 ∀j (9.6)

E
[
wj wT

l

]
= Rj �j,l (9.7)

where

– Qj is the process noises covariance matrix. This matrix may change at each
time step;

– Rj is the measurement noises covariance matrix. This matrix may change at
each time step.

The filter counts four initial conditions:

∙
x̂0∣0 = E [x0] = x0 (9.8)

9.2. EXTENDED KALMAN FILTER 103

∙
P0∣0 = cov (x0) = E

[
(x0 − x0) (x0 − x0)

T
]
= P0 (9.9)

∙ x0 and wj are not correlated:

E
[
x0 wT

j

]
= 0 ∀j (9.10)

∙ x0 and vj are not correlated:

E
[
x0 vT

j

]
= 0 ∀j (9.11)

As the noises vectors vj and wj are zero mean and can not be known at each time step
in practice, the model equations 9.1 and 9.2 can be approximated by considering they are
null:

xj = f
(
x̂j−1∣j−1,uj−1, 0

)
(9.12)

yj = h (xj, 0) (9.13)

If one linearizes those estimates:

xj ≈ xj + Fj−1

(
xj−1 − x̂j−1∣j−1

)
+ Vj−1 vj−1 (9.14)

yj ≈ yj + Hj (xj − xj) + Wj wj (9.15)

where

∙ Fj−1 is the Jacobian matrix of partial derivatives of f with respect to x:

Fj−1 (k, l) =
�f (k)

�x (l)

∣∣∣∣
x=x̂j∣j−1,u=ûj−1,v=0

(9.16)

∙ Vj−1 is the Jacobian matrix of partial derivatives of f with respect to v:

Vj−1 (k, l) =
�f (k)

�v (l)

∣∣∣∣
x=x̂j∣j−1,u=ûj−1,v=0

(9.17)

∙ Hj−1 is the Jacobian matrix of partial derivatives of h with respect to x:

Hj−1 (k, l) =
�ℎ (k)

�x (l)

∣∣∣∣
x=x̃j ,w=0

(9.18)

∙ Wj−1 is the Jacobian matrix of partial derivatives of h with respect to w:

Wj−1 (k, l) =
�ℎ (k)

�w (l)

∣∣∣∣
x=x̃j ,w=0

(9.19)

104 CHAPTER 9. FILTERING METHODS

9.2.1 Filtering equations or observation update

In the case of the extended Kalman filter, the estimated states are written:

x̂j∣j = x̂j∣j−1 + Kj

[
yj − h

(
x̂j∣j−1, 0

)]
(9.20)

Where Kj is the gain matrix :

Kj =
(
Pj∣j−1 HT

j

) [
Hj Pj∣j−1 HT

j + Wj Rj WT
j

]−1
(9.21)

If one is more confident in the measurement that in the model, the measurement covariance
matrix Rj approches zero and the gain matrix weights the residual more heavily:

lim
Rj→0

Kj = H−1
j (9.22)

On the other hand, if one is more confident in the model that in the measurements, the
measurement covariance matrix weights the residual less heavily:

lim
Pj∣j−1→0

Kj = 0 (9.23)

The covariance matrix of the estimation errors takes the form:

Pj∣j = [I − Kj Hj] Pj∣j−1 (9.24)

9.2.2 Prediction equations or time update

The predicted states take the form:

x̂j∣j−1 = f
(
x̂j−1∣j−1,uj−1, 0

)
(9.25)

and the covariance matrix of the prediction errors:

Pj∣j−1 = Aj Pj−1∣j−1 AT
j + Vj Qj−1 VT

j (9.26)

9.2.3 Diagram of the extended Kalman filter

The extended Kalman filter is made of the equations 9.20, 9.21, 9.24, 9.25 and 9.26. The
process is shown in figure 9.1. The first estimation is based on the initial conditions x̂0∣0

and P0∣0.

9.3 Disadvantages of the extended Kalman filter and

filtering methods

One of the disadvantages of filtering methods is the fact that they consider the input vari-
ables as perfectly known; so one is not able to correct them or to take their uncertainties

9.3. DISADVANTAGES 105

Figure 9.1: Diagram of the extended Kalman filter

into account. However all measurements are erroneous and it would be interesting to con-
sider the uncertainties on those measurements to correct the other variables and estimate
their a posteriori uncertainties.
Another disadvantage of filtering methods is that they don’t take into account inequality
constraints as well as the bounds on the filtered variables so they may appear out of bounds
after filtering. The advantage of filtering is that it is much faster than the moving horizon
methods.
In the case of very non linear differential equations, the convergence is not easy to achieve
with the extended Kalman filter. Moreover, one needs the partial derivatives of the dynamic
and of the observation model which can not always be achieved.
Considering all those disadvantages, we decided to turn towards another dynamic data
reconciliation method based on the moving horizon idea.

Chapter 10

Moving-Horizon estimation

As indicated in chapter 8, solving the dynamic reconciliation problem would involve an
increasing complex problem if all measurements collected since start-up are considered.
The moving window techniques described in this chapter allow to reduce the size of the
optimization problem because they only take into account the last measurements collected
during a limited time frame. Those methods carry out an optimization for a part or all
the measurements for each window. The data collected before the current window are
not considered in the estimation for current time. For example, on figure 10.1, only the
measurements carried out between the time t0 and t6 are reconciled.

Figure 10.1: Reconciliation window

The most complex algorithms allow to treat variables that are not measured at the same

107

108 CHAPTER 10. MOVING-HORIZON ESTIMATION

time or are sampled at different frequencies.
The size of the reconciliation horizon and the moving of the window are chosen in a
way to ensure a sufficient temporal redundancy while keeping an optimization problem of
reasonable size. Moreover, they depend on the studied problem and on the measurements
frequency relative to the system dynamics. If measurements are very frequent, averaging
the measurements may be used to maintain a non-linear problem of manageable dimension.
A window movement is described by three parameters as shown in figure 10.1:

∙ ℎ1 is the measurement frequency;

∙ ℎ4 is the window length;

∙ ℎ5 is the window movement between two successive optimizations: ℎ5 ≤ ℎ4.

Those parameters are represented on figure 10.1. In this chapter, two moving window
methods will be described:

∙ the explicit integration of the differential equations by means of the fourth order
Runge-Kutta method;

∙ the discretization of the system equations thanks to orthogonal collocations.

10.1 Explicit integration method

In this moving horizon method, the dynamic reconciliation problem is formulated under
the form of a general non-linear programming problem. The dynamic model is integrated
explicitly on the reconciliation window thanks to the fourth order Runge-Kutta integration
method, assuming that the initial conditions and the evolution of input variables (input
variables are represented by linear interpolations) are known. This method is represented
on figure 10.2 and can be decomposed in nine steps, which are described here after.

1. Variables classification: the variables are classified in three types, each of them being
decomposed in two groups: the measured and the unmeasured variables:

∙ the differential state variables, which are the integration variables that constitute
the differential equations corresponding to mass and energy balances;

∙ the input variables of the system: they can be the feed flow rate, the reflux flow
rate, the temperature of an incoming stream,...

∙ the algebraic state variables, which are calculated from the differential state
variables and the input variables.

2. Initialisation of the window parameters: the three parameters of the window (de-
scribed in the preceding paragraph) have to be specified in this step. In the case of
explicit integration method, a fourth parameter has to be defined: the size of the

10.1. EXPLICIT INTEGRATION METHOD 109

Figure 10.2: Flowchart of the explicit integration method

110 CHAPTER 10. MOVING-HORIZON ESTIMATION

interpolation interval of the input variables ℎ2. If all the measurements are carried
out at the same time, one can write: ℎ2 = k1a ℎ1. Input variables are supposed to
vary linearly in each interpolation interval. The size of the window ℎ4 has to be a
multiple of the size of the interpolation interval: ℎ4 = k2 ℎ2. The window parameters
are represented on figure 10.3.

Figure 10.3: Parameters of the reconciliation window in the case of the explicit integration
method

3. Reading the measurements: the measurements of the horizon are read in this third
step. Their values can come directly from a plant or are simulated thanks to a
dynamic simulation software. If there are not enough measurements, the program
stops in the case of the simulation or waits for new measurements in the case of data
coming from a plant.

4. Initialisation of the optimization variables: the variables that will be optimized are
the values of the differential states variables at the initial time of the reconciliation
horizon and the values of the input variables at the initial time of the reconciliation
window and at the final times of all interpolation intervals of that window. Mea-
surements are taken as initial values for the first window whereas estimates of the

10.1. EXPLICIT INTEGRATION METHOD 111

previous window are taken in the other cases. Optimized variables are scaled to
improve the efficiency of the optimization algorithm.

5. Integration of the differential equations of the process by the fourth order Runge-
Kutta method: the principle of this method is to obtain an approached numerical
solution of differential equations of the system.

6. Estimation of the algebraic variables: the algebraic variables are estimated at each
integration step by Runge-Kutta.

7. Calculation of the goal function Fgoal on the reconciliation horizon:

Fgoal =
time N∑

j=time 0

nxmes∑

i=1

(
xi,j − xm

i,j

�xi,j

)2

+

time N∑

j=time 0

nzmes∑

i=1

(
zi,j − zmi,j

�zi,j

)2

+

time N∑

j=time 0

numes∑

i=1

(
ui,j − um

i,j

�ui,j

)2

+

nxmes∑

i=1

(
xi,0 − xCI

i,0

)2

R2
xi

+

numes∑

i=1

(
ui,0 − uCI

i,0

)2

R2
ui

(10.1)

where

∙ xi,j is the estimation of the differential state variable i at measurement time j;

∙ xm
i,j is the measurement of the differential state variable i at measurement time

j;

∙ xCI
i,0 is the initial condition of the differential state variable i. It corresponds to

the estimation of that variables in the previous reconciliation horizon.

∙ zi,j is the estimation of the algebraic state variable i at measurement time j;

∙ zmi,j is the measurement of the algebraic state variable i at measurement time j;

∙ ui,j is the estimation of the input variable i at measurement time j;

∙ um
i,j is the measurement of the input variable i at measurement time j;

∙ uCI
i,0 is the initial condition of the input variable i. It corresponds to the estima-

tion of that variable at the same time of the previous reconciliation horizon.

∙ nxmes
is the number of measured differential state variables;

∙ nzmes
is the number of measured algebraic state variables;

∙ numes
is the number of measured input variables;

112 CHAPTER 10. MOVING-HORIZON ESTIMATION

∙ �xi,j
is the standard deviation on the differential state variable i at measurement

time j;

∙ �zi,j is the standard deviation on the algebraic state variable i at measurement
time j;

∙ �ui,j
is the standard deviation on the input variable i at measurement time j;

∙ Rxi
is the relaxation factor on differential state variable i;

∙ Rui
is the relaxation factor on input variable i;

The relaxation terms of the goal function have for objective to ensure that state and
input variables at the beginning of the reconciliation horizon are not too different
from the ones obtained during the preceding reconciliation.

8. Optimization of the initial conditions and the coefficients of the polynomes describing
the independent variables: this optimization has first been carried out by Davidon’s
algorithm (Davidon, 1975) for small size problems. For larger size problems a succes-
sive quadratic programming (SQP) method has been used (Kyriakopoulou, 1997).
Davidon’s algorithm is an optimization algorithm without line search, but with eval-
uation of the goal function gradient by divided differences. This method uses the
information contained in the second order derivatives (an approximation of the Hes-
sian matrix is carried out) to improve the search by calculating a step length.

The SQP algorithm that has been used is an interior point method developed by
Kyriakopoulou (Kyriakopoulou, 1997). SQP algorithms are based on a quadratic
approximation of the non linear goal function and a linearisation of constraints equa-
tions around the current point:

[
△f

(
x0
)]T

Δx + (Δx)T Q Δx (10.2)

hj(x) ≈ hj

(
x0
)
+
[
△hj

(
x0
)]T

Δx (10.3)

where Q is the approximation of the Hessian matrix of the following Lagrange func-
tion:

L = f − �T g − �T h (10.4)

with � and � the Lagrange multipliers.

9. Saving of the reconciliation results and the moving of the window. Which results
keeping is a question whose answer depends on the use that must be done of the
data. In the case of process control, one will need the estimated values corresponding
to the last measurement time as soon as possible to be able to react fast. However,
if one desires the better estimates of the variables, one should keep the estimates
obtained after several reconciliations of the measurement time, so that the reconciled
result obtained when the data lies close to the middle of the window will probably
be kept.

10.2. METHOD BASED ON ORTHOGONAL COLLOCATIONS 113

The main disadvantage of this method is that, unlike the filtering algorithms, there is no
explicit method to calculate a posteriori variances from the results. If this method is used
in the future, an algorithm allowing to calculate them must be developed.

10.2 Method based on orthogonal collocations

In this method, the differential equations of the system are solved by means of orthog-
onal collocations. State variables and their derivatives are represented by polynomials.
Differential equations are transformed into algebraic equations whose unknowns are the
polynomial coefficients. Those algebraic equations must be satisfied at several discrete
times chosen to minimize the numerical approximation errors.
The main advantage of this method is that it will be possible to calculate a posteriori
variances by modifying the theory that is used in steady-state data reconciliation (Heyen
et al., 1996).
In this section, the collocations constraints and the different steps of the method are
described. Examples of polynomial approximations and the way to choose the collocation
nodes are explained in annex C.

10.2.1 Description of the moving window algorithm

The algorithm allowing to apply the orthogonal collocations method to a moving window
is defined by five parameters in the case of orthogonal collocations. They are represented
on figure 10.4.
The parameters ℎ1, ℎ2, ℎ4 and ℎ5 of the window are the same as the ones defined previously
in this chapter. The size ℎ3 of discretization interval of the differential state variables is
an additional parameter. This interval has been chosen as a multiple of the measurement
frequency: ℎ3 = k1b ℎ1. The size of the window ℎ4 has to be a multiple of the size of the
discretization interval: ℎ4 = k3 ℎ3. The last parameter that has to be specified is the order
of Lagrange polynomials.
The times �k represent the collocation times of the different discretization intervals of the
window. The sequential algorithm is written so that the discretization and the interpolation
intervals have the same size. The distinction between them must only be done in the case
of the simultaneous algorithm. The times tj are the measurement times. The choice of
the window parameters depends on the studied problem. One has to take into account the
following remarks:

∙ The more the window increases, the more the number of opimization variables in-
crease, and so do the computing time. So, the size of the window has to be chosen
in a way to keep reasonable computing times. Moreover, if the size of the window is
too important, convergence problems may occur.

∙ Contrary, one has to keep redundancy in the problem, so that the size of the recon-
ciliation window has to contain enough measurement times.

114 CHAPTER 10. MOVING-HORIZON ESTIMATION

Figure 10.4: Parameters of the reconciliation window in the case of orthogonal collocations

10.2. METHOD BASED ON ORTHOGONAL COLLOCATIONS 115

∙ The size of the discretization interval and the order of the Lagrange polynomials
must be chosen to allow to follow the process while keeping redundancy.

∙ For the frequency of measurements, one can take all measurement times, or if the
process variables don’t vary very much, calculate mean values on several measurement
times. This second proposition allows to make a first filter on the variables by
reducing the effect of the noise.

10.2.2 Constraints of the optimization problem

In the case of orthogonal collocations, the goal function is submitted to five sets of con-
straints:

∙ the link equations: they are relations between all process variables. Those constraints
have to be satisfied as well at the measurements times as at the collocations nodes:

A = f (tj ,x, z,u) = 0 ∀tj (10.5)

Ac = f c (�k,x
c, zc,uc) = 0 ∀�k (10.6)

∙ the relations between the differential state variables and the Lagrange interpolation
polynomials at all measurement times of the mowing horizon except at the initial
times of the discretization intervals tCI :

Bi,j = xi,j −
n�∑

k=0

lk(tj) x
c
i,k = 0 ∀i, ∀tj ∕= tCI (10.7)

∙ the linear interpolations of the values of input variables between times tini and tf of
the interpolation horizon at the other times of that horizon:

Ci,j = ui,j − ui,tini
− tj − tini

tf − tini

(
ui,tf − ui,tini

)
= 0 ∀i, ∀tj ∕= tini, tf (10.8)

Cc
i,j = uc

i,k − ui,tini
− �k − tini

tf − tini

(
ui,tf − ui,tini

)
= 0 ∀i, ∀�k (10.9)

∙ the residuals of the differential state equations at all collocation nodes:

Di,j =

n�∑

s=0

l̇s(�k) x
c
i,�s

− g (�k,x
c
k, z

c
k,u

c
k) = 0 ∀i, ∀�k ∕= tini (10.10)

∙ the continuity constraints of the differential state variables between two discretization
intervals:

Ei,j =

[
n�∑

k=0

k(tf) x
c
i,k

]

tf ,discr int q−1

−
[

n�∑

k=0

lk(tini) x
c
i,k

]

tini,discr int q

= 0 ∀i

(10.11)

116 CHAPTER 10. MOVING-HORIZON ESTIMATION

Figure 10.5: Flowchart of the orthogonal collocations method: sequential algorithm

10.2.3 Description of the sequential algorithm

In the sequential algorithm, process variables and collocation variables are optimized sep-
arately: two calculation loops are embedded. Collocation variables are calculated in the
inside loop by means of Broyden’s algorithm (Broyden, 1965) and process variables are
estimated in the outside loop thanks to Davidon’s algorithm (Davidon, 1975). Those two
numerical methods can be used for small size problems. For larger size problems, a dog-
leg method (Chen and Stadherr, 1981) and a SQP algorithm (Kyriakopoulou, 1997) must
respectively replace Broyden and Davidon’s algorithms.
The sequential algorithm is composed of the nine following steps and is represented on
figure 10.5.

1. Variables classification: the variables are classified in three types as in the explicit
integration method.

2. Initialisation of the window parameters: the five parameters of the window ℎ1, ℎ2,
ℎ3, ℎ4 and ℎ5 have to be specified in this step.

10.2. METHOD BASED ON ORTHOGONAL COLLOCATIONS 117

3. Reading of the measurements: this step is the same as in the explicit integration
method.

4. Initialisation of the optimization variables of the process: the variables that will be
optimized are the values of the differential state variables at the collocation nodes
of the reconciliation horizon and the values of the input variables at the initial time
of the reconciliation window and at the final times of all interpolation intervals of
that window. Measurements are taken as initial values for the first window whereas
estimates of the previous window are taken in the other cases.
To ensure that each optimization variable will have a similar weight, they are multi-
plied by a scaling factor before being optimized.

5. Discretization of the differential equations of the process: the collocation nodes are
chosen as the zeros of Jacobi orthogonal polynomial and differential state variables
and their derivatives are interpolated by Lagrange polynomials. Constraints D and
E are written and solved using to Broyden’s algorithm (Broyden, 1965) if the number
of variables is not too important. For larger size problem, a dogleg method (Chen
and Stadherr, 1981) is used.
Once the collocation variables are obtained, one can estimate the values of differential
state variables at all measurement times.

6. Estimation of the algebraic variables: the algebraic variables are deduced from the
estimates of differential state variables and the interpolation of input variables.

7. Calculation of the goal function Fgoal on the reconciliation horizon: the goal function
is the same as for the explicit integration method 10.1.

8. Optimization of process optimization variables: this optimization has first been car-
ried out by the Davidon algorithm (Davidon, 1975) for small size problems. For
larger size problems a successive quadratic programming (SQP) method has been
used (Kyriakopoulou, 1997).
As long as the convergence is not achieved, one must go back to step five and use the
new values of the process optimization variables. Otherwise, one can continue to the
next step.

9. Saving of the reconciliation results and moving of the window.

10.2.4 Description of the simultaneous algorithm

Contrary to the sequential algorithm, the simultaneous algorithm optimizes in one step
all variables: process variables (the values of the differential state variables at the initial
time of the optimization window, the values of the input variables at the initial time of the
reconciliation window and at the final times of all interpolation intervals of that window)
and the collocations variables (the values of the differential state variables at the collocation
nodes).

118 CHAPTER 10. MOVING-HORIZON ESTIMATION

Figure 10.6: Flowchart of the orthogonal collocations method: simultaneous algorithm

The simultaneous algorithm is composed of nine steps and is represented on figure 10.6.

1-4 The four first steps are the same as for the sequential algorithm.

5 Discretization of the differential equations of the process: the nodes of collocations are
chosen as the zeros of Jacobi orthogonal polynomial and differential state variables
and their derivatives are approximated by Lagrange polynomials.
One can interpolate the values of differential state variables at all measurement times
from their values at the collocation nodes.
For the first optimization, the initial values of collocation variables are the values
of the measurements or their linear interpolation at the collocation times. For later
optimizations overlapping, the estimated values of the previous window are taken for
the common part of the window. For the remaining of the window containing new
measurements, one proceeds as for the first window.

6 Estimation of the algebraic variables: the algebraic variables are deduced from the
estimates of differential state variables and the interpolation of input variables.

10.2. METHOD BASED ON ORTHOGONAL COLLOCATIONS 119

7 Calculation of the goal function Fgoal on the reconciliation horizon: the goal function
is the same as for the sequential method 10.1.

8 Optimization of all optimization variables: this optimization is carried out by a
successive quadratic programming (SQP) method (Kyriakopoulou, 1997).
If the convergence is not achieved, one must go back to step five. Otherwise, one can
continue to the next step.

9 Saving of the reconciliation results and moving of the window.

As it will be illustrated in the next chapter for the first example, the simultaneous algorithm
gives better results than the sequential one. Those results agree with the study of Biegler
(Biegler, 1984).

Chapter 11

Calculation of a posteriori variances

The method for estimating a posteriori variances in the case of dynamic data reconciliation
described in this chapter has been inspired from the one described in (Heyen et al., 1996)
for the stationary case.
If orthogonal collocations are used, the dynamic reconciliation problem can be formulated
this way:

min
xc
i,k

[ui,ini,ui,f]
interp int 1

[ui,f]
interp int s

∀k, ∀s ∕=1, ∀i

⎧
⎨
⎩

ntmes∑

j=0

nxmes∑

i=1

(
xi,j − xm

i,j

)2
Wxi,i,j

+

ntmes∑

j=0

nzmes∑

i=1

(
zi,j − zmi,j

)2
Wzi,i,j

+

ntmes∑

j=0

numes∑

i=1

(
ui,j − um

i,j

)2
Wui,i,j

+

nx∑

i=1

(
xi,0 − xCI

i,0

)2
Rxi,i

+

nu∑

i=1

(
ui,0 − uCI

i,0

)2
Rui,i

(11.1)

where

∙ xi,j is the estimation of the differential state variable i at measurement time j;

∙ xm
i,j is the measurement of the differential state variable i at measurement time j;

∙ xCI
i,0 is the initial condition of the differential state variable i. It corresponds to the

estimation of that variables at the final time of the previous reconciliation horizon.

∙ zi,j is the estimation of the algebraic state variable i at measurement time j;

∙ zmi,j is the measurement of the algebraic state variable i at measurement time j;

121

122 CHAPTER 11. CALCULATION OF A POSTERIORI VARIANCES

∙ ui,j is the estimation of the input variable i at measurement time j;

∙ um
i,j is the measurement of the input variable i at measurement time j;

∙ uCI
i,0 is the initial condition of the input variable i. It corresponds to the estimation

of that variable at the same time of the previous reconciliation horizon.

∙ xc
i,k is the collocation variable i at collocation time k;

∙ zci,k is the value of algebraic state variable i at collocation time k;

∙ uc
i,k is the value of input variable i at collocation time k;

∙ Wx is the weight matrix of the differential state variables;

∙ Wz is the weight matrix of the algebraic state variables;

∙ Wu is the weight matrix of the input state variables;

∙ Rx is the relaxation factor of the differential state variables at the initial time of the
moving horizon;

∙ Ru is the relaxation factor of the input variables at the initial time of the moving
horizon.

This objective function is submitted to the five kinds of constraints described in section
10.2:

A = f (tj ,x, z,u) = 0 ∀tj (11.2)

Ac = f c (�k,x
c, zc,uc) = 0 ∀�k (11.3)

Bi,j = xi,j −
n�∑

k=0

lk(tj) x
c
i,k = 0 ∀i, ∀tj ∕= tCI (11.4)

Ci,j = ui,j − ui,tini
− tj − tini

tf − tini

(
ui,tf − ui,tini

)
= 0 ∀i, ∀tj ∕= tini, tf (11.5)

Cc
i,j = uc

i,k − ui,tini
− �k − tini

tf − tini

(
ui,tf − ui,tini

)
= 0 ∀i, ∀�k (11.6)

Di,j =

n�∑

s=0

l̇s(�k) x
c
i,�s

− g (�k,x
c
k, z

c
k,u

c
k) = 0 ∀i, ∀�k ∕= tini (11.7)

Ei,j =

[
n�∑

k=0

lk(tf) x
c
i,k

]

tf ,discr int q−1

−
[

n�∑

k=0

lk(tini) x
c
i,k

]

tini,discr int q

= 0 ∀i (11.8)

123

This constrained minimization problem can be transformed into an unconstrained mini-
mization problem using the vector of Lagrange multipliers Λ:

min
xc
i,k

[ui,ini,ui,f]interp int 1

[ui,f]interp int s

ΛA,ΛAc ,ΛB,ΛC ,ΛCc ,ΛD,ΛE

∀k, ∀s ∕=1, ∀i

L(x,xm, z, zm,u,um,ΛA,ΛAc ,ΛB,ΛC ,ΛCc ,ΛD,ΛE) (11.9)

with

L(x,xm, z, zm,u,um,ΛA,ΛAc ,ΛB,ΛC ,ΛCc ,ΛD,ΛE)

=

ntmes∑

j=0

[
nxmes∑

i=1

(
xi,j − xm

i,j

)2
Wxi,i,j

+

nzmes∑

i=1

(
zi,j − zmi,j

)2
Wzi,i,j +

numes∑

i=1

(
ui,j − um

i,j

)2
Wui,i,j

]

+

nx∑

i=1

(
xi,0 − xCI

i,0

)2
Rxi,i

+

nu∑

i=1

(
ui,0 − uCI

i,0

)2
Rui,i

+
ntmes∑

j=0

nA∑

i=1

ΛT
Ai,j

f (tj ,x, z,u)

+

ndiscr int∑

q=1

[
n�∑

k=0

nAc∑

i=1

ΛT
Ac

i,k
f c (�k,x

c, zc,uc)

]

q

+

ndiscr int∑

q=1

[
∑

j∈q

nx∑

i=1

ΛT
Bi,j

(
xi,j −

n�∑

k=0

lk(tj) x
c
i,k

)]

q

+

ninterp int∑

s=1

⎡
⎣ ∑

j ∣ tj∈s; tj ∕=tini, tf

nu∑

i=1

ΛT
Ci,j

(
ui,j − ui,tini

− tj − tini
tf − tini

(
ui,tf − ui,tini

))
⎤
⎦

s

+

ninterp int∑

s=1

⎡
⎣ ∑

k ∣ �k∈s

nuc∑

i=1

ΛT
Cc

i,k

(
uc
i,k − ui,tini

− �k − tini
tf − tini

(
ui,tf − ui,tini

))
⎤
⎦
s

+

ndiscr int∑

s=1

[
n�∑

k=1

nxc∑

i=1

ΛT
Di,k

(
n�∑

j=0

l̇j(�k) x
c
i,�j

− g (�k,x
c
k, z

c
k,u

c
k)

)]

s

+

ndiscr int−1∑

q=1

nx∑

i=1

ΛT
Ei,q

⎛
⎝
[

n�∑

k=0

lk(tf) x
c
i,k

]

tf ,discr int q

−
[

n�∑

k=0

lk(tini) x
c
i,k

]

tini,discr int q+1

⎞
⎠

(11.10)

124 CHAPTER 11. CALCULATION OF A POSTERIORI VARIANCES

The solution must verify the optimality conditions:

∂ L

∂ xi,j

= Pxi,j

(
xi,j − xm

i,j

)
+

nA∑

s=1

(
∂As,j

∂xi,j

)T

ΛAs,j
+

(
∂Bi,j

∂xi,j

)T

ΛBi,j
= 0 ∀i, ∀j

∂ L

∂ zi,j
= Pzi,j

(
zi,j − zmi,j

)
+

nA∑

s=1

(
∂As,j

∂zi,j

)T

ΛAs,j
= 0 ∀i, ∀j

∂ L

∂ ui,j

= Pui,j

(
ui,j − um

i,j

)
+

nA∑

s=1

(
∂As,j

∂ui,j

)T

ΛAs,j

+

ninterp int∑

s=1

⎡
⎢⎢⎢⎢⎢⎣

∑

l ∣ tl∈s

tj ∕=tini, tf

(
∂Ci,l

∂ui,j

)T

ΛCi,l
+

∑

r ∣ �r∈s

(
∂Cc

i,r

∂ui,j

)T

ΛCc
i,r

⎤
⎥⎥⎥⎥⎥⎦

s

= 0 ∀i, ∀j
[

∂ L

∂ xc
i,k

]

discr int q

=

⎡
⎣

nA∑

r=1

(
∂Ac

r,k

∂xc
i,k

)T

ΛAc
r,k

+
∑

r ∣ r∈q

(
∂Bi,r

∂xc
i,k

)T

ΛBi,r

+

n�∑

r=0

(
∂Di,r

∂xc
i,k

)T

ΛDi,r
+

(
∂Ei,s

∂xc
i,k

)T

ΛEi,s

⎤
⎦

discr int q

= 0 ∀i, ∀k

∂ L

∂ zci,k
=

nAc∑

s=1

(
∂Ac

s,k

∂zci,k

)T

ΛAc
s,k

+

nx∑

q=1

(
∂Dq,k

∂zci,k

)T

ΛDq,k
= 0 ∀i, ∀k

∂ L

∂ uc
i,k

=

nAc∑

s=1

(
∂Ac

s,k

∂uc
i,k

)T

ΛAc
s,k

+

(
∂Cc

i,k

∂uc
i,k

)T

ΛCc
i,k

+
nx∑

q=1

(
∂Dq,k

∂uc
i,k

)T

ΛDq,k
= 0 ∀i, ∀k

∂ L

∂ ΛA

= A = 0

∂ L

∂ ΛAc

= Ac = 0

∂ L

∂ ΛB

= B = 0

∂ L

∂ ΛC

= C = 0

∂ L

∂ ΛCc

= Cc = 0

125

∂ L

∂ ΛD

= D = 0

∂ L

∂ ΛE

= E = 0

(11.11)

with

Pxi,i,0
= Wxi,i,0

+Rx0,0

Pxi,i,j
= Wxi,i,j

Pzi,i,j = Wzi,i,j

Pui,i,0
= Wui,i,0

+Ru0,0

Pui,i,j
= Wui,i,j

∀i
∀i, ∀j ∕= 0
∀i, ∀j
∀i
∀i, ∀j ∕= 0

(11.12)

The seven last optimality conditions can be linearized this way:

∂ L

∂ ΛAr,j

=

nx∑

i=1

∂Ar,j

∂xi,j

xi,j +

nz∑

i=1

∂Ar,j

∂zi,j
zi,j +

nu∑

i=1

∂Ar,j

∂ui,j

ui,j + Fr,j ∀j, ∀r
[

∂ L

∂ ΛAc
r,j

]

discr int q

=

[
nxc∑

i=1

∂Ac
r,j

∂xc
i,j

xc
i,j +

nzc∑

i=1

∂Ac
r,j

∂zci,j
zci,j

+

nuc∑

i=1

∂Ac
r,j

∂uc
i,j

uc
i,j + F c

r,j

]

discr int q

∀j, ∀r, ∀q

[
∂ L

∂ ΛBi,j

]

discr int q

=

[
∂Bi,j

∂xi,j

xi,j +

n�∑

k=0

∂Bi,j

∂xc
i,k

xc
i,k

]

discr int q

∀i, ∀j ∈ q

∂ L

∂ ΛCi,j

=

ntmes∑

r=0

∂Ci,j

∂ui,r

ui,r ∀i, ∀j
[

∂ L

∂ ΛCc
i,k

]

discr int q

=

⎡
⎣ ∑

r ∣ r∈q

∂Cc
i,k

∂ui,r

ui,r +
∂Cc

i,k

∂uc
i,k

uc
i,k

⎤
⎦

discr int q

∀i, ∀j, ∀k, ∀q

[
∂ L

∂ ΛDi,k

]

discr int q

=

[
n�∑

r=0

∂Di,k

∂xc
i,r

xc
i,r +

∂Di,k

∂zci,k
zci,k

+
∂Di,k

∂uc
i,k

uc
i,k +Gi,k

]

discr int q

∀i, ∀k, ∀q

∂ L

∂ ΛEi,q

=

[
n�∑

r=0

∂Ei,q

∂xc
i,r

xc
i,r

]

discr int q

−
[

n�∑

r=0

∂Ei,q

∂xc
i,r

xc
i,r

]

discr int q+1

q = 1, ..., ndiscr int − 1

(11.13)

126 CHAPTER 11. CALCULATION OF A POSTERIORI VARIANCES

The equation system 11.11 is non linear and has to be solved iteratively. However, after
linearisation at the solution according to 11.13, it can be written into the following matricial
form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
z
u
xc

zc

uc

ΛA

ΛAc

ΛB

ΛC

ΛCc

ΛD

ΛE

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Px xm

Pz zm
Py um

0
0
0
-F
-Fc

0
0
0
-G
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.14)

where M is the Jacobian matrix of the equation system 11.11. It is called the sensitivity
matrix :

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

퓟 퓔
T

퓔 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.15)

퓟 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Px 0 0 0 0 0

0 Pz 0 0 0 0

0 0 Pu 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.16)

127

퓔 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A
∂x

∂A
∂z

∂A
∂u

0 0 0

0 0 0 ∂Ac

∂xc
∂Ac

∂zc
∂Ac

∂uc

∂B
∂x

0 0 ∂B
∂xc 0 0

0 0 ∂C
∂u

0 0 0

0 0 ∂Cc

∂u
0 0 ∂Cc

∂uc

0 0 0 ∂D
∂xc

∂D
∂zc

∂D
∂uc

0 0 0 ∂E
∂xc 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.17)

As for the stationary case, the sparsity of the sensitivity matrix has to be taken into account
and the algorithm has to be modified as described, for example, by Chen and Stadherr
(Chen and Stadherr, 1984) if the problems are very large. In that case, the measurements
remain generally considered as independent from one another so that the weight matrix
W is reduced to a diagonal matrix whose elements are the inverse of the variances of the
measured variables.
If the problem contains inequality constraints, the NLP problem is solved directly using a
sequential quadratic programming algorithm (Kyriakopoulou, 1997).
Once the problem has been solved, a sensitivity analysis can be carried out using the
linearized equation system 11.14. This equation system shows that the reconciled values
of variables x, z, u, xc, zc, uc, ΛA, ΛAc , ΛB, ΛC , ΛCc , ΛD and ΛE are linear combinations
of the measurements. So, the sensitivity matrix M allows to evaluate how the reconciled
values of the model variables depends on the measurements and their standard deviations.
The variables x, z and u are thus estimated this way:

128 CHAPTER 11. CALCULATION OF A POSTERIORI VARIANCES

xi,j =

N∑

s=1

(M)−1
j+(i−1)n★

tmes
,s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Px x
Pz z
Pu u

0
0
0
-F
-Fc

0
0
0
-G
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

=
nx∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
,(s−1)n★

tmes
+r+1 Pxs,s,r

xs,r

+

nz∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
,nxn

★
tmes

+(s−1)n★
tmes

+r+1 Pzs,s,r zs,r

+

nu∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
,(nx+nz)n★

tmes
+(s−1)n★

tmes
+r+1 Pus,s,r

us,r

−
nA∑

s=1

ntmes∑

r=0

(M)−1

j+(i−1)n★
tmes

,(nx+nz+nu)n★
tmes

+(nxc+nzc+nuc)(n★
�

ndiscr int)+(s−1)n★
tmes

+r+1

Fs,r

−
nAc∑

s=1

ntmes∑

r=0

(M)−1

j+(i−1)n★
tmes

,(nx+nz+nu+nA)n★
tmes

+(nxc+nzc+nuc)(n★
�

ndiscr int)+(s−1)ntmes
★+r+1

F c
s,r

−
nx∑

s=1

n★
�

ndiscr int∑

r=1

(M)−1

j+(i−1)n★
tmes

,(nx+nz+nu+nA+nAc)n★
tmes

+nB

+nC+nCc+(nxc+nzc+nuc+s−1)(n★
�

ndiscr int)+r

Gs,r

(11.18)

129

zi,j =

N∑

s=1

(M)−1
j+(i−1)n★

tmes
+nxn

★
tmes

,s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Px x
Pz z
Pu u

0
0
0
-F
-Fc

0
0
0
-G
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

=
nx∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
+nxn★

tmes
,(s−1)n★

tmes
+r+1 Pxs,s,r

xs,r

+

nz∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
+nxn

★
tmes

,nxn
★
tmes

+(s−1)n★
tmes

+r+1 Pzs,s,r zs,r

+

nu∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
+nxn

★
tmes

,(nx+nz)n★
tmes

+(s−1)n★
tmes

+r+1 Pus,s,r
us,r

−
nA∑

s=1

ntmes∑

r=0

(M)−1

j+(i−1)n★
tmes

+nxn
★
tmes

,(nx+nz+nu)n★
tmes

+(nxc+nzc+nuc)(n★
�

ndiscr int)+(s−1)n★
tmes

+r+1

Fs,r

−
nAc∑

s=1

ntmes∑

r=0

(M)−1

j+(i−1)n★
tmes

+nxn
★
tmes

,(nx+nz+nu+nA)n★
tmes

+(nxc+nzc+nuc)(n★
�

ndiscr int)+(s−1)n★
tmes

+r+1

F c
s,r

−
nx∑

s=1

n★
�

ndiscr int∑

r=1

(M)−1

j+(i−1)n★
tmes

+nxn
★
tmes

,(nx+nz+nu+nA+nAc)n★
tmes

+nB+nC+nCc+(nxc+nzc+nuc+s−1)(n★
�

ndiscr int)+r

Gs,r

(11.19)

130 CHAPTER 11. CALCULATION OF A POSTERIORI VARIANCES

ui,j =

N∑

s=1

(M)−1
j+(i−1)n★

tmes
+(nx+nz)n★

tmes
,s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Px x
Pz z
Pu u

0
0
0
-F
-Fc

0
0
0
-G
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

=

nx∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
+(nx+nz)n★

tmes
,(s−1)n★

tmes
+r+1 Pxs,s,r

xs,r

+
nz∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
+(nx+nz)n★

tmes
,nxn

★
tmes

+(s−1)n★
tmes

+r+1 Pzs,s,r zs,r

+

nu∑

s=1

ntmes∑

r=0

(M)−1
j+(i−1)n★

tmes
+(nx+nz)n★

tmes
,(nx+nz)n★

tmes
+(s−1)n★

tmes
+r+1 Pus,s,r

us,r

−
nA∑

s=1

ntmes∑

r=0

(M)−1

j+(i−1)n★
tmes

+(nx+nz)n★
tmes

,(nx+nz+nu)n★
tmes

+(nxc+nzc+nuc)(n★
�

ndiscr int)+(s−1)n★
tmes

+r+1

Fs,r

−
nAc∑

s=1

ntmes∑

r=0

(M)−1

j+(i−1)n★
tmes

+(nx+nz)n★
tmes

,(nx+nz+nu+nA)n★
tmes

+(nxc+nzc+nuc)(n★
�

ndiscr int)+(s−1)n★
tmes

+r+1

F c
s,r

−
nx∑

s=1

n★
�

ndiscr int∑

r=1

(M)−1

j+(i−1)n★
tmes

+(nx+nz)n★
tmes

,(nx+nz+nu+nA+nAc)n★
tmes

+nB+nC+nCc+(nxc+nzc+nuc+s−1)(n★
�

ndiscr int)+r

Gs,r

(11.20)

where

∙ N is the size of the sensitivity matrix M

∙ ntmes
is the number of measurement times on the moving horizon different from the

initial time of the horizon;

∙ n★
tmes

is the number of measurement times on the moving horizon including the initial
time of the horizon;

131

∙ n� is the degree of Lagrange polynomials;

∙ n★
� is the number of collocation nodes on each discretization interval;

∙ ndiscr int is the number of discretization intervals on the moving horizon;

∙ ninterp int is the number of interpolation intervals on the moving horizon;

∙ nx = nxc is the number of differential state variables;

∙ nz = nzc is the number of algebraic variables;

∙ nu = nuc is the number of input variables;

∙ nA is the number of link equations at measurement times;

∙ nAc is the number of link equations at collocation nodes;

∙ nB is the number of B constraints: nB = nx n� ndiscr int;

∙ nC is the number of C constraints: nC = nu (ntmes
− ninterp int − 1);

∙ nCc is the number of Cc constraints: nCc = nu n� ndiscr int;

∙ nD is the number of D constraints: nD = nx n� ndiscr int;

∙ nE is the number of E constraints: nE = nx (ndiscr int − 1).

Knowing that the variance of a linear combinaison LC of several variables xi is given by:

LC =

m∑

i=1

ai xi (11.21)

var (LC) =
m∑

i=1

ai
2 var (xi) (11.22)

The variances of the variables of the model are estimated this way:

var (xi,j) =

nx∑

s=1

ntmes∑

r=0

[
(M)−1

j+(i−1)n★
tmes

,(s−1)n★
tmes

+r+1 Pxs,s,r

]2
var

(
xm
s,r

)

+
nz∑

s=1

ntmes∑

r=0

[
(M)−1

j+(i−1)n★
tmes

,nxn
★
tmes

+(s−1)n★
tmes

+r+1 Pzs,s,r

]2
var

(
zms,r
)

+

nu∑

s=1

ntmes∑

r=0

[
(M)−1

j+(i−1)n★
tmes

,(nx+nz)n★
tmes

+(s−1)n★
tmes

+r+1 Pus,s,r

]2
var

(
um
s,r

)

(11.23)

132 CHAPTER 11. CALCULATION OF A POSTERIORI VARIANCES

var (zi,j) =
nx∑

s=1

ntmes∑

r=0

[
(M)−1

j+(i−1)n★
tmes

+nxn
★
tmes

,(s−1)n★
tmes

+r+1 Pxs,s,r

]2
var

(
xm
s,r

)

+

nz∑

s=1

ntmes∑

r=0

⎡
⎢⎢⎣(M)−1

j+(i−1)n★
tmes

+nxn
★
tmes

,nx∗ntmes

+(s−1)n★
tmes

+r+1

Pzs,s,r

⎤
⎥⎥⎦

2

var
(
zms,r
)

+

nu∑

s=1

ntmes∑

r=0

⎡
⎢⎢⎣(M)−1

j+(i−1)n★
tmes

+nxn
★
tmes

,(nx+nz)n★
tmes

+(s−1)n★
tmes

+r+1

Pus,s,r

⎤
⎥⎥⎦

2

var
(
um
s,r

)

(11.24)

var (ui,j) =
nx∑

s=1

ntmes∑

r=0

[
(M)−1

j+(i−1)n★
tmes

+(nx+nz)n★
tmes

,(s−1)n★
tmes

+r+1 Pxs,s,r

]2
var

(
xm
s,r

)

+
nz∑

s=1

ntmes∑

r=0

⎡
⎢⎢⎣(M)−1

j+(i−1)n★
tmes

+(nx+nz)n★
tmes

,nxn
★
tmes

+(s−1)n★
tmes

+r+1

Pzs,s,r

⎤
⎥⎥⎦

2

var
(
zms,r
)

+
nu∑

s=1

ntmes∑

r=0

⎡
⎢⎢⎣(M)−1

j+(i−1)n★
tmes

+(nx+nz)n★
tmes

,(nx+nz)n★
tmes

+(s−1)n★
tmes

+r+1

Pus,s,r

⎤
⎥⎥⎦

2

var
(
um
s,r

)

(11.25)

Thus the calculation of sensitivity matrix M allows to assess the variance of reconciled
variables, knowing the variances of all measured variables.

Chapter 12

Cases study

In this chapter, three examples from the ones that have been studied will be treated:

∙ one tank;

∙ a stirred tank reactor with heat exchange;

∙ a network of five tanks.

For each of them the results of the reconciliation and the estimation of a posteriori variances
will be discussed.

12.1 One tank

This first example is very simple, but it allows to illustrate all concepts developed in the
previous chapters.
It consists of a dynamic balance for a tank, whose feed flowrate F0 is the independent
variable. The outlet flowrate F1 is proportional to the level of the tank. The section of the
tank is considered constant. The tank is represented on figure 12.1.

F0

F1

H1

Figure 12.1: Flowsheet of the tank

133

134 CHAPTER 12. CASES STUDY

The model is defined by two equations: one differential equation and one link equation:

dℎ1

dt
=

F0

A1
− F1

A1
(12.1)

F1 = �1 H1 (12.2)

⇕
dx1

dt
=

u1

A1

− z1
A1

(12.3)

z1 = �1 x1 (12.4)

Three variables are related by the model equations:

∙ one input variable: the feed flowrate F0;

∙ one differential state variable: the height in the tank H1:

∙ one algebraic variable: the outlet flowrate F1.

Two parameters are specified as follow:

Table 12.1: One tank: model parameters

Parameters Values Units
A1 10 dm2

�1 1.5 -

A set of pseudo measurements has been obtained by solving the model and adding random
noise to the variables. In this simulation the differential equations are integrated by means
of the fourth order Runge-Kutta method with a step of 1 s. The process has been simulated
during 481 seconds and the simulated measurements are given every second. The input
variable remains constant during some time intervals but changes abruptly every 40 seconds
as indicated in table 12.2

Table 12.2: One tank: feed flowrate evolution

Times F0 Units
0 s 50 dm3/s
41 s 100 dm3/s
81 s 60 dm3/s
121 s 30 dm3/s
161 s 40 dm3/s
201 s 50 dm3/s
continued on next page

12.1. ONE TANK 135

Times F0 Units
240 s 80 dm3/s
281 s 120 dm3/s
321 s 70 dm3/s
361 s 40 dm3/s
401 s 80 dm3/s
441 s 120 dm3/s
481 s 90 dm3/s

A Gaussian noise with a standard deviation of 1 % of the variable value is added to the
simulation results of the flowrates before carrying out the data reconciliation. Errors on
height measurements are Gaussian with zero mean and a standard deviation of 2 cm. The
initial conditions of the reconciliation problem are listed in the next table 12.3:

Table 12.3: One tank: initial values

Variables Initial values Units
H1 60.0 dm
Fin 60.0 dm3/s
Fout 50.0 dm3/s

The parameters of the reconciliation window have been chosen as indicated in table 12.4:

Table 12.4: One tank: window parameters

Parameters Values
ℎ1 1
ℎ2 4
ℎ3 4
ℎ4 49
ℎ5 2

Order of Lagrange 2
polynomials

12.1.1 Results for the steps

In the first three figures (figures 12.2, 12.3 and 12.4), the profiles of the three variables of
the tank are represented for the whole duration of the simulation. All charts represented
in this chapter represent the reconciled values that will leave the window for the next
reconciliation. One can see that all variables follow the simulated true value. Nevertheless,
the input variables follow more the noise than the other ones. More over, in the case of
input variable, the reconciled values are not able to represent closely the steps. That is
due to the fact that one tries to represent a discontinuous function by means of second
order polynomials.

136 CHAPTER 12. CASES STUDY

0 50 100 150 200 250 300 350 400 450
10

20

30

40

50

60

70

80

90

Time (s)

H
1

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.2: One tank: steps: height: profile

0 50 100 150 200 250 300 350 400 450
20

40

60

80

100

120

140

Time

F
0

 (
d

m
³/

s)

Validation

Measurement

Without noise

Figure 12.3: One tank: steps: feed flowrate: profile

12.1. ONE TANK 137

0 50 100 150 200 250 300 350 400 450
20

40

60

80

100

120

140

Time (s)

F
1

 (
d

m
³/

s)

Validation

Measurement

Without noise

Figure 12.4: One tank: steps: outlet flowrate: profile

reconciliation and measurement errors of the three variables are represented on figures
12.5, 12.6 and 12.7 for a reconciliation window. Reconciliation errors are generally less
important than simulation noise. Nevertheless, reconciliation errors are much larger at the
discontinuities. Moreover, reconciliation errors are more important and measurement noise
is less corrected for the feed flowrate.

138 CHAPTER 12. CASES STUDY

230 235 240 245 250 255 260
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

H
1

(d
m

)

Measurement error

Validation error

Without error

Figure 12.5: One tank: steps: height: errors

230 235 240 245 250 255 260
−15

−10

−5

0

5

10

15

Time (s)

F
0

(d
m

³/
s)

Measurement error

Validation error

Without error

Figure 12.6: One tank: steps: feed flowrate: errors

12.1. ONE TANK 139

230 235 240 245 250 255 260
−4

−3

−2

−1

0

1

2

3

4

Time (s)

F
1

(d
m

³/
s)

Measurement error

Validation error

Without error

Figure 12.7: One tank: steps: outlet flowrate: errors

Next we analyse results for a single optimization, namely the reconciliation window extend-
ing from t = 230 s to t = 260 s. In the next three figures (figures 12.8, 12.9 and 12.10) error
bars have been added to the profiles (error bars = value± once tℎe standard deviation).
This allows to compare a priori (for measurement) and a posteriori (for reconciled vari-
able) standard deviations for the same reconciliation window. For all variables a posteriori
standard deviations are distinctly reduced compared to a priori ones. Nevertheless, one
can note that true values are not always included in a posteriori standard deviations of
reconciled values.

140 CHAPTER 12. CASES STUDY

230 235 240 245 250 255 260
30

35

40

45

50

55

Time (s)

H
1

(d
m

)

Measurement

Validation

Without noise

Figure 12.8: One tank: steps: height: standard deviation comparison

230 235 240 245 250 255 260
40

45

50

55

60

65

70

75

80

85

Time (s)

F
0

(d
m

³/
s)

Measurement

Validation

Without noise

Figure 12.9: One tank: steps: feed flowrate: standard deviation comparison

12.1. ONE TANK 141

230 235 240 245 250 255 260
45

50

55

60

65

70

75

80

85

Time (s)

F
1

(d
m

³/
s)

Measurement

Validation

Without noise

Figure 12.10: One tank: steps: outlet flowrate: standard deviation comparison

Because of the discontinuity that appears at the steps, we have also simulated a case where
input variations are smoother: linear variations of feed and smooth variations according to
a first order response dx

dt
= 0.1 (x− xtarget) where xtarget is the target value of the variable

x ate the end of the perturbation..

12.1.2 Results for the linear variations of feed

The linear variations have been defined with a constant slope (±2 unit flow/unit time)
until the next target value is reached.

If one compares the profiles of the three variables of the complete simulation time (figures
12.11, 12.12 and 12.13), one can see that the reconciled values follow the true values for all
variables. The discontinuities at the time corresponding to the input variable variations
are much smaller than for the step transitions.

142 CHAPTER 12. CASES STUDY

0 50 100 150 200 250 300 350 400 450
10

20

30

40

50

60

70

80

90

Time (s)

H
1

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.11: One tank: linear variations of feed: height: profile

0 50 100 150 200 250 300 350 400 450
20

40

60

80

100

120

140

Time

F
0

 (
d

m
³/

s)

Validation

Measurement

Without noise

Figure 12.12: One tank: linear variations of feed: feed flowrate: profile

12.1. ONE TANK 143

0 50 100 150 200 250 300 350 400 450
20

40

60

80

100

120

140

Time (s)

F
1

 (
d

m
³/

s)

Validation

Measurement

Without noise

Figure 12.13: One tank: linear variations of feed: outlet flowrate: profile

In figures 12.14, 12.15 and 12.16, reconciliation and measurement errors are represented
for a single reconciliation window. The important mismatch at the time corresponding to
input variable variations is no more noticeable.

144 CHAPTER 12. CASES STUDY

230 235 240 245 250 255 260
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

H
1

(d
m

)

Measurement error

Validation error

Without error

Figure 12.14: One tank: linear variations of feed: height: errors

230 235 240 245 250 255 260
−4

−3

−2

−1

0

1

2

3

Time (s)

F
0

(d
m

³/
s)

Measurement error

Validation error

Without error

Figure 12.15: One tank: linear variations of feed: feed flowrate: errors

12.1. ONE TANK 145

230 235 240 245 250 255 260
−4

−3

−2

−1

0

1

2

3

Time (s)

F
1

(d
m

³/
s)

Measurement error

Validation error

Without error

Figure 12.16: One tank: linear variations of feed: outgoing flowrate: errors

In the next three figures (figures 12.17, 12.18 and 12.19), the a priori and a posteriori
standard deviations are compared for the same reconciliation window. For all variables a
posteriori standard deviations are distinctly reduced compared to a priori ones. Neverthe-
less, because of the Gaussian distribution of noise, as for the step perturbations, one can
note that the true values are not always included within the confidence limits the recon-
ciled values (errors bars represent the reconciled value pm once the a posteriori standard
deviation).

146 CHAPTER 12. CASES STUDY

230 235 240 245 250 255 260
50

52

54

56

58

60

62

64

66

68

70

Time (s)

H
1

(d
m

)

Measurement

Validation

Without noise

Figure 12.17: One tank: linear variations of feed: height: standard deviation comparison

230 235 240 245 250 255 260
75

80

85

90

95

100

105

110

115

120

Time (s)

F
0

(d
m

³/
s)

Measurement

Validation

Without noise

Figure 12.18: One tank: linear variations of feed: feed flowrate: standard deviation com-
parison

12.1. ONE TANK 147

230 235 240 245 250 255 260
70

75

80

85

90

95

100

105

110

Time (s)

F
1

(d
m

³/
s)

Measurement

Validation

Without noise

Figure 12.19: One tank: linear variations of feed: outgoing flowrate: standard deviation
comparison

12.1.3 Results for the smooth perturbations dx
dt

= 0.1 (x− xtarget)

The profiles of the three variables of the whole time horizon are represented on figures
12.20, 12.21 and 12.22. As for the linear perturbations, one can see that the reconciled
values follow the true values for all variables. The mismatch at the time corresponding to
the input variable variations is also much smaller than for the step perturbations.

148 CHAPTER 12. CASES STUDY

0 50 100 150 200 250 300 350 400 450
20

30

40

50

60

70

80

Time (s)

H
1

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.20: One tank: smooth perturbations: height: profile

0 50 100 150 200 250 300 350 400 450
30

40

50

60

70

80

90

100

110

120

130

Time

F
0

 (
d

m
³/

s)

Validation

Measurement

Without noise

Figure 12.21: One tank: smooth perturbations: feed flowrate: profile

12.1. ONE TANK 149

0 50 100 150 200 250 300 350 400 450
30

40

50

60

70

80

90

100

110

120

Time (s)

F
1

 (
d

m
³/

s)

Validation

Measurement

Without noise

Figure 12.22: One tank: smooth perturbations: outgoing flowrate: profile

Concerning the errors (figures 12.23, 12.24 and 12.25), one can see that they are of the
same order of magnitude as for the linear variations and no strong mismatch is noticed at
the time corresponding to input variable transitions.

150 CHAPTER 12. CASES STUDY

230 235 240 245 250 255 260
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

H
1

(d
m

)

Measurement error

Validation error

Without error

Figure 12.23: One tank: smooth perturbations: height: errors

230 235 240 245 250 255 260
−4

−3

−2

−1

0

1

2

3

4

Time (s)

F
0

(d
m

³/
s)

Measurement error

Validation error

Without error

Figure 12.24: One tank: smooth perturbations: feed flowrate: errors

12.1. ONE TANK 151

230 235 240 245 250 255 260
−3

−2

−1

0

1

2

3

Time (s)

F
1

(d
m

³/
s)

Measurement error

Validation error

Without error

Figure 12.25: One tank: smooth perturbations: outgoing flowrate: errors

In the next three figures (figures 12.26, 12.27 and 12.28), the a priori and a posteriori stan-
dard deviations are compared for a single reconciliation window. For some measurements
times of the reconciliation window, a priori and a posteriori standard deviations are listed
in tables 12.6, 12.7 and 12.8.
It appears that a posteriori standard deviations are distinctly reduced compared to a priori
ones for the three variables. As for the linear variations, one can note that the true values
are not always included in the a posteriori standard deviations of the reconciled values, as
expected for a Gaussian distribution .
Standard deviations are less reduced for the first and the last measurement times of the
reconciliation window, whatever the variable.
In the next table 12.5, a posteriori standard deviation reduction mean factors are listed
with their standard deviations. It appears that the mean reduction factor is larger for the
algebraic state variable.

152 CHAPTER 12. CASES STUDY

Table 12.5: One tank: smooth perturbations: a posteriori standard deviation reduction
mean factors

A posteriori standard A posteriori standard
Variables deviation reduction factors: deviation reduction factors:

means standard deviations

=
∑ Aposterioristandarddeviation

Aprioristandarddeviation

n
=

∑
(Aposterioristandarddeviation

Aprioristandarddeviation
− mean)

2

n−1

H1 2.3 0.33
Fin 4.0 1.3
Fout 13 2.4

230 235 240 245 250 255 260
45

50

55

60

65

70

Time (s)

H
1

(d
m

)

Measurement

Validation

Without noise

Figure 12.26: One tank: function: height: standard deviation comparison

Table 12.6: One tank: smooth perturbations: H1: a posteriori standard deviation reduction
factors in a single window

Times A priori standard deviations A posteriori standard deviations Reduction factors

= Aprioristandarddeviation

Aposterioristandarddeviation

220 0.20 0.16 1.2
225 0.20 0.087 2.3
230 0.20 0.077 2.6

continued on next page

12.1. ONE TANK 153

Times A priori standard deviations A posteriori standard deviations Reduction factors

= Aprioristandarddeviation

Aposterioristandarddeviation

235 0.20 0.076 2.6
240 0.20 0.086 2.3
245 0.20 0.089 2.2
250 0.20 0.082 2.4
255 0.20 0.081 2.4
260 0.20 0.094 2.1
265 0.20 0.096 2.1

230 235 240 245 250 255 260
70

75

80

85

90

95

100

105

110

115

120

Time (s)

F
0

(d
m

³/
s)

Measurement

Validation

Without noise

Figure 12.27: One tank: smooth perturbations: feed flowrate: standard deviation compar-
ison

Table 12.7: One tank: smooth perturbations: F0: a posteriori standard deviation reduction
factors in a single window

Times A priori standard deviations A posteriori standard deviations Reduction factors
220 1.49 0.99 1.5
225 1.48 0.31 4.8
230 1.50 0.39 3.8
235 1.56 0.60 2.6
240 1.57 0.39 4.0

continued on next page

154 CHAPTER 12. CASES STUDY

Times A priori standard deviations A posteriori standard deviations Reduction factors
245 1.75 0.31 5.6
250 2.04 0.43 4.7
255 2.04 0.67 3.0
260 2.27 0.44 5.2
265 2.27 0.49 4.6

230 235 240 245 250 255 260
70

75

80

85

90

95

100

105

Time (s)

F
1

(d
m

³/
s)

Measurement

Validation

Without noise

Figure 12.28: One tank: smooth perturbations: outgoing flowrate: standard deviation
comparison

Table 12.8: One tank: smooth perturbations: F1 : a posteriori standard deviation reduction
factors in a single window

Times A priori standard deviations A posteriori standard deviations Reduction factors
220 1.36 0.23 5.9
225 1.20 0.13 9.2
230 1.50 0.12 12.5
235 1.50 0.11 13.6
240 1.53 0.13 11.8
245 1.63 0.13 12.5
250 1.76 0.12 14.7
255 1.89 0.12 15.8

continued on next page

12.1. ONE TANK 155

Times A priori standard deviations A posteriori standard deviations Reduction factors
260 2.02 0.14 14.4
265 2.06 0.14 14.7

Four distributions of errors will be compared (see figure 12.29):

∙ the distribution of measurement errors;

∙ the distribution of the values that have been reconciled one time (corresponding to the
ℎ5 more recent measurement times of the reconciliation window). This distribution
curve is called beginning.

∙ the distribution of the reconciled values that leave that reconciliation window (cor-
responding to the ℎ5 oldest measurement times of the reconciliation window). This
distribution curve is called end.

∙ the distribution of the reconciled values that are situated at the middle of the recon-
ciliation window (ℎ5 measurement times for each reconciliation). This distribution
curve is called middle.

Timet0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ℎ5

ℎ4

End Middle Beginning

Estimated variables Measured variables

V
a
lu

e
s

Figure 12.29: One tank: smooth perturbations: schema of the error distributions

The last three figures (figures 12.30, 12.31 and 12.32) represent the distributions of the
errors for all variables. One can see the means of errors are nearly zero, so that the normal
noise with zero mean that was imposed for the simulation data is well reproduced for the
reconciliation distributions.
It also appears that the error distribution is reduced while reconciling the data: indeed the
distributions are larger for the measurements errors than the three other ones.

156 CHAPTER 12. CASES STUDY

Concerning the way of saving the data, the best curve is the same for the algebraic state
variable and for the differential state variable since they are related by a constraint equa-
tion. For differential state variable and algebraic state variable, there is not a big difference
between the three cuves while the difference is more important for the input variable.

Figure 12.30: One tank: smooth perturbations: height: error distribution

Figure 12.31: One tank: smooth perturbations: feed flowrate: error distribution

12.1. ONE TANK 157

Figure 12.32: One tank: smooth perturbations: outgoing flowrate: error distribution

For the other examples, only smooth perturbations of the inputs will be carried out.

158 CHAPTER 12. CASES STUDY

12.2 Stirred tank reactor with heat exchange

This second example comes from a publication of Liebman (Liebman et al., 1992). It
consists of a perfectly mixed reactor with a heat exchange system, where a first-order
exothermic reaction takes place. The system is represented on figure 12.33.

Figure 12.33: Flowsheet of the stirred tank reactor with heat exchange

This system is described by two differential equations:

dCA

dt
=

q

V
(CA0 − CA)− �d k CA (12.5)

dT

dt
=

q

V
(T0 − T)− �d

ΔHr

� Cp

k CA − UAR

� Cp V
(T − Tc) (12.6)

with
k = k0 e

−EA
T (12.7)

This example is described by six variables:

∙ four input variables: the feed flowrate q, the feed concentration CA0,the feed temper-
ature T0 and the cooling temperature TC ;

∙ two differential state variables: the concentration CA and the temperature T .

The model counts eleven parameters fixed as follow:

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 159

Table 12.9: Stirred tank reactor with heat exchange: model parameters

Parameters Values Units
V 1000 cm3

ΔHr -27000 cal/mol
� 0.001 g/cm3

Cp 1 cal/mol K
U 5e−4 cal/cm2 s K
AR 10 cm2

�d 1 -
k0 7.86e12 s−1

EA 14090 K
CAr 1e−6 mol/cm3

Tr 100 K

The model can be transformed into dimensionless equations by normalizing the concentra-
tion and the temperature by a reference concentration Ar and a reference temperature Tr

so that the equations of the system are transformed into:

dC ′
A

dt
=

q

V
(C ′

A0 − C ′
A)− �d k C ′

A (12.8)

dT ′

dt
=

q

V
(T ′

0 − T ′)− �d

ΔHr CAr

� Cp

k C ′
A − UAR

� Cp V
(T ′ − T ′

C) (12.9)

k = k0 e
−EA
T ′ Tr (12.10)

⇕
dx1

dt
=

q

V
(u2 − x1)− �d k x1 (12.11)

dx2

dt
=

q

V
(u3 − x2)− �d

ΔHr CAr

� Cp

k x1 − UAR

� Cp V
(x2 − u4) (12.12)

k = k0 e
−EA
x2 Tr (12.13)

In those equations, the quote represent the scaled variables: C ′
A = CA

CAr
, C ′

A0 = CA0

CAr
and

T ′ = T
Tr

.

A set of pseudo-measurements has been obtained by a dynamic simulation of the process. In
this simulation the differential equations are integrated using the fourth order Runge-Kutta
method with a time step of 0.5 s. The process has been simulated during 1251 seconds and
the simulated measurements are given every 10 seconds. Input variables evolve as follow
during the simulation: transitions between feed temperature set points have been modeled
as first order responses with a 200 seconds time constant and feed concentration transitions
with a 50 seconds time constant.

160 CHAPTER 12. CASES STUDY

Table 12.10: Stirred tank reactor with heat exchange: input variables evolution (reduced
variables)

Times q C ′
A0 T ′

0 T ′
C

(s) cm3/s
0 s 10.0 6.5 3.5 3.4

101 s 10.0 7.5 3.4 3.4
301 s 10.0 7.0 3.7 3.4
451 s 10.0 6.3 3.8 3.4
651 s 10.0 6.5 3.6 3.4
711 s 10.0 7.5 3.2 3.4
901 s 10.0 7.0 3.4 3.4
1101 s 10.0 6.3 3.7 3.4
1251 s 10.0 7.0 3.5 3.4

A Gaussian noise of 1 % of the true variable value is added to the simulation results of
the concentrations and the flowrate and a noise of 0.005 to the reduced temperatures. The
initial conditions of the validation problem are listed in the next table 12.11:

Table 12.11: Stirred tank reactor with heat exchange: initial values (reduced variables)

Variables Initial values Units
C ′

A 0.156 -
T ′ 4.606 -
q 10.0 cm3/s

C ′
A0 6.5 -
T ′
0 3.50 -

T ′
C 3.40 -

The parameters of the validation window are listed in table 12.12.

Table 12.12: Stirred tank reactor with heat exchange: window parameters

Parameters Values
ℎ1 1
ℎ2 4
ℎ3 4
ℎ4 49
ℎ5 2

Order of Lagrange 2
polynomials

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 161

12.2.1 Results

The figures 12.34 to 12.39 represent the profiles of the six variables of the reactor for the
whole simulation time. For all variables, it can be seen that the validated values follow the
profiles of the true values. Nevertheless, the validated values for the input variables have
a greater tendency to follow the noise than the validated values for the differential state
variables which are distinctly better corrected.

0 200 400 600 800 1000 1200
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

C
A

Validation

Measurement

Without noise

Figure 12.34: Stirred tank reactor with heat exchange: concentration: profile

162 CHAPTER 12. CASES STUDY

0 200 400 600 800 1000 1200
4.6

4.65

4.7

4.75

4.8

Time (s)

T

Validation

Measurement

Without noise

Figure 12.35: Stirred tank reactor with heat exchange: temperature: profile

0 200 400 600 800 1000 1200
9.7

9.8

9.9

10

10.1

10.2

10.3

Time

q
 (

cm
³/

s)

Validation

Measurement

Without noise

Figure 12.36: Stirred tank reactor with heat exchange: feed flowrate: profile

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 163

0 200 400 600 800 1000 1200
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

Time (s)

C
A

0

Validation

Measurement

Without noise

Figure 12.37: Stirred tank reactor with heat exchange: feed concentration: profile

0 200 400 600 800 1000 1200
3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

Time

T
0

Validation

Measurement

Without noise

Figure 12.38: Stirred tank reactor with heat exchange: feed temperature: profile

164 CHAPTER 12. CASES STUDY

0 200 400 600 800 1000 1200
3.38

3.385

3.39

3.395

3.4

3.405

3.41

3.415

3.42

Time (s)

T
C

Validation

Measurement

Without noise

Figure 12.39: Stirred tank reactor with heat exchange: cooling temperature: profile

In the next six figures (figures 12.40 to 12.45), the a priori and a posteriori standard
deviations are compared for the same validation window. On those figures, error bars
represent once the standard deviation of the variables. For some measurement times of the
validation window, a priori and a posteriori standard deviations are listed in tables 12.14
to 12.19.
It appears that a posteriori standard deviations are distinctly reduced compared to a priori
ones for the six variables. As for the previous examples, one can note that the true values
are usually but not always included within one a posteriori standard deviations of the
validated values, as expected for a Gaussian distribution.
For all variables, standard deviations are less reduced for the first and the last measure-
ments times of the validation window
In the next table 12.13, a posteriori standard deviation reduction mean factors are listed
with their standard deviations. It appears that the mean reduction factors are of the same
order except for the feed flowrate for which it is very high. The standard deviation of the
reduction factors is about 5.5 times less than the mean reductions factors except for the
feed flowrate (2.5 times).

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 165

Table 12.13: Stirred tank reactor with heat exchange: a posteriori standard deviation
reduction mean factors

A posteriori standard A posteriori standard
Variables deviation reduction factors: deviation reduction factors:

means standard deviations
CA 2.0 0.37
T 6.0 1.1
q 54 22

CA0 2.1 0.37
T0 2.1 0.37
TC 2.1 0.37

400 450 500 550 600 650 700 750 800 850
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Time (s)

C
A

Measurement

Validation

Without noise

Figure 12.40: Stirred tank reactor with heat exchange: concentration: standard deviation
comparison

Table 12.14: Stirred tank reactor with heat exchange: concentration: a posteriori standard
deviation reduction factors

Times A priori standard deviation A posteriori standard deviation Reduction factors
401 5.28 10−4 3.33 10−4 1.6
451 5.48 10−4 2.93 10−4 1.9

continued on next page

166 CHAPTER 12. CASES STUDY

Times A priori standard deviation A posteriori standard deviation Reduction factors
501 5.60 10−4 2.92 10−4 1.9
551 6.19 10−4 2.84 10−4 2.2
601 6.82 10−4 3.58 10−4 1.9
651 7.43 10−4 3.78 10−4 2.0
701 7.68 10−4 3.30 10−4 2.3
751 8.27 10−4 3.78 10−4 2.2
801 1.03 10−3 5.39 10−4 1.9
851 1.25 10−3 6.44 10−4 1.9

400 450 500 550 600 650 700 750 800 850
4.62

4.64

4.66

4.68

4.7

4.72

4.74

4.76

4.78

4.8

Time (s)

T

Measurement

Validation

Without noise

Figure 12.41: Stirred tank reactor with heat exchange: temperature: standard deviation
comparison

Table 12.15: Stirred tank reactor with heat exchange: temperature: a posteriori standard
deviation reduction factors

Times A priori standard deviation A posteriori standard deviation Reduction factors
401 5.0 10−3 9.46 10−4 5.3
451 5.0 10−3 8.28 10−4 6.0
501 5.0 10−3 6.98 10−4 7.2
551 5.0 10−3 8.11 10−4 6.2

continued on next page

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 167

Times A priori standard deviation A posteriori standard deviation Reduction factors
601 5.0 10−3 8.59 10−4 5.8
651 5.0 10−3 7.68 10−4 6.5
701 5.0 10−3 6.89 10−4 7.2
751 5.0 10−3 8.04 10−4 6.2
801 5.0 10−3 8.63 10−4 5.8
851 5.0 10−3 9.16 10−4 5.4

400 450 500 550 600 650 700 750 800 850

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

Time (s)

q
(c

m
³/

s)

Measurement

Validation

Without noise

Figure 12.42: Stirred tank reactor with heat exchange: feed flowrate: standard deviation
comparison

Table 12.16: Stirred tank reactor with heat exchange: feed flowrate: a posteriori standard
deviation reduction factors

Times A priori standard deviation A posteriori standard deviation Reduction factors
401 0.10 3.75 10−3 27
451 0.10 1.77 10−3 56
501 0.10 2.93 10−3 34
551 0.10 1.75 10−3 57
601 0.10 1.11 10−3 90
651 0.10 1.67 10−3 60

continued on next page

168 CHAPTER 12. CASES STUDY

Times A priori standard deviation A posteriori standard deviation Reduction factors
701 0.10 2.76 10−3 36
751 0.10 1.65 10−3 61
801 0.10 1.20 10−3 83
851 0.10 5.05 10−3 20

400 450 500 550 600 650 700 750 800 850
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

Time (s)

C
A

0

Measurement

Validation

Without noise

Figure 12.43: Stirred tank reactor with heat exchange: feed concentration: standard devi-
ation comparison

Table 12.17: Stirred tank reactor with heat exchange: feed concentration: a posteriori
standard deviation reduction factors

Times A priori standard deviation A posteriori standard deviation Reduction factors
401 6.30 10−2 2.68 10−2 2.4
451 6.30 10−2 2.98 10−2 2.1
501 6.49 10−2 4.13 10−2 1.6
551 6.55 10−2 3.03 10−2 2.2
601 6.47 10−2 2.56 10−2 2.5
651 6.37 10−2 3.16 10−2 2.0
701 7.35 10−2 4.71 10−2 1.6
751 7.45 10−2 3.46 10−2 2.2

continued on next page

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 169

Times A priori standard deviation A posteriori standard deviation Reduction factors
801 7.13 10−2 2.80 10−2 2.5
851 6.95 10−2 3.81 10−2 1.8

400 450 500 550 600 650 700 750 800 850
3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

Time (s)

T
0

Measurement

Validation

Without noise

Figure 12.44: Stirred tank reactor with heat exchange: feed temperature: standard devia-
tion comparison

Table 12.18: Stirred tank reactor with heat exchange: feed temperature: a posteriori
standard deviation reduction factors

Times A priori standard deviation A posteriori standard deviation Reduction factors
401 5.0 10−3 2.12 10−3 2.4
451 5.0 10−3 2.34 10−3 2.2
501 5.0 10−3 3.19 10−3 1.6
551 5.0 10−3 2.34 10−3 2.2
601 5.0 10−3 1.97 10−3 2.5
651 5.0 10−3 2.34 10−3 2.2
701 5.0 10−3 3.19 10−3 1.6
751 5.0 10−3 2.34 10−3 2.2
801 5.0 10−3 1.98 10−3 2.5
851 5.0 10−3 2.74 10−3 1.8

170 CHAPTER 12. CASES STUDY

400 450 500 550 600 650 700 750 800 850
3.375

3.38

3.385

3.39

3.395

3.4

3.405

3.41

3.415

3.42

Time (s)

T
C

Measurement

Validation

Without noise

Figure 12.45: Stirred tank reactor with heat exchange: cooling temperature: standard
deviation comparison

Table 12.19: Stirred tank reactor with heat exchange: cooling temperature: a posteriori
standard deviation reduction factors

Times A priori standard deviation A posteriori standard deviation Reduction factors
401 5.0 10−3 2.12 10−3 2.4
451 5.0 10−3 2.34 10−3 2.2
501 5.0 10−3 3.19 10−3 1.6
551 5.0 10−3 2.34 10−3 2.2
601 5.0 10−3 1.97 10−3 2.5
651 5.0 10−3 2.34 10−3 2.2
701 5.0 10−3 3.19 10−3 1.6
751 5.0 10−3 2.34 10−3 2.2
801 5.0 10−3 1.98 10−3 2.5
851 5.0 10−3 2.74 10−3 1.8

The last six figures (figures 12.46 to 12.51) represent the distributions of the errors for all
variables. The same four types of errors as before are compared. One can see that the
normal noise with zero mean that was imposed for the simulation data is reproduced for
the validation distributions (means of errors are nearly equal to zero).
It also appears that the distributions are larger for the measurements errors than the three
other ones (except for the feed temperature for which it is quite the same as the three
other distributions): error distributions are reduced while validating the data.

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 171

Concerning the way of saving the data, the middle curves are better for the differential
state variables. For the input variables, it depends of the variables. So, no rule can be
inferred from this example.

Figure 12.46: Stirred tank reactor with heat exchange: concentration: error distribution

Figure 12.47: Stirred tank reactor with heat exchange: temperature: error distribution

172 CHAPTER 12. CASES STUDY

Figure 12.48: Stirred tank reactor with heat exchange: feed flowrate: error distribution

Figure 12.49: Stirred tank reactor with heat exchange: feed concentration: error distribu-
tion

12.2. STIRRED TANK REACTOR WITH HEAT EXCHANGE 173

Figure 12.50: Stirred tank reactor with heat exchange: feed temperature: error distribution

Figure 12.51: Stirred tank reactor with heat exchange: cooling temperature: error distri-
bution

174 CHAPTER 12. CASES STUDY

12.3 A network of five tanks

In this last example, five tanks are interconnected. The first tank is fed by stream F0A and
the recirculated stream F4B coming from tank 4. The second tank receives the feed stream
F0B and the stream F1A coming from tank 1. The third tank receives the feed stream F0C

and the stream F1B coming from tank 1. The fourth tank is feeded by stream F3B coming
from tank 3. The fifth tank receives stream F2 from tank 2 and stream F3A from tank 3.
This example is represented on figure 12.52.

F0A

F1A F1B

H1

H4

F4A F4B

F2

H2

F0B

H3

F3B

F3A

F0C

F5

H5

Figure 12.52: Flowsheet of the network of five tanks

12.3. A NETWORK OF FIVE TANKS 175

The model is defined by 13 equations: 5 differential equations and 8 link equations:

dℎ1

dt
=

F0A + F4B

A1

− F1A + F1B

A1

(12.14)

dℎ2

dt
=

F0B + F1A

A2
− F2

A2
(12.15)

dℎ3

dt
=

F0C + F1B

A3
− F3A + F3B

A3
(12.16)

dℎ4

dt
=

F3B

A4
− F4A + F4B

A4
(12.17)

dℎ5

dt
=

F2 + F3A

A5
− F5

A5
(12.18)

F1A = �1 H1 �1 (12.19)

F1B = �1 H1 (1− �1) (12.20)

F2 = �2 H2 (12.21)

F3A = �1 H3 �3 (12.22)

F3B = �3 H3 (1− �3) (12.23)

F4A = �4 H4 �4 (12.24)

F4A = �4 H4 (1− �4) (12.25)

F5 = �5 H5 (12.26)

⇕
dx1

dt
=

u1 + z7
A1

− z1 + z2
A1

(12.27)

dx2

dt
=

u2 + z1
A2

− z3
A2

(12.28)

dx3

dt
=

u3 + z2
A3

− z4 + z5
A3

(12.29)

dx4

dt
=

z5
A4

− z6 + z7
A4

(12.30)

dx5

dt
=

z3 + z4
A5

− z8
A5

(12.31)

z1 = �1 x1 �1 (12.32)

z2 = �1 x1 (1− �1) (12.33)

z3 = �2 x2 (12.34)

z4 = �3 x3 �3 (12.35)

z5 = �3 x3 (1− �3) (12.36)

z6 = �4 x4 �4 (12.37)

z7 = �4 x4 (1− �4) (12.38)

z8 = �5 x5 (12.39)

176 CHAPTER 12. CASES STUDY

This example counts sixteen variables:

∙ three input variables: the feed flowrates F0A, F0B and F0C ;

∙ five differential state variables: the heights in the tanks , H1, H2, H3, H4 and H5;

∙ eight algebraic variables: the flowrates F1A, F1B, F2, F3A, F3B , F4A, F4B and F5.

The model counts thirteen parameters fixed as follow:

Table 12.20: Network of five tanks: model parameters

Parameters Values Units
A1 8 dm2

A2 10 dm2

A3 5 dm2

A4 10 dm2

A5 7 dm2

�1 1.2 -
�2 0.9 -
�3 1.0 -
�4 1.5 -
�5 1.1 -
�1 0.5 -
�2 0.3 -
�3 0.8 -

A data set has been obtained by a dynamic simulation of the process. In this simulation
differential equations are integrated by means of the fourth order Runge-Kutta method
with a step of 1 s. The process has been simulated during 261 seconds and the simulated
measurements are given every second. Feed flowrates evolve as follow during the simulation:
transitions between feed flowrate set points have been modeled as first order responses with
a 10 seconds time constant.

Table 12.21: Network of five tanks: feed flowrates evolution

Times F0A F0B F0C

(s) (dm3/s) (dm3/s) (dm3/s)
0 s 50 30 20
31 s 100 30 20
81 s 60 30 20
111 s 60 20 40
continued on next page

12.3. A NETWORK OF FIVE TANKS 177

Times F0A F0B F0C

(s) (dm3/s) (dm3/s) (dm3/s)
151 s 40 35 20
211 s 60 40 10
261 s 80 35 20

A Gaussian noise (zero mean and standard deviation set at 2% of the true value) is added
to the simulation results of the flowrates. Similarly, Gaussian noise (standard deviation
set at 2 cm) is added to the simulated height before carrying out the data reconciliation.
The initial conditions of the validation problem are listed in the next table 12.22:

Table 12.22: Network of five tanks: initial values

Variables Initial values Units
H1 42.0 dm
H2 12.0 dm
H3 39.0 dm
H4 33.0 dm
H5 25.0 dm
F0A 50.0 dm3/s
F0B 30.0 dm3/s
F0C 20.0 dm3/s
F1A 25.2. dm3/s
F1B 25.2 dm3/s
F2 10.8 dm3/s
F3A 10.7 dm3/s
F3B 27.3 dm3/s
F4A 39.6 dm3/s
F4B 9.9 dm3/s
F5 27.5 dm3/s

The parameters of the validation windows are listed in table 12.23.

Table 12.23: Network of five tanks: window parameters

Parameters Values
ℎ1 1
ℎ2 4
ℎ3 4
ℎ4 49
ℎ5 2

continued on next page

178 CHAPTER 12. CASES STUDY

Parameters Values
Order of Lagrange 2

polynomials

12.3.1 Results

For all variables, the validated values follow the curves of the simulation without noise
and the measurements are corrected. The profiles of the differential state variables are
represented on figures 12.53 to 12.57 for the whole time horizon. The values that are saved
are the validated values of the measurements entering the validation window.

0 50 100 150 200 250
30

40

50

60

70

80

90

Time (s)

H
1

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.53: Network of five tanks: height H1: profile

12.3. A NETWORK OF FIVE TANKS 179

0 50 100 150 200 250
10

20

30

40

50

60

70

80

90

Time (s)

H
2

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.54: Network of five tanks: height H2: profile

0 50 100 150 200 250
35

40

45

50

55

60

65

70

75

80

Time (s)

H
3

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.55: Network of five tanks: height H3: profile

180 CHAPTER 12. CASES STUDY

0 50 100 150 200 250
18

20

22

24

26

28

30

32

34

36

38

Time (s)

H
4

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.56: Network of five tanks: height H4: profile

0 50 100 150 200 250
20

30

40

50

60

70

80

90

Time (s)

H
5

 (
d

m
)

Validation

Measurement

Without noise

Figure 12.57: Network of five tanks: height H5: profile

In the next table 12.24, a posteriori standard deviation reduction factors of all variables
are listed with their standard deviations. In this example, it appears that the algebraic

12.3. A NETWORK OF FIVE TANKS 181

state variables have better a posteriori standard deviation reduction factors that input and
differential state variables. In fact, since algebraic variables and differential variables are
linked by the model equations 14.19 to 14.26, the standard deviations of their validated
values are similarly linked. However level measurement are more precise (standard devi-
ation = 2 cm and true value ∼ 500 cm) than flowrates (standard deviation = 2% of the
true value). The reduction factor is better for flowrates.

Table 12.24: Network of five tanks: a posteriori standard deviation reduction mean factors

A posteriori standard A posteriori standard
Variables deviation reduction factors: deviation reduction factors:

means standard deviations
H1 4.6 1.1
H2 4.5 0.96
H3 2.9 0.54
H4 11 4.1
H5 6.2 1.6
F0A 6.0 2.5
F0B 2.0 0.39
F0C 2.0 0.39
F1A 23 5.6
F1B 23 5.8
F2 30 6.6
F3A 17 3.8
F3B 17 3.7
F4A 31 11
F4B 31 11
F5 44 11

As can been seen in table 12.25, the means of errors still correspond with the normal noises
with zero mean that were imposed during the simulation.
Concerning the distributions, one can see they are wider for the measurements, that means
that the errors are corrected during the validation. In the case of input variables, the
validated values obtained at the end of the window have narrower distributions that the
ones at the beginning and middle curves.
In the case of the differential state variables, no clear trend can be identified concerning
the best time to keep the validated values.
As expected, the algebraic state variables have distributions similar to ones of the state
variables they depend.
No rule concerning the best way of saving the data can be made from this example.

182 CHAPTER 12. CASES STUDY

Table 12.25: Network of five tanks: means and standard deviations of errors

Variables Means Standard deviations

=
∑

error

n
=

∑
(error − mean error)2

n−1

Beginning Middle End Meas. Beginning Middle End Meas.
H1 -0.003 -0.008 -0.018 -0.012 0.10 0.096 0.10 0.19
H2 -0.018 -0.018 -0.014 -0.020 0.087 0.059 0.063 0.21
H3 0.022 0.021 0.019 0.024 0.10 0.079 0.072 0.20
H4 -0.010 0.009 0.003 -0.009 0.024 0.025 0.049 0.18
H5 -0.012 -0.013 -0.005 -0.011 0.033 0.038 0.065 0.20
F0A 0.062 0.040 0.037 0.080 0.71 0.59 0.54 1.2
F0B -0.007 -0.002 -0.015 -0.019 0.42 0.27 0.21 0.71
F0C 0.024 0.027 0.024 0.012 0.28 0.28 0.23 0.42
F1A -0.002 -0.005 -0.010 0.042 0.063 0.058 0.060 0.70
F1B -0.002 -0.005 -0.012 -0.046 0.063 0.058 0.060 0.72
F2 -0.016 -0.016 -0.006 -0.094 0.079 0.053 0.057 1.3
F3A 0.007 0.006 0.038 0.038 0.030 0.024 0.022 0.35
F3B 0.016 0.015 0.013 -0.033 0.071 0.056 0.050 0.85
F4A 0.012 0.010 0.003 -0.0001 0.029 0.030 0.059 0.67
F4B 0.003 0.003 0.001 -0.006 0.007 0.007 0.015 0.16
F5 -0.013 -0.014 -0.006 -0.043 0.036 0.042 0.072 1.57

12.4 Conclusions

The validation techniques tested in this study allowed to validate the data of all the small
examples we studied. The validated profiles match closely the simulated ones. However it
appears that the validated profiles of input variables, are more affected by the noise than
for the other variables.
Validation allows to reduce the uncertainty (�) on the measured variables. However, for
all studied examples, the procedure is less effective with respect to input variables. When
measurement errors follow a normal, zero mean distribution, a similar distribution is ob-
served for validation errors. As expected, the spread of validation errors is narrower, so
that validation allows to better know the variables. There is no clearcut rule allowing to
predict which validation estimate is the most reliable when a measurement is used several
times in successive validation runs. Typically the results obtained by the first validation,
as soon as the measurement becomes available, will be used for process control. Results
calculated when the measurement is in the middle of the window might be more reliable
and used for archival.
For all variables of all examples, a posteriori standard deviations are distinctly reduced
compared to a priori ones, but true values are not always included in error bars drawn
around the validated values. A posteriori standard deviation at the beginning and at the
end of the validation window are larger that in the middle of the window where the values

12.4. CONCLUSIONS 183

of the variables are better known.
The validation being less efficient for input variables, we suggest to replace their linear
interpolation by orthogonal collocations. Doing that, it should be decided if the order of
the polynomials and the size of the discretization intervals should be the same as for the
differential state variables.
One can also choose to place the nodes of orthogonal collocations at the measurement times,
even if it could be less precise, since it would reduce the computing ressources needed.

Chapter 13

Conclusions part II

Several techniques have been tested to reconcile dynamic processes: the extended Kalman
filter, the integration of the differential equation by means of Runge-Kutta method cou-
pled with optimization algorithms (Davidon, 1975) or SQPIP (Kyriakopoulou, 1997), the
discretization of differential equations by means of orthogonal collocations coupled with
the same optimization methods.
From the cases that were studied, it appeared that, even if all methods allow reconciling
the data, the simultaneous method using orthogonal collocations was the best one in our
case: other methods were not able to achieve the minimum of the goal function, probably
as a consequence of numerical noise or limited precision in the approximations of deriva-
tives by numerical differentiation. Moreover, very non linear problems can not be solved
properly using Kalman filters. With the design of sensor network for dynamic process as an
objective, one has to know a posteriori uncertainty on input variables. The problem with
filtering method is that they consider the input variables as perfectly known so that they
are not corrected and their a posteriori uncertainty can not be estimate. Concerning the
explicit integration, the main problem is that there does not exists a method allowing to es-
timate a posteriori variances. This could be obtained by integrating sensitivity equations
in parallel with the model equations, but this strategy would be difficult to generalized
and implement. In the case of orthogonal collocations, as the differential equations are
discretized, we could transpose the method of a posteriori variances estimations developed
for the stationary case (Heyen et al., 1996).
Good results have been obtained with orthogonal collocations for all small examples treated:
the reconciled values follow the simulated ones, a posteriori variances are smaller than a
priori ones (as expected) and are better inside the reconciliation window than for the first
and the last measurement times, uncertainties are reduced.
Nevertheless there remains one problem with input variables, which follow more the noise
than other variables. Using orthogonal collocations also for inputs variables could allow to
address that problem.

185

Part III

Networks design for dynamic processes

187

Chapter 14

Design of sensor networks for dynamic

processes

14.1 Introduction

The objective of this third part of the theses is to create an algorithm able to design the
cheapest sensor network allowing to observe all process variables and to estimate process
key variables within a prescribed accuracy.
Chouaib Benqlilou (Benqlilou et al., 2003), (Benqlilou, 2004), (Benqlilou et al., 2005) solved
the problem of sensor placement for dynamic problem in the case where the dynamic
reconciliation is made by means of Kalman filter. This implies that input variables are
considered as being perfectly known. Only mass balances were solved in his study. He uses
genetic algorithm to perform optimization.
The method proposed here after allows to solve more general problems involving mass and
energy balances. It is based on the dynamic reconciliation results obtained with the method
described in the second part of the theses. The formulation used in this reconciliation
technique allows (as presented in chapter 11) to estimate a posteriori variances which
are necessary to the sensor placement. One peculiarity of the dynamic version of the
sensor placement problem is the consideration of an extra degree of freedom, namely the
measurement frequency.

14.2 Observability and variable discretization

As for the stationary case, the observability condition implies that the sensitivity matrix is
non-singular. This matrix is defined by the equations 11.15, 11.16 and 11.17. Indeed, if this
condition is met, it is possible to estimate all a posteriori variances (see equations 11.23,
11.24 and 11.25). To estimate the variables one has to know the independent terms -F,
-Fc and -G coming from the linearisation of the constraints in A, Ac, and D respectively
(see equations 11.18, 11.19 and 11.20). The terms -F, -Fc and -G can be estimated by

189

190 CHAPTER 14. ALGORITHM DESCRIPTION

solving the constraints equations that are part of the optimality conditions :

∂ L

∂ ΛAr,j

=
nx∑

i=1

∂Ar,j

∂xi,j

xi,j +
nz∑

i=1

∂Ar,j

∂zi,j
zi,j +

nu∑

i=1

∂Ar,j

∂ui,j

ui,j + Fr,j = 0 ∀j, ∀r
[

∂ L

∂ ΛAc
r,j

]

discr int s

=

[
nxc∑

i=1

∂Ac
r,j

∂xc
i,j

xc
i,j +

nzc∑

i=1

∂Ac
r,j

∂zci,j
zci,j

+

nuc∑

i=1

∂Ac
r,j

∂uc
i,j

uc
i,j + F c

r,j

]

discr int s

= 0 ∀j, ∀r, ∀s

[
∂ L

∂ ΛDi,k

]

discr int s

=

[
n�∑

r=0

∂Di,k

∂xc
i,r

xc
i,r +

∂Di,k

∂zci,k
zci,k

+
∂Di,k

∂uc
i,k

uc
i,k +Gi,k

]

discr int s

= 0 ∀i, ∀k, ∀s

(14.1)

Nevertheless, the optimization algorithm need some information about the initial values
of input and differential state variables to start the optimization. Indeed, those values are
necessary for the linearisation of the inputs and the creation of the Lagrange’s polynomials
used in the discretization of differential equations. So, the observability criterion described
before can only be verified a posteriori.
If the SQP program starts the optimization with random initial values that can be very far
from the solution, it can be very difficult or even impossible for the optimization program
to find the solution, especially if the process has a tendency to become unstable. So, we
have decided to impose the measurement of the input and differential variables at least
once for each reconciliation window.
In the case of sensor network design, one has to ensure that the sensor network is evalu-
ated for the minimum number of measurements that can be carried out with the chosen
measurement tools. For example, if the measurement frequency of a sensor is five, a mea-
surement is carried out every fifth time step. For a window containing 49 times, if the first,
the second, the third or the fourth time of the window corresponds to the first measure-
ment time, 10 measurements are carried out. But, if the fifth time of the window is the
first measurement time of the widow, only 9 measurements are carried out. That’s is why
it has been decided that if the frequency of a sensor is k, the first measurement will take
place at the ktℎ time of the window.

14.3 Method description

The optimal design of sensor network can be decomposed in five steps:

1. Formulation of the reconciliation model and model linearisation;

14.3. METHOD DESCRIPTION 191

2. Specification of sensor database, precision requirements and sensor requirements;

3. Verification of the problem feasibility;

4. Optimization of the goal function;

5. Report generation.

The flow diagram of the algorithm is presented on figure 4.1.
The algorithm implemented for steady-state processes has been modified to take the dy-
namic into account. The modifications are described here after.

14.3.1 Formulation of the reconciliation model and model lineari-

sation

First of all, a dynamic simulation of the process has to be carried out to obtain a data
set. The differential equations are integrated by means of the fourth order Runge-Kutta’s
method. A noise is then added to the simulation values. This noise agrees with the
measurement noise that would be expected if the values were plant measurements.
The second part of this step is the reconciliation of the noised data set. This reconciliation
is carried out using the moving horizon method that was developed in section 10.2. In
this dynamic reconciliation technique, differential equations are discretized by means of
orthogonal collocations. At the beginning of the reconciliation, a small file is created. It
contains the parameter of the reconciliation window: size of the window, size of the dis-
cretizetion and the interpolation intervals, displacement of the window, order of Lagrange’s
polynomials.
Once the solution is reached for a reconciliation window, the elements of the Jacobian
matrix 퓔 (see equation 11.17) of the process model are estimated. A file is created for each
reconciliation window. It contains

∙ the number of process variables: the number of variables contained in the process
model multiplied by the number of measurement times contained in the reconciliation
window;

∙ the number of constraints of the reconciliation window: namely constraints A, Ac,
B, C, Cc, D and E defined in 10.2;

∙ the value, the physical unit and the type (concentration, temperature, level, mass
flowrate...) of each process variable;

∙ the Jacobian matrix 퓔 of the equation system.

To be sure that the sensor network will be able to handle all expected profiles, several of
those files are generated. The files are chosen this way:

∙ the first file to be chosen is the file corresponding to the first reconciliation window;

192 CHAPTER 14. ALGORITHM DESCRIPTION

∙ for the other files, it is imposed that at least the first measurement time of the chosen
window is contained in the previous one. The amount of overlaps between successive
windows will depend on the window displacement.

14.3.2 Specification of sensor database, precision requirements and

sensor requirements

Besides the files coming from the reconciliation phase, the program needs three data files.
Those files contain the sensor database, the precision requirements and the sensor require-
ments.

Sensor database

The sensor database is a list of sensor from which the algorithm must choose all the
possible sensor placements for the studied plant. It must include, for each sensor, the
following information:

∙ the name of the sensor;

∙ the annualized cost of the sensor. This cost must take into account:

– the annualized purchase cost;

– the annualized installation cost;

– the annualized operating cost.

All those costs depend on the studied process: indeed, for example, the cost of the
sensor will be different if it is placed in a flow of water or if it must resists to acid
or base. Moreover, costs evolves with the technologic progress and with the time so
that annualized costs will be written in cost units for the studied cases in the next
chapter.

∙ the parameters �Ai
and �Bi

that allow the estimation of the sensor standard deviation
�j for the measured variable X

′

j :

�j = �Ai
+ �Bi

∗X ′

j (14.2)

∙ the minimal and maximal values of the sensor measurement range;

∙ the type of variable the sensor is able to measure. For exemple:

– TEMP for a temperature;

– LEVEL for a level;

– MASSF for a mass flowrate;

14.3. METHOD DESCRIPTION 193

– CONC for a concentration;

∙ the frequency of the measurement. If a sensor is listed in the database for several
measurement frequencies the costs will decrease with decreasing measurement fre-
quency so that a small frequency is preferentially chosen if it allows to reach the
specified performances of the sensor network. This decrease in price can be justified
by the fact that sensors used more frequently will generate more data to stock and
treat. In some cases (for example chromatographs), they consume reactants or need
to be service or calibrated more often.

Precision requirements and sensor requirements

Those files are exactly the same as for the stationary case (see section 4.2).

14.3.3 Verification of the problem feasibility

This step of the program begins by carrying out the list of all the sensors that can be located
in the plant and used at each time step. Individuals are created as for the stationary case:
the binary genes take the value 1 or 0 depending if the corresponding sensors are chosen
or not. Afterwards, the algorithm checks whether there exists a solution to the problem
for the first individual containing all possible sensors. If several sensors measure the same
variables, only the variance of the most accurate one is taken into account.
To ensure there exists a solution to the studied problem, four conditions have to be met:

∙ The sensitivity matrix of the problem is non-singular for the ideal thermodynamic
case. If this condition is not met, the program stops. This condition is not verified
for the examples of the next chapter because thermodynamic models are not used in
those examples.

∙ The sensitivity matrix of the problem is non-singular for the process specific thermo-
dynamic.

∙ If one refers to the way the dynamic reconciliation program works, initial condi-
tions on input and differential variables have to be known to carry out the dynamic
data reconciliation. Thus all input and differential variables must be measured at
least once for each chosen reconciliation window. If this is not the case for the first
individual, the program may not continue.

∙ The accuracy target of all key parameters must be achieved for all times of all the
reconciliation windows chosen by the program. If this condition is not net, the
program may continue, but a penalty is added to the goal function.

There are different ways to cure those problems:

∙ adding more accurate sensors;

194 CHAPTER 14. ALGORITHM DESCRIPTION

∙ adding sensors whose measurement frequency is higher;

∙ adding sensors able to measure other types of variables;

∙ adding more extra measurable variables with their link equations so that more vari-
ables can be measured.

14.3.4 Optimization of the sensor network

Knowing that a feasible solution exists, the search for the optimal sensor configuration can
begin. The goal function to maximise is evaluated this way:

∙ If the sensitivity matrix is singular:

Fitness = −Cmax penaltysingular matrix (14.3)

where

– Cmax is the cost relative to the most expensive sensor network (which corre-
sponds to the first chromosome);

– penaltysingular matrix is the penalty factor for a singular sensitivity matrix and is
generally chosen equal to 2.

∙ otherwise

Fitness = −cost −
Nkey variables ⋅ N★

tmes∑

i=1

⎧
⎨
⎩

− �i

�
target
i

�2

i(
�
target
i

)2

Cmax penaltytarget

Nkey variables

102
Cmax penaltytarget

Nkey variables

if �i

�
target
i

≤ 1

if 1 < �i

�
target
i

< 10

if �i

�
target
i

≥ 10

(14.4)
where

– Nkey variables is the number of process key variables;

– N★
tmes

is the number of measurement times on the moving horizon including the
initial time of the horizon;

– penaltytarget is the penalty factor for the targets on key parameters that are not
respected and is fixed equal to 2;

– �i is the accuracy obtained by the sensor network for the key variable i ;

– �target
i is the accuracy required for the key parameter i.

If the sensor network has to be designed for several reconciliation windows, the fitness
becomes:

Fitness =

Nwindows∑

j=1

fitnessj − (Nwindows − 1) cost (14.5)

14.3. METHOD DESCRIPTION 195

where Nwindows is the number of reconciliation windows chosen for the sensor network
design.
If a measurement system observable in the case of one sensor failure has to be carried out,
the fitness is evaluated for all configurations obtained by eliminating successively one of
the sensors, and the worst one is kept.
The genetic algorithm developped by Carroll (Carroll, 2001) described in section A for the
stationary case is used to perform this optimization.
Individuals of the first generation are chosen randomly, making sure that the number of
chosen sensors is at least equal to the number of degrees of freedom of the problem. A
high probability of selection if fixed for each sensor. A value of 80 % is typically chosen
but this parameter appears not to be critical for the problem of optimal sensor design. For
the other parameters of the genetic algorithm, the following values are recommended:

∙ the population size, generally chosen to 20 individuals;

∙ the probability of reproduction was fixed to 50 %;

∙ the probability of single-point cross-over was chosen to 50 %

∙ the probability of jump mutation after reproduction and cross-over is 1 %.

Once the population has been generated the goal function has to be evaluated to estimate
reconciled variances of all variables, the sensitivity has to be inverted. This matrix is very
sparse that’s why one continues to use Belsim’s routine to factorize the matrix.
At each generation, the best individual is kept and duplicated in the case it would mutate
during the next generation.
If after a specified number of generations (n) the best chromosome remains unchanged, it
is considered has the solution of the problem. There is no certainty that this solution is
the best one, but it is available and much better than the first individual.
The computing times to reach the solution with the algorithm can be very important even
for small problems likes the ones studied in the next chapter that is why a parallelized
version of the code is necessary.

14.3.5 Report generation

The programme finally generates the same reports files as in the stationary case (see section
4.5).

Chapter 15

Case studies

In this chapter, the results of the sensor network design are given for the three cases studied
in chapter 12:

∙ one tank;

∙ a network of five tanks

∙ a stirred tank reactor with heat exchange;.

.

15.1 One tank

The flowsheet of this example is represented on figure 15.1.

F0

F1

H1

Figure 15.1: Flowsheet of the tank

The model of the example counts three variables (one differential state variable, one in-
put variable and one algebraic variable) related by one differential equation and one link
equation (see equations 12.1).
The parameters of the reconciliation window are listed in table 12.4.
For each reconciliation window, one has

197

198 CHAPTER 15. CASE STUDIES

∙ 147 process variables

∙ 84 collocations variables

∙ 216 constraints distributed this way:

– 49 constraints A;

– 24 constraints Ac;

– 48 constraints B;

– 36 constraints C;

– 24 constraints Cc;

– 24 constraints D;

– 11 constraints E.

The definition of the constraints types is the same as in section 10.2.

The size of the sensitivity matrix is 447 x 447.
For the design of the sensor network, five files created during the reconciliation phase are
processed by the programme as described in chapter 14.
The key variable of the process is the differential state variable H1 corresponding to the level
in the tank. Its prescribed accuracy is fixed to 2 cm. As described in the preceding chapter,
the input and the state variables have to be measured at least once in the reconciliation
window. This concerns the feed flowrate F0 and the level in the tank H1 in this case.
The sensor database for this example is listed in table 15.1. As for the stationary case, the
costs are in cost units. The cost units have been chosen very expensive. Indeed as the size
of the reconciliation window is quite large, many evaluations of a posteriori variances must
be compared to the target one (In the present case, there are 147 variables per window,
and five windows, thus 735 contributions to the goal function). So, one has to avoid that
the absolute value of the sum of those contributions (coming from the variances ratios) is
higher than the cost of the cheapest sensor of the sensor database. Indeed, in this case,
the sensor network chosen would not necessary be the less expensive one who would allow
to estimate key variables within the prescribed accuracy.

15.1. ONE TANK 199

Table 15.1: One tank: sensor database

Sensor types Annualized Accuracies Minimum Maximum Measurement
costs values values periods

1A Flowmeter 9000 2% 20 dm3/s 75 dm3/s 1
1B Flowmeter 10000 1% 20 dm3/s 200 dm3/s 1
1C Flowmeter 7000 5% 0 dm3/s 100 dm3/s 1
1D Flowmeter 12000 0.5% 30 dm3/s 150 dm3/s 1
1A Level 3000 0.5 dm 0 dm 200 dm 1
1B Level 4000 0.2 dm 0 dm 200 dm 1
1C Level 5000 0.1 dm 0 dm 200 dm 1
2A Flowmeter 8500 2% 20 dm3/s 75 dm3/s 2
2B Flowmeter 9500 1% 20 dm3/s 200 dm3/s 2
2C Flowmeter 6500 5% 0 dm3/s 100 dm3/s 2
2D Flowmeter 11500 0.5% 30 dm3/s 150 dm3/s 2
2A Level 2700 0.5 dm 0 dm 200 dm 2
2B Level 3700 0.2 dm 0 dm 200 dm 2
2C Level 4700 0.1 dm 0 dm 200 dm 2
3A Flowmeter 8200 2% 20 dm3/s 75 dm3/s 3
3B Flowmeter 9200 1% 20 dm3/s 200 dm3/s 3
3C Flowmeter 6200 5% 0 dm3/s 100 dm3/s 3
3D Flowmeter 11200 0.5% 30 dm3/s 150 dm3/s 3
3A Level 2500 0.5 dm 0 dm 200 dm 3
3B Level 3500 0.2 dm 0 dm 200 dm 3
3C Level 4500 0.1 dm 0 dm 200 dm 3
4A Flowmeter 7900 2% 20 dm3/s 75 dm3/s 4
4B Flowmeter 8900 1% 20 dm3/s 200 dm3/s 4
4C Flowmeter 5900 5% 0 dm3/s 100 dm3/s 4
4D Flowmeter 10900 0.5% 30 dm3/s 150 dm3/s 4
4A Level 2200 0.5 dm 0 dm 200 dm 4
4B Level 3200 0.2 dm 0 dm 200 dm 4
4C Level 4200 0.1 dm 0 dm 200 dm 4
5A Flowmeter 7700 2% 20 dm3/s 75 dm3/s 5
5B Flowmeter 8700 1% 20 dm3/s 200 dm3/s 5
5C Flowmeter 5700 5% 0 dm3/s 100 dm3/s 5
5D Flowmeter 10700 0.5% 30 dm3/s 150 dm3/s 5
5A Level 2100 0.5 dm 0 dm 200 dm 5
5B Level 3100 0.2 dm 0 dm 200 dm 5

continued on next page

200 CHAPTER 15. CASE STUDIES

Sensor types Annualized Accuracies Minimum Maximum Measurement
costs values values periods

5C Level 4100 0.1 dm 0 dm 200 dm 5
10A Flowmeter 7500 2% 20 dm3/s 75 dm3/s 10
10B Flowmeter 8500 1% 20 dm3/s 200 dm3/s 10
10C Flowmeter 5500 5% 0 dm3/s 100 dm3/s 10
10D Flowmeter 10500 0.5% 30 dm3/s 150 dm3/s 10
10A Level 2000 0.5 dm 0 dm 200 dm 10
10B Level 3000 0.2 dm 0 dm 200 dm 10
10C Level 4000 0.1 dm 0 dm 200 dm 10
24A Flowmeter 7300 2% 20 dm3/s 75 dm3/s 24
24B Flowmeter 8300 1% 20 dm3/s 200 dm3/s 24
24C Flowmeter 5300 5% 0 dm3/s 100 dm3/s 24
24D Flowmeter 10300 0.5% 30 dm3/s 150 dm3/s 24
24A Level 1800 0.5 dm 0 dm 200 dm 24
24B Level 2800 0.2 dm 0 dm 200 dm 24
24C Level 3800 0.1 dm 0 dm 200 dm 24
48A Flowmeter 7100 2% 20 dm3/s 75 dm3/s 48
48B Flowmeter 8100 1% 20 dm3/s 200 dm3/s 48
48C Flowmeter 5100 5% 0 dm3/s 100 dm3/s 48
48D Flowmeter 10100 0.5% 30 dm3/s 150 dm3/s 48
48A Level 1600 0.5 dm 0 dm 200 dm 48
48B Level 2600 0.2 dm 0 dm 200 dm 48
48C Level 3600 0.1 dm 0 dm 200 dm 48

With this sensor database, the maximum number of sensors that can be chosen for the
process is 56, that is to say a solution space of 256 = 7.2∗1016 solutions. This first solution
costs 394500 cost units.
The solution found by the program costs 16100 cost units and contains two sensors:

∙ a 48B Flowmeter is chosen for the feed flowrate;

∙ the level is measured by a 1B Level sensor.

This solution counts the minimum number of sensors and the maximum frequency of
measurement that can be expected. It is the optimum solution of the problem.
The computing time per iteration is about the half of the one for the stationary case because
one has only one matrix to invert for each individual (because we do not used thermody-
namic models). To avoid very long computing times, we decided to fix the stop criterion
to 100 and to restart the computation with new parameters. Indeed the first solution for
this small problem is obtained after about 10 minutes on a 1.6 GHz computer. If one is
not satisfied with that first sensor network, one can for example restart the optimization
algorithm with a reduced sensor database. Indeed, one can already say from the first one
that some types of sensor would never be chosen in the optimized solution because of their

15.1. ONE TANK 201

cost, precision or measurement period. One can also restart the program with a modified
restart file in which the initial worst solution would be replaced by alternative solutions
based on the user’s intuition and common sense.

202 CHAPTER 15. CASE STUDIES

15.2 A network of five tanks

The flowsheet of this second example is represented on figure 15.2.

F0A

F1A F1B

H1

H4

F4A F4B

F2

H2

F0B

H3

F3B

F3A

F0C

F5

H5

Figure 15.2: Flowsheet of the network of five tanks

The model of the example counts thirteen variables (five differential state variables, three
input and eight algebraic variables) related by five differential equations and eight link
equations (see equations 12.14).
The parameters of the reconciliation window are listed in table 12.23.
For each reconciliation window, one has

∙ 784 process variables

∙ 420 collocations variables

∙ 1179 constraints distributed this way:

– 392 constraints A;

– 192 constraints Ac;

– 240 constraints B;

– 108 constraints C;

– 72 constraints Cc;

15.2. A NETWORK OF FIVE TANKS 203

– 120 constraints D;

– 55 constraints E.

The size of the sensitivity matrix is 2381 x 2381.
For the design of the sensor network for this last example, three data files created during
the reconciliation phase are processed by the programme .
The key variables of the process are the levels in the tanks H1, H2, H3, H4 and H5. Their
prescribed accuracies are fixed to 2 cm. The levels in all the five tanks and the feed
flowrates F0A, F0B and F0C have to measured at least once in each reconciliation window.
The sensor database is the same as for the first example (see table 15.1).
The maximum number of sensors that can be chosen for the process is 256, that is to say
a solution space of 2256 = 1.2 ∗ 1077 solutions. This first solution costs 1309700 cost units.
The solution found by the program costs 91800 cost units and contains the thirteen fol-
lowing sensors:

∙ 1C Flowmeters are chosen for the flowrates of the streams F3A, F3B and F4A;

∙ 2C Flowmeters are chosen for the flowrates of the streams F0B and F1A;

∙ 3C Flowmeters are chosen for the flowrates of the streams F0C and F1B;

∙ 48C Flowmeters are chosen for the flowrates of the streams F0A, F2, F4B and F5;

∙ the levels in all tanks are measured by 1C Level sensors.

The number of sensors proposed in this solution is much higher than the minimum number
of sensors required to measure at least one time for each reconciliation window each input
and differential variables. The data files have been modified in a way to constrain the
algorithm to choose sensors with smaller measurement periods but he found no cheapest
solution than the presented one. This is probably due to the process dynamic. To reduce
the computing time, this could be done in two times: first of all looking for sensor locations
and then optimizing the measurement periods. The proposed solution is much better than
the initial one but it can not be certified that it is the best one.

204 CHAPTER 15. CASE STUDIES

15.3 Stirred tank reactor with heat exchange

This third example is represented on figure 15.3.

Figure 15.3: Flowsheet of the stirred tank reactor with heat exchange

The model of the example counts six variables (two differential state variables and four
input variables) related by two differential equations (see equations 12.8).
The parameters of the reconciliation window are listed in table 12.12.
For each reconciliation window, one has

∙ 294 process variables

∙ 168 collocations variables

∙ 406 constraints distributed this way:

– 0 constraints A;

– 0 constraints Ac;

– 96 constraints B;

– 144 constraints C;

– 96 constraints Cc;

– 48 constraints D;

– 22 constraints E.

The size of the sensitivity matrix is 868 x 868.
For the design of the sensor network for this last example, two data files created during
the reconciliation phase are processed by the programme .
The key variables of the process are the differential state variables, namely the reduced
temperature T and the reduced concentration CA in the reactor. The prescribed accuracies
are fixed to 0.005 and 1 % for the reduced temperature and the reduced concentration
respectively. As the process variables are all differential state variables or input variables,
all of them have to be measured at least once in each reconciliation window.
The sensor database for this example is listed on table 15.2. As the values of tempera-
tures and concentrations are reduced ones in the reconciliation files, the precision and the
measurement areas of the sensors have been changed accordingly.

15.3. STIRRED TANK REACTOR WITH HEAT EXCHANGE 205

Table 15.2: Stirred tank reactor with heat exchange: sensor database

Sensor types Annualized Accuracies Minimum Maximum Measurement
costs values values periods

1A Flowmeter 9000 2% 0 dm3/s 20 dm3/s 1
1B Flowmeter 10000 1% 0 dm3/s 20 dm3/s 1
1C Flowmeter 7000 5% 0 dm3/s 20 dm3/s 1
1D Flowmeter 12000 0.5% 0 dm3/s 20 dm3/s 1
1A Concentration (reduced) 250000 5% 0 10 1
1B Concentration (reduced) 300000 2% 0 10 1
1C Concentration (reduced) 350000 1% 0 10 1
1D Concentration (reduced) 400000 0.5% 0 10 1
1A Temperature (reduced) 5000 0.01 0 10 1
1A Temperature (reduced) 6000 0.005 0 10 1
1A Temperature (reduced) 7000 0.0025 0 10 1
2A Flowmeter 8500 2% 0 dm3/s 20 dm3/s 2
2B Flowmeter 9500 1% 0 dm3/s 20 dm3/s 2
2C Flowmeter 6500 5% 0 dm3/s 20 dm3/s 2
2D Flowmeter 11500 0.5% 0 dm3/s 20 dm3/s 2
2A Concentration (reduced) 245000 5% 0 10 2
2B Concentration (reduced) 295000 2% 0 10 2
2C Concentration (reduced) 345000 1% 0 10 2
2D Concentration (reduced) 395000 0.5% 0 10 2
2A Temperature (reduced) 4700 0.01 0 10 2
2A Temperature (reduced) 5700 0.005 0 10 2
2A Temperature (reduced) 6700 0.0025 0 10 2
3A Flowmeter 8200 2% 0 mol/dm3 20 mol/dm3 3
3B Flowmeter 9200 1% 0 mol/dm3 20 mol/dm3 3
3C Flowmeter 6200 5% 0 mol/dm3 20 mol/dm3 3
3D Flowmeter 11200 0.5% 0 mol/dm3 20 mol/dm3 3
3A Concentration (reduced) 242000 5% 0 10 3
3B Concentration (reduced) 292000 2% 0 10 3
3C Concentration (reduced) 342000 1% 0 10 3
3D Concentration (reduced) 392000 0.5% 0 10 3
3A Temperature (reduced) 4500 0.01 0 10 3
3A Temperature (reduced) 5500 0.005 0 10 3
3A Temperature (reduced) 6500 0.0025 0 10 3
4A Flowmeter 7900 2% 0 dm3/s 20 dm3/s 4

continued on next page

206 CHAPTER 15. CASE STUDIES

Sensor types Annualized Accuracies Minimum Maximum Measurement
costs values values periods

4B Flowmeter 8900 1% 0 dm3/s 20 dm3/s 4
4C Flowmeter 5900 5% 0 dm3/s 20 dm3/s 4
4D Flowmeter 10900 0.5% 0 dm3/s 20 dm3/s 4
4A Concentration (reduced) 239000 5% 0 10 4
4B Concentration (reduced) 289000 2% 0 10 4
4C Concentration (reduced) 339000 1% 0 10 4
4D Concentration (reduced) 389000 0.5% 0 10 4
4A Temperature (reduced) 4300 0.01 0 10 4
4B Temperature (reduced) 5300 0.005 0 10 4
4C Temperature (reduced) 6300 0.0025 0 10 4
5A Flowmeter 7700 2% 0 dm3/s 20 dm3/s 5
5B Flowmeter 8700 1% 0 dm3/s 20 dm3/s 5
5C Flowmeter 5700 5% 0 dm3/s 20 dm3/s 5
5D Flowmeter 10700 0.5% 0 dm3/s 20 dm3/s 5
5A Concentration (reduced) 237000 5% 0 10 5
5B Concentration (reduced) 287000 2% 0 10 5
5C Concentration (reduced) 337000 1% 0 10 5
5D Concentration (reduced) 387000 0.5% 0 10 5
5A Temperature (reduced) 4100 0.01 0 10 5
5B Temperature (reduced) 5100 0.005 0 10 5
5C Temperature (reduced) 6100 0.0025 0 10 5
10A Flowmeter 7500 2% 0 dm3/s 20 dm3/s 10
10B Flowmeter 8500 1% 0 dm3/s 20 dm3/s 10
10C Flowmeter 5500 5% 0 dm3/s 20 dm3/s 10
10D Flowmeter 10500 0.5% 0 dm3/s 20 dm3/s 10
10A Concentration (reduced) 235000 5% 0 10 10
10B Concentration (reduced) 285000 2% 0 10 10
10C Concentration (reduced) 335000 1% 0 10 10
10D Concentration (reduced) 385000 0.5% 0 10 10
10A Temperature (reduced) 3900 0.01 0 10 10
10B Temperature (reduced) 4900 0.005 0 10 10
10C Temperature (reduced) 5900 0.0025 0 10 10
24A Flowmeter 7300 2% 0 dm3/s 20 dm3/s 24
24B Flowmeter 8300 1% 0 dm3/s 20 dm3/s 24
24C Flowmeter 5300 5% 0 dm3/s 20 dm3/s 24
24D Flowmeter 10300 0.5% 0 dm3/s 20 dm3/s 24
24A Concentration (reduced) 233000 5% 0 10 24
24B Concentration (reduced) 283000 2% 0 10 24

continued on next page

15.3. STIRRED TANK REACTOR WITH HEAT EXCHANGE 207

Sensor types Annualized Accuracies Minimum Maximum Measurement
costs values values periods

24C Concentration (reduced) 333000 1% 0 10 24
24D Concentration (reduced) 383000 0.5% 0 10 24
24A Temperature (reduced) 3700 0.01 0 10 24
24B Temperature (reduced) 4700 0.005 0 10 24
24C Temperature (reduced) 5700 0.0025 0 10 24
48A Flowmeter 7100 2% 0 dm3/s 20 dm3/s 48
48B Flowmeter 8100 1% 0 dm3/s 20 dm3/s 48
48C Flowmeter 5100 5% 0 dm3/s 20 dm3/s 48
48D Flowmeter 10100 0.5% 0 dm3/s 20 dm3/s 48
48A Concentration (reduced) 231000 5% 0 10 48
48B Concentration (reduced) 281000 2% 0 10 48
48C Concentration (reduced) 331000 1% 0 10 48
48D Concentration (reduced) 381000 0.5% 0 10 2
48A Temperature (reduced) 3500 0.01 0 10 2
48B Temperature (reduced) 4500 0.005 0 10 2
48C Temperature (reduced) 5500 0.0025 0 10 2

The maximum number of sensors that can be chosen for the process is 168, resulting in a
solution space of 2168 = 3.7 ∗ 1050 solutions. This first solution costs 20739600 cost units.
The solution found by the program costs 614100 cost units and contains the six following
sensors:

∙ a 5C flowmeters is chosen for the feed flowrate Q;

∙ a 3A Concentration (reduced) is chosen for the feed concentration CA0 ;

∙ a 1C Concentration (reduced) is chosen for the concentration in the reactor CA;

∙ the feed temperature T0 is measured by a 2B Temperature (reduced) thermocouple;

∙ the cooling temperature T is measured by a 1B Temperature (reduced)thermocouple;

∙ the temperature in the reactor TC is measured by a 2A Temperature (reduced) ther-
mocouple.

As for the previous example, the solution presented before is the best one that has been
obtained. The number of sensors is the smallest that can be expected (because of the fact
that input and differential variables have to be measured at least once in each reconciliation
window) but we have no guarantee that they represent the global optimal solution for this
reactor.

Chapter 16

Conclusions part III

A method has been proposed to carry out the design of sensor networks for dynamic
processes. It is based on the estimation of a posteriori variances that can be calculated
when differential equations are discretized by means of orthogonal collocations.
This method provides also an observability criterion. To complete the requirements, initial
conditions on input and differential variables have to be known to allow dynamic data
reconciliation.
The proposed method goes a step further than the one described by Benqlilou, which is
based on the state estimation by Kalman filter (Benqlilou et al., 2003), (Benqlilou, 2004),
(Benqlilou et al., 2005). Indeed energy balances can be taken into account and inputs
need not to be considered as perfectly known. Thus they can be estimated as well as
their a posteriori variances. This implies that the variances of the input variables have a
contribution to the variances of the other process variables to which they are related. The
choice of the sensors that will measure them is thus of a great importance.
The time redundancy is also considered for each measured variable. The measurement
frequency allowing to reach the imposed constraints can be optimized.
The method allowed to find a solution for all studied examples. Those solutions are always
much better than the initial ones but there is no guarantee global optimal solution has
been located.

209

Chapter 17

General conclusions and future work

This study proposed several variants of a technique allowing sensor network design based
on data reconciliation and a posteriori variances estimation. The choice of a sensor being
a binary decision, the problem is highly combinatorial. Furthermore, it is non derivable
and often multimodal. So, the optimization is carried out with a genetic algorithm.
Important savings could be achieved if such a method was systematically applied before
the construction of a new plant. Indeed, people who invest in industries always think to
reduce the investment: the sensor networks that are installed are generally reduced so that
the minimum control can be carried out. However, some variables whose knowledge seems
to be without interest at the first look may reveal to be very important for the knowledge
and control of the entire process. The installation of new sensors once the production has
been started can be very expensive because of the loss of production due to the plant shut
down that may be required during the installation. Moreover the global cost of the new
sensor network can then reveal to be more important than the one that would have been
determined by design method.
This method has first been developed for steady-state processes. In that case, the sensor
network selected by the algorithm should be the cheapest one which allows the computation
of all process variables and the estimation of all process key variables within a prescribed
accuracy. Process equations are linearized to carry out the data reconciliation problem and
the estimation of a posteriori variances, thus non linear processes can be treated as well
as linear ones so that energy balances can also be treated. However, one should note that,
because of the linearisation, the conclusions concerning the sensor network found by the
program for a specified operating point can not be transposed to another operating point.
So, when a process has several possible operating points, the sensor network is tested
for all of them despite an increase of the computing time. The proposed method gives
good results for all studied processes. However, as genetic algorithms are used to carry
out the optimization, one can not guarantee that the solution obtained by the algorithm
corresponds to the global optimum. One can just note that it is much better than the
initial one. The only way to ensure that the optimal solution is reached should be to test
all of them. Unfortunately, that would take more than a human being life time.
The computing time appears to be quite long for larger problems, and, due to the sensitivity

211

212 CHAPTER 17. GENERAL CONCLUSIONS AND FUTURE WORK

matrix inversion, it increases more quickly than the size of the process. That time can be
reduced using parallelization techniques. Global parallelization and distributed genetic
algorithms allow reducing the computing time. No method appears to outperforms the
other for all studied processes. In the case of global parallelization, one can note that
the computing time is inversely proportional to the number of processors but, as time
devoted to communications increases with the number of processors, the efficiency also
decreases when the number of processors increases. This loss of efficiency becomes quickly
very important when the number of processors gets close to the number of goal function
evaluations per generation. So, to optimize the computing ressources, one has to find a
trade off between the computing time and the number of processors. Such phenomena does
not appear for distributed genetic algorithm. Indeed, the way followed to find the solution
is different for each number of sub-populations. Moreover, in the case of distributed genetic
algorithms, when the size of sub-populations is small, it is sometimes better to relax the
stop criterion and increase the size of sub-populations by the same factor. So, the user of
the parallelized algorithm never knows in advance if he has chosen the fastest method but
he is sure to reach the solution within a shorter computing time.
The option of the design of a sensor network that remains observable in the case of one
sensor failure has been developed. The advantage of such network is that locating the
failing sensor is made easier by the redundancy that has been introduced. Moreover the
plant remains controllable despite the failure.

The sensor network design algorithm as been modified to solve the problem of process fault
detection and localisation. In that case, the faults that should be detected are simulated
and the chosen sensor network has to be able to detect and locate all of them. Leaks
in storage tanks and pipes have been simulated in water networks but other faults can
be simulated. To detect a fault, the residuals connected to that fault have to be higher
than a lower threshold several consecutive times. The necessary number of measurement
times to declare a fault is a trade off between the speed of detection and the necessity to
differentiate between temporary measurement errors and process faults.

The last variant of the sensor network design algorithm is devoted to dynamic processes.
This method being based on the estimation of a posteriori variances, a technique allowing to
reconcile process variables at all measurement times and to estimates a posteriori variances
in the case of dynamic processes was necessary.
Several dynamic data reconciliation approached were studied:

∙ one filtering technique: the extended Kalman filter;

∙ two moving horizon techniques:

– the explicit integration of differential equations using the fourth order Runge-
Kutta method;

– the discretization of differential equations by orthogonal collocations.

In those two methods, a successive quadratic programming algorithm is used to carry
out the optimization. When orthogonal collocations are applied, process variables

213

and variables coming from the discretization can be optimized sequentially or simul-
taneously.

All methods allow to reconcile the data but the simultaneous moving horizon algorithm
based on orthogonal collocations gives the best reconciled values. Technically, Kalman
filter and the explicit integration method can not be recommended in the case of our
study. Indeed, filtering methods do not allow to estimate input variables, so that it is not
possible to develop a method to estimate a posteriori variances taking precisions of input
variables into account. Moreover, the extended Kalman filter is not able to solve properly
strongly non linear problems. The explicit integration method can hardly be extended
by an algorithm to estimate a posteriori variances. On the other hand methods used
in steady-state for a posteriori variances computing can be transposed to the integration
method based on orthogonal collocations.
Orthogonal collocation-based methods gives good results for all the studied examples: the
profiles of reconciled values follow the simulated values, a posteriori variances are much
smaller than a priori ones and are better inside the reconciliation window than at its
extremities, and errors are distinctly reduced. There remains nevertheless a problem with
input variables whose reconciled values follow more the noise than reconciled values of
differential state and algebraic variables.
From the discretized differential equations and the Lagrangian formulation of the dynamic
data reconciliation problem, the sensitivity matrix of the global system of equations (pro-
cess equations and equations coming from the discretization) can be estimated. If that
matrix is non singular, all process variables can be computed for all measurement times
with their a posteriori standard deviations. So, the non singularity of the sensitivity matrix
appears to be an observability criterion that can be verified after reconciliation. Never-
theless, that a posteriori observability criterion is not enough to ensure data reconciliation
with orthogonal collocations. Indeed, initial conditions for input and differential variables
have to be known to start the data reconciliation.

The sensor network design algorithm suggested here for the dynamic problems goes further
than the one described by Benqlilou based on the state estimation by means of Kalman
filter. Indeed, it allows to deal with energy balances and measured input variables. So,
the precision of the input variables has an influence on a posteriori standard deviation of
differential state and algebraic variables. The choice of sensors that will measure input
variables is not innocent. The choice of frequency of the measurement has been introduced
in the algorithm to take into account the temporal redundancy. The method gives satisfying
results for all studied examples.

A way to improve the convergence of the successive quadratic programming in the case of
the dynamic data reconciliation should be to deal with semi-analytical derivatives instead
of numerical derivatives. So, one could compute the analytical derivative of the part of the
objective function that is common for all processes and use numerical differentiation for
the part related to constraints A, Ac, D which are different for each process. With such a
method, one can also try the interior point optimization algorithm developed by Cervantes

214 CHAPTER 17. GENERAL CONCLUSIONS AND FUTURE WORK

et al. Indeed, this method is sensitive to numerical noise, and is known not to be able to
give good results with numerical derivatives.
Another improvement that should be done in the dynamic data reconciliation algorithm
is the modification of input variables representation. Indeed, in the proposed version,
input variables are linearized inside the interpolation interval. Another approach could
be the use of orthogonal collocations. In that case, one has to choose if the discretization
intervals are the same for input and differential state variables or not. When input variables
are simulated as constant for the whole discretization or interpolation interval, the best
approach should be to set them constant on the interval instead of trying to model the
measurements by a polynomial. So, a mixed version allowing to chose between those three
representations in function of the context would probably be the best approach concerning
input variables.

Publications

C.Gerkens, C.Ullrich, and G.Heyen (2009). Use of a moving horizon dynamic data valida-
tion method based on orthogonal collocations for the design of sensor networks. Submitted
to Computers and Chemical Engineering.

Gerkens, C. (2002). Conception rationnelle de systèmes de mesure dans les procédés
chimiques. Master’s thesis, University of Liège, Applied Science Faculty, Laboratoire
d’analyse et de synthèse des systèmes chimiques.

Gerkens, C. (2003). Synthèse optimale de réseaux de capteurs : résolution au moyen de cal-
culateurs parallèles. d.e.a.’s thesis, university of liège, applied science faculty, laboratoire
d’analyse et de synthèse des systèmes chimiques.

Gerkens, C. and Heyen, G. (2004a). Sensor network design using genetic algorithm. Pro-
ceedings of MMM IFAC Symposium.

Gerkens, C. and Heyen, G. (2004b). Use of parallel computers in rational design of redun-
dant sensor networks. Proceedings of Escape 14 Congress.

Gerkens, C. and Heyen, G. (2005). Use of parallel computers in rational design of redundant
sensor networks. Computers and Chemical Engineering, 29(6):1379–1387.

Gerkens, C. and Heyen, G. (2008). Sensor placement for fault detection and localisation.
Proceeding of Escape 18 Congress.

Gerkens, C., Ullrich, C., Mateus, M., and G.Heyen (2006). Comparaison de techniques de
validation dynamique de données. Proceedings of SIMO 2006 Congress.

Heyen, G. and Gerkens, C. (2002). Application d’algorithmes génétiques à la synthèse de
systèmes de mesure redondants. Proceedings of SIMO 2002 Congress.

Ullrich, C., Heyen, G., and Gerkens, C. (2009). Variance of estimates in dynamic data
reconciliation. Proceeding of Escape 19 Congress.

215

Bibliography

Abu-el zeet, Z. H., Becerra, V. M., and Roberts, P. D. (2002). Combined bias ansd outlier
identification in dynamic data reconciliation. Computers chem. Engng., 26:921–935.

Albuquerque, J. and Biegler, L. (1995). Decomposition algorithms for on-line estimation
with nonlinear models. Computers and Chemical Engineering, 19(10):1031–1039.

Albuquerque, J. and Biegler, L. (1996). Decomposition algorithms for on-line estimation
with nonlinear dae models. Computers and Chemical Engineering, 21(13):283–299.

Ali, Y. and Narasimhan, S. (1993). Sensor network design for maximizing reliaility of linear
processes. AICHE Journal, 39(5):820–828.

Ali, Y. and Narasimhan, S. (1995). Redundant sensor network for linear processes. AIChe
Journal, 41:2237–2249.

Almasy, G. (1975). Checking and correction of measurements on the basis of linear system
model. Porblem of Control and Information Theory, 4:57.

Amand, T. (1999). Application de la validation en ligne à la détection et la localisation
de pannes. Master’s thesis, University of Liège, Applied Science Faculty, Laboratoire
d’analyse et de synthèse des systèmes chimiques.

Amand, T., Heyen, G., and Kalitventzeff, B. (2001). Plant monitoring and fault detection:
synergy between data reconciliation and principal component analysis. Computers and
Chemical Engineering, 25(4-6):501–507.

Bagajewicz, M. (1997). Process plant instrumentation : design and upgrade (Chapter 6).
Technomic Publishing Company, Lancaster, Pensiylvania.

Bagajewicz, M. and Jiang, Q. (1997). Integral approach to plant linear dynamic reconcili-
ation. AICHE Journal, 43(10):2546–2558.

Bagajewicz, M. and Jiang, Q. (1998). Gross error modelling and detection in plant linear
dynamic recoonciliation. Computers and Chemical Engineering, 22(12):1789–1809.

Bagajewicz, M. and Sanchez, M. (1999a). Design and upgrade of non redundant and
redundant linear sensor networks. AICHE Journal, 45(9):1927–1938.

217

218 BIBLIOGRAPHY

Bagajewicz, M. and Sanchez, M. (1999b). Duality of sensor network design models for
parameter estimation. AICHE Journal, 45(3):661–664.

Bai, S., Thibault, J., and McLean, D. (2006). Dynamic data reconciliation: an alterntive
to kalman filter. Journal of Process Control, 16:485–498.

Barbosa, V., Wolf, M., and Fo, R. (2000). Development of data reconciliation for dynamic
nonlinear system: application the polymerisation reactor. Computers and Chemical
Engineering, 24:501–506.

Belsim (2004). Vali4 User’s Guide. B-4470 Saint-Gerges-sur-Meuse, Belgium.

Benqlilou, C. (2004). Data reconciliation as a framework for chemical processes optimiza-
tion and control. PhD thesis, Universitat Politècnica de Catalunya.

Benqlilou, C., Musulin, E., Bagajewicz, M., and Puigjaner, L. (2003). Intrumentation
design and upgrade for optimal kalman filtering. Computer Aided Chemical Engineering,
14:371–376.

Benqlilou, C., Musulin, E., Bagajewicz, M., and Puigjaner, L. (2005). Instrumentation
design and upgrade for optimal kalman filtering. Journal of process control, 15(6):629–
638.

Bhagwat, A., Srinivasan, R., and Krishnaswamy, P. (2003a). Fault detection during process
transitions. Chemical Engineering Science, 58(2):309–325.

Bhagwat, A., Srinivasan, R., and Krishnaswamy, P. (2003b). Multi-linear model-based
fault detection during process transitions. Chemical Engineering Science, 58(9).

Bhushan, M., Narasimhan, S., and Rengaswamy, . R. (2008). Robust sensor network design
for fault diagnosis. Computers and Chemical Engineering, 32:1067–1084.

Biegler, L. (1984). Solution of dynamic optimization problems by successive quadratic
programming and orthogonal collocation. Computers and Chemical Engineering,
8(3/4):243–248.

Biegler, L. (2007). An overview of simultaneous strategies for dynamic optimization. Chem-
ical Engineering and Processing, 46(11):1043–1053.

Biegler, L., Cervantes, A., and Wächter, A. (2002). Advances in simultaneous strategies
ofr dynamic process optimization. Chemical Engineering Science, 57:575–593.

Binder, T., Blank, L., Dahmen, W., and Marquardt, W. (1998). Nonlinear model based
process control, chapter Towards multiscale dynamic data reconciliation, pages 623–665.
NATO ASI Series. Kluwer Academic Publishers.

Binder, T., Blank, L., Dahmen, W., and Marquardt, W. (2002). On the regularization of
dynamic data reconciliation problems. Journal of Process Control, 12:557–567.

BIBLIOGRAPHY 219

Broyden, C. (1965). A class of methods for solving non linear simultaneous equations.
Mathematics of Compututations, 19:577–593.

Bullnheimer, B., Kotsis, G., and Strau, C. (1997). Parallelization strategies for the ant
system. http://www.ani.univie.ac.at/ gabi/papers/kluwer.ps.gz.

Carnero, M., Hernandez, J., Sanchez, M., and Bandoni, A. (2005). On the solution of
the instrumentation selection problem. Industrial and Engineering Chemical Research,
44:358–367.

Carroll, D. (2001). Fortran genetic algorithm driver version 1.7.
cuaerospace.com/carroll/ga.html, consulted on May 2004.

Cervantes, A., Wächter, A., Tütüncü, R., and Biegler, L. (2000). A reduce space interior
point strategy for optimization of differential algebraic systems. Computers and Chemical
Engineering, 24:39–51.

Chen, H. and Stadherr, M. (1981). A modification of powell’dogleg algorithm for solving
systems of non-linear equations. Computers and Chemical Engineering, 5(3):143–150.

Chen, H. and Stadherr, M. (1984). On solving large sparse nonlinear equation systems.
Computers and Chemical Engineering, 8(1):1–7.

Chen, J. and Romagnoli, J. (1998). A strategy for simultaneous dynamic data reconciliation
and outlier detection. Computers and Chemical Engineering, 22(4/5):559–562.

Chen, T., Morris, J., and Martin, E. (2008). Dynamic data rectification using particle
filters. Computers and Chemical Engineering, 32:451–462.

Colorni, A., Dorigo, M., Maffiolo, F., Maniezzo, V., Righini, G., and Trubian, M. (1996).
Heuristics form nature for hard combinatorial optimization problems. Int. Trans. Opl.
Res., 3(1):1–21.

Crowe, M. (1989). Observalibilty and redundancy of process data for steady-state recon-
ciliation. Chemical Engineering Science, 44:2909–2917.

Davidon, W. (1975). Optimally conditionned optimization algorithm without line search.
Math. Programming, 9:1–30.

de Wouwer, A. V., Point, N., Porteman, S., and Remy, M. (2000). An approach to the
selection of optimal sensor locations in distributed parameter systems. Journal of Process
Control, 10:291–300.

Dorigo, M., Bonabeau, E., and Theraulaz, G. (2000). Ant algorithm and stimergy. Future
generation computers systems, 16:851–871.

Feo, T. and Resende, M. (1995). Greedy randomized adaptive search procedure. Journal
of Global Optimization.

220 BIBLIOGRAPHY

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence through Simulated
Evolution. John Wiley.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer, Norwell, MA.

Goldberg, D. (1989). Genetic algorithms in search, optimisation and machine learning.
Addison-Wesley Publishing Company, Reading, Massachusetts.

Gropp, W. (2005). MPICH2 User’s Guide. Mathematics and Computer Science Division
Argonne National Laboratory, version 1.0.3 edition.

Gropp, W., Lust, E., and Skjellum, A. (1999a). Using MPI: portabe parallel programming
with the message passing interface. The MIT Press, Cambridge, London, second edition.

Gropp, W., Lust, E., and Thakur, R. (1999b). Using MPI-2: advanced features of the
message-passing interface. The MIT Press, second edition.

Gutjahr, W. (2000). A graph-based ant system and its convergence. Future Generation
Computer Systems, 16:873–888.

Harwell (1990). Harwell subroutine library. Oxfordshire.

Haseltine, E. and Rawlings, J. (2005). Critical evaluation of extended kalman filtering and
moving-horizon estimation. Industry and Engineering Chemical Research, 44(8):2451–
2460.

Herrera, F., Lozano, M., and Moraga, C. (1999). Hierarchical distributed genetic algo-
rithms. International Journal of Intelligent Systems, 14(11):1099–1121.

Heyen, G., Dumont, M., and Kalitventzeff, B. (2002). Computer-aided design of redundant
sensor networks. Proceedings of Escape 12.

Heyen, G. and Gerkens, C. (2002). Application d’algorithmes génétiques à la synthèse de
systèmes de mesure redondants. Proceedings of SIMO 2002 Congress.

Heyen, G., Maréchal, E., and Kalitventzeff, B. (1996). Sensitivity calculations and vari-
ance analysis in process plant measurement reconciliation. Computers and Chemican
Engineering, 20S:530–544.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Jang, S.-S., Joseph, B., and Mukai, H. (1986). Comparison of two approaches to on-line
parameter and state estimation of nonlinear systems. Ind. Eng. Chem. Process Des.
Dev., 25:809–814.

Jia, F., Martin, E., and Morris, A. (1998). Non-linear principal components analysis for
process fault detection. Computers and Chemical Engineering, 22(Suppl):S851–S854.

BIBLIOGRAPHY 221

Joris, P. and Kalitventzeff, B. (1987). Process measurements analysis and validation. Pro-
ceedings of Chemical Engineering Conference: use of computers in chemical engineering,
pages 41–46.

Kabouris, J. and Georgakavos, A. (1996). Parameter and state estimation of the activated
sludge process: on-line algorithm. Wat. Res., 30(12):3115–3129.

Kalman, R. (1960). A new approach to linear filtering and prediction problems. Transac-
tions of the ASME-Jornal of Basic Engineering, 82:35–45.

Kalman, R. and Bucy, R. (1961). New results in linear filtering and prediction problems.
Transactions of the ASME-Jornal of Basic Engineering, 83:95–107.

Kameswaran, S. and Biegler, L. (2006). Simultaneous dynamic optimization strategies:
recent advances and challenges. Computers and Chemical Engineering, 30:1560–1575.

Karjala, T. and Himmelblau, D. (1996). Dynamic rectification of data via recurrent neural
nets and the extended kalman filter. AICHE Journal, 42(8):2225–2239.

Kim, I.-W., Liebman, M., and Edgar, T. (1990). Robust error-in-variables estimation using
nonlinear programming techniques. AICHE Journal, 36(7):985–993.

Kim, I.-W., Liebman, M., and Edgar, T. (1991). A sequential error-in-variables method
for nonlinear dynamic systems. Computers and Chemical Engineering, 15(9):663–670.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220:671–680.

Kong, M., Chen, B., He, X., and Hu, S. (2004). Gross error identification for dynamic
system. Computers and Chemical Engineering, 29(1):191–197.

Kong, M., Chen, B., and Li, B. (2000). An integral approach to dynamic data rectification.
Computers and Chemical Engineering, 24:749–753.

Kretsovalis, A. and Mah, R. (1987). Effect of redundancy on estimation accuracy in process
data reconciliation. Chemical Engineering Science, 42(9):2115–2121.

Kuehn, D. and Davidson, H. (1961). Computer control ii: mathematics of control. Chemical
Engineering Progress, 16(10/11):1653–1672.

Kyriakopoulou, D. (1997). Development and implementation of an interior point optimiza-
tion algorithm for process engineering. PhD thesis, Université de Liège.

Lang, Y.-D. and Biegler, L. (2007). A software environment for simultaneous dynamic
optimization. Computers and Chemical Engineering, 31:931–942.

222 BIBLIOGRAPHY

Liebman, M., Edgar, T., and Lasdon, L. (1992). Efficient data reconciliation and estimation
for dynamic processes using nonlinear programing techniques. Computers and Chemical
Engineering, 16(10/11):963–986.

Madron, F. (1992). Process plant performance, measurement and data processing for opti-
mization and retrofit (section 6.3). Ellis Horwood, New-York.

Mah, R., Stanley, G., and Downing, D. (1976). Reconciliation and rectification of process
flow and inventory data. Ind. Eng. Chem., Process Des. Dev., 15:175–183.

Mah, R. and Tamhane, A. (1982). Detection of gross error in process data. AICHE Journal,
28(5):828–830.

McBrayer, K. and Edgar, T. (1995). Bias detection and estimation in dynamic data
reconciliation. Journal of Process Control, 5(4):285–289.

McBrayer, K., Soderstrom, T., Edgar, T., and Young, R. (1998). The application of non
linear dynamic data reconciliation to plant data. Computers and Chemical Engineering,
22(12):1907–1911.

Moraal, P. and Grizzle, J. (1995). Observer design for nonlinear systems with discrete-time
measurements. IEEE Transaction on Automatic Control, 40(3):395–404.

Muradore, R., Bezzo, F., and Barolo, M. (2006). Optimal sensor location for distributed-
sensor systems using multivariate regression. Computers and Chemical Engineering,
30:521–534.

Narasimhan, S. and Jordache, C. (2000). Data reconciliation and gross error detection: an
intelligent use of process data. Gulf Publishing Company, Houston, Texas.

Narasimhan, S. and Mah, R. (1987). Generalized likelihood ratio method for gross errors
identification. AICHE Journal, 33(9):1514–1521.

Narasimhan, S. and Mah, R. (1988). Generalized likelihood ratios for gross errors identifi-
cation in dynamic processes. AICHE Journal, 34(8):1321–1331.

Norgaard, M., Poulsen, N., and Ravn, O. (2000). New developpements in state estimation
for nonlinear systems. Automatica, 36:1627–1638.

Raff, T., Ebenbauer, C., Findeisen, R., and Allgöer, F. (2005). Control and observer
design for non linear finite and infinite dimensional systems, chapter Remarks on moving
horizon state estimation with guaranteed convergence, pages 67–80. Springer.

Ragot, J. and Maquin, D. (2006). Fault measurement detection in an urban water supply
network. Journal of Process Control, 16(9):887–902.

BIBLIOGRAPHY 223

Ragot, J., Maquin, D., and Dibo, M. A. (2003). Sensor fault detection and isolation. a blind
approach. Proceedings of the Fifth international symposium on intelligent components
and instruments for control.

Rao, V. (2000). Moving horizon strategies for the constrained monitoring and control of
nonlinear discrete-time systems. PhD thesis, University of Wisconsin-Madison.

Rechenberg, I. (1971). Evolutionsstrategie - Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. PhD thesis, Technical University of Berlin. reprinted by
Fromman-Holzboog (1973).

Reilly, D. and Carpani, R. (1963). Application of statistical theory of adjustment of ma-
terial balances. Proceedings of the 13th Canadian Chemical Engineering Congress.

Renfro, J., Morshedi, A., and Asbjornsen, O. (1987). Simultaneous optimization and solu-
tion of systems described by differential/algebraic equations. Computers and Chemical
Engineering, 11(5):503–517.

Romagnoli, J. and Stephanopoulos, G. (1981). Rectification of process measurement data
in the presence of gross error. Chemical Engineering Science, 16(11):1849–1863.

Rousseaux-Peigneux, P. (1988). Filtre de Kalman hierarchisé pour l’estimation d’état dy-
namique de grands systèmes électriques. PhD thesis, Université de Liège.

Schmidt, S. (1980). The kalman filter: its recognition and development for aerospace
applications. Journal of Guidance and Control, 4(1):4–10.

Schwefel, H.-P. (1974). Numerische Optimierung von Computer-Modellen. PhD thesis,
University of Berlin. reprinted by Birkhäuser (1977).

Sen, S., Narasimhan, S., and Deb, K. (1998). Sensor network design of linear processes
using genetic algorithms. Computers and Chemical Engineering, 22(3):385–390.

Shelokar, P., Jayaraman, V., and Kulkarni, B. (2004). An ant colony approach for cluster-
ing. Analytica Chimica Acta, 509:187–195.

Singh, A. and Hahn, J. (2005). Determining optimal sensor locations for state and pa-
rameter estimation for stable nonlinear systems. Industry and Engineering Chemical
Research, pages 5645–5659.

Talbi, E., Roux, O., Fonlupt, C., and Robillard, D. (2001). Parallel ant colonies for the
quadratic assignement problem. Future Generation Computer Systems, 17:441–449.

Vachhani, P., Narasimhan, S., and Rengaswamy, R. (2006). Robust and reliable estima-
tion via unscented recursive nonlinear dynamic data reconciliation. Journal of Process
Control, 16(10):1075–1086.

224 BIBLIOGRAPHY

Vachhani, P., Rengaswamy, R., and Venkatasubramanian, V. (2001). A framework for
integrating diagnostic knowledge with non linear optimisation for data reconciliation
and parameter estimayion in dynamic systems. Chemical Engineering Science, 56:2133–
2148.

Vaclavek, V. (1968). Studies on system engineering: on the application of the calculus
of observations in calculuations of chemical engineering balances. Coll. Czech. Chem.
Commun., 34:3653–3660.

Vaclavek, V. (1969). Studies on system engineering: optimal choice of the balance mea-
surements in complicated chemical engineering systems. Chemical Engineering Science,
24:947–955.

Verny, V. (1985). A thermodynamical approach to the travelling salesman problem: an
efficient simulation algorithm. Journal of Optimization Theory and Applications, 45:41–
51.

Villadsen, J. and Michelsen, M. (1978). Solution of differential equation models by polyno-
mial approximation. Prentice-Hall, Englewood Cliffs, New Jersey.

Villadsen, J. and Stewart, W. (1967). Solution of boundary-value problems by orthogonal
collocation. Chemical Engineering Science, 22:1483–1501.

Wailly, O. and Héraud, N. (2005). Cost-optimal design of reliable sensor networks extended
to multi-linear system. Computers and Chemical Engineering, 29:1083–1087.

Walfraff, W., Dochain, D., Bourrel, S., and Magnus, A. (1998). On the use of observability
measures for sensor location in tubular reactor. Journal of Process Control, 8(5-6):497–
505.

Wally, O., Héraud, N., and Malasse, O. (2008). Design of instrumentation in process plants
using groëbner bases. Computers and Chemical Engineering, 32:2179–2188.

Wang, F., Jia, X., Zheng, S., and Yue, J. (2004). An improved mt-nt method for gross error
detection and data reconciliation. Computers and Chemical Engineering, 28:2189–2192.

Wang, H., Song, Z., and Wang, H. (2002). Statistical process monitoring using improved
pca with optimized sensor locations. Journal of Process Control, 12(6):735–744.

Welch, G. and Bishop, G. (2001). Annual conference on computer graphics and interactive
techniques, chapter An introduction to Kalman Filter. ACM Press, Addison-Wesley, Los
Angeles, Californie, USA, 2001 edition.

Wongrat, W., Srinophakun, T., and Srinophakun, P. (2005). Modified genetic algorithm for
nonlinear data reconciliation. Computers and Chemical Engineering, 29(5):1059–1067.

Appendix A

Sensor network optimization method

A.1 Introduction

Many optimization problems dealing with engineering computer science, management, ad-
ministration... can not be solved satisfactory or practically by a problem-specific algorithm.
Metaheuristic methods have been created to solve such problems. They consist of heuristic
methods for solving very large classes of computational problems by combining several
black-box procedures given by the user in an efficient way. Those procedures are generally
also heuristic methods. Metaheuristics are commonly used to solve combinatorial opti-
mization problems or problems that can be translated into that form. Many methods of
this class model processes that take place in nature.
The goal of combinatorial optimization is to find a discrete mathematical object that
minimizes or maximizes an arbitrary objective function given by the user. Those objects
are called states and the set of all candidate states, the search space. The nature of the
states and the search space depends on the optimization problem. The objective function
to be optimized is called the goal function and is given by the user in the form of a black-
box procedure that evaluates the function of the studied state. More besides the objective
function, it may be asked to the user to provide other black-box procedures that produce
a new random state or several variants of a given state, choose one state between several,
give upper and lower bounds for the objective function...
Metaheuristics can be classified between iterative and constructive heuristics:

∙ Iterative heuristics start with a complete feasible solution and change this current
state thanks to an iterative process in order to improve the value of the goal function.
A typical case of iterative heuristics is local search. In that method, the new state is
derived from the current solution, which is always complete and feasible, by means
of a mutator procedure. The set of new states produced by the mutator is called the
neighborhood of the current state.

∙ In constructive heuristics the solution is generated "from scratch" by successive ad-
ditions of certains elements or components, with or without backtracking (removal

225

226 APPENDIX A. SENSOR NETWORK OPTIMIZATION METHOD

of the elements that have been added at an earlier step). A typical case of con-
structive heuristics is the greedy heuristics. In that method, the final solution is
successively built up in a linear process without backtracking, governed by the gains
of the components that are allowed to be added at a certain step.

An other classification can be made between single-run and repetitive heuristics:

∙ In the case of single-run heuristics, the algorithm stops as soon as a certain internal
condition is satisfied. For example, this condition is reaching a local optimum in the
case of local search and having finished the construction procedure in the case of
greedy heuristics.

∙ In repetitive heuristics the user may control the amount of computation time he wants
to invest so that the quality of the final solution is a function of the invested compu-
tation time. Genetic algorithms, simulated annealing, greedy randomized adaptive
search procedure are representatives of this class.

Repetitive heuristics may reach solutions of very high quality but at a price of very large
computational time, whereas single-run heuristics are generally faster but often provide
solutions of moderate quality.

In this chapter, genetic algorithms are described. That algorithm has been chosen because
the sensor network design problem is generally multimodal and involves many binary de-
cisions. Moreover, as it will be shown in the examples of chapter 5, the computing time
increases rapidly with the size of the studied process so that one had to chose an algorithm
that could be parallelized.

A.2 What are evolutionary algorithms ?

Evolutionary algorithms are population-based metaheuristic optimization algorithms that
use mechanisms inspired from Darwin’s evolution theory. Their basic principle is to mimic
the behavior of populations of living beings, which adapt to their surroundings thanks to
phenomena like natural selection and genotype. The artificial version of Darwin’s theory
is extremely simplified and is also called artificial Darwinism.
The best known evolutionary algorithms are genetic algorithms, which will be described in
the next section, but evolutionary strategies, evolutionary programming, genetic program-
ming and learning systems classifiers are also largely used (they are briefly described in this
section). All those algorithms have in common the fact that they manipulate an artificial
population whose evolution is simulated thanks to two types of random operations:

∙ a selection of individuals that will be allowed to generate children based on the
performance of the individuals, namely their more or less good correspondance with
what is searched;

∙ genetic operators, generally cross-over and mutation, that produce new individuals
in the population.

A.2. WHAT ARE EVOLUTIONARY ALGORITHMS ? 227

Those operations are repeated in loop, often in the form of generations, until the population
converges.
The success of such methods comes from the fact that they represent optimization tools
adapted to difficult, complex and irregular functions and problems. Nevertheless this evo-
lutionary search has a computing cost that can be important; indeed this is an iterative
method that proceeds by random directed trial and error. Those techniques are comple-
mentary to more standard optimization methods like deterministic optimization methods
that often make regularly hypothesis on the functions to be optimized.
Evolutionary algorithms have been successfully applied in the fields of engineering, art,
biology, economics, genetics, operations research, robotics, social sciences, physics, chem-
istry...
Evolutionary algorithms have also been used as an experimental framework to validate
theories about biological evolution and natural selection, particularly in the field of ar-
tificial life. Techniques coming from evolutionary algorithms used to model biological
evolution are generally limited to the modeling of microevolutionary processes. However
some macroevolutionary dynamics have been modeled.
A limitation of evolutionary algorithms is that they do not clearly distinguish genotype
and phenotype. For example, in nature, the fertilized egg cell undergoes a complex process
called embryogenesis to become a mature phenotype. This indirect encoding is believed to
make the genetic search more robust, namely it reduces the probability of fatal mutations,
and may improve the evolvability of the organism. Some recent works try to take this
phenomenon into account.

A.2.1 Evolution strategy

The evolution strategy was developed by I. Rechenberg (Rechenberg, 1971) and H.P. Schwe-
fel (Schwefel, 1974) of the Technical University of Berlin. This evolutionary algorithm is
based on the ideas of adaptation and evolution.
In its first form, this method was not population based: indeed, child created from a single
individual, which contains a vector of design parameters, mutates by adding a random
vector that is normally distributed with a mean of zero and a variance identical in all
dimensions. The best individual between the parent and the child is used as the next indi-
vidual. This strategy is called a (1 + 1) evolution strategy, namely the current individual
generate a child and the best individual between those two individuals generates the next
individual. In this first version, no cross-over occurs between individuals. A rule for chang-
ing the variance of mutations was determined from the convergence rate theory developed
by I. Rechenberg (Rechenberg, 1971): it appears that 20% of the children should replace
their parent. If there are more good children, the search space is too small the variance
should be increased and inversely if less children are able to replace their parents.
A second form of evolution strategy is the (�+1) evolution strategy proposed by I. Rechen-
berg (Rechenberg, 1971). In this method, a population of � individuals is used to generate
a new child thanks to cross-over and mutations. This new individual replace the worst one
in the population if it is better.

228 APPENDIX A. SENSOR NETWORK OPTIMIZATION METHOD

Schwefel (Schwefel, 1974) extended this second form in two ways in which it is possible to
give a particular mutation variance to each individual:

∙ the (�+�) evolution strategy: in this strategy, the new population of � individuals
is made of the � best individuals from the � parents and the � children.

∙ the (�,�) evolution strategy: in this case, the � best individuals for the new popu-
lation are chosen between the � children only, so that � > �. The best individuals
of the parent population are not kept from generation to generation so that the con-
vergence can not be guaranteed. Despite this disadvantage, this second extension is
generally preferred because with the population evolution, the information contained
in older individuals genes become quickly out of date so that those individuals can
be removed without important loss of information.

There are several combination operators that can be used in evolution strategies. They
are classified into two families:

∙ the sexual combination: the parameters are generated from two chosen parents;

∙ the panmitic combination: one fixed parent is chosen and for each parameter, another
parent is chosen in the population for combination, so that the whole population
contributes to each new individual.

Recently, two new parameters have been added to the (�,�) evolution strategy: � the max-
imum lifespan of an individual and � the number of parents involved in the combination.

A.2.2 Evolutionary programming

The evolutionary programming was developed by L.J. Fogel (Fogel et al., 1966) in the sixties
in order to design state machines for predicting sequences and symbols. This method was
criticized because the predicted sequences were relatively simple and penalty functions
for mis-prediction were needed to obtain good results. In the eighties, the method was
transformed to solve real-value optimization problems. This new version of the method is
similar to evolution strategy but differs from it by two points:

∙ In evolutionary programming, there is no cross-over because in the sense of evolution-
ary programming, individuals represent entire species and not members of a single
species.

∙ The selection of the new population is different: indeed in evolutionary strategy, the
selection is deterministic, the best � individuals are chosen for the next population,
whereas in evolutionary programming, a stochastic method is used: the tournament
selection. This selection mechanism is described in the next section with the genetic
algorithm. Its advantage is that the set of potential solutions is more diverse. This
means that the population will grow less frequently around a local minimum and there

A.2. WHAT ARE EVOLUTIONARY ALGORITHMS ? 229

is less likelihood that the algorithm converges prematurely to a local minimum. Its
disadvantage is that sometimes the best individuals are lost making the convergence
of the algorithm more time consuming.

A.2.3 Genetic programming

Genetic programming is a machine learning technique that uses a genetic algorithm to
optimize a population of computers programs according to a fitness landscape determined
by the ability of a program to perform a given computational task. The individuals are
not anymore fixed-length character string as in genetic algorithm but they are programs.
Those programs are expressed in parse trees rather than in lines of code. As an example,
the program "a+ b ★ c" is represented by the following tree:

+

@@
@@

@@
@

~~
~~

~~
~

a ★

>>
>>

>>
>>

��
��

��
��

b c

In genetic programming, the cross-over consists of taking randomly selected subtrees se-
lected according to their fitness in the individuals and exchanging them.
Genetic programming is computationally intensive and was mainly used to solve simple
problems in the nineties. Improvements in the genetic programming and exponential
growth in CPU power in the last years allowed to obtain outstanding results in areas
such as quantum computing, electronic design, game playing, sorting... In the nineties,
genetic programming was considered as a sort of pariah amongst of the various techniques
of search. In the 2000s, genetic programming developed rapidly so that it has been possible
to build exact probabilistic models such as Markov chains or schema theories. Now, genetic
programming is more general than genetic algorithms: it includes them.

A.2.4 Learning classifier systems

Learning classifier systems appeared at the beginning of the seventies and were described
by John Holland (Holland, 1975). They are machine learning systems with close links to
genetic algorithms and reinforcement leaning. A learning classifier system consists of a
population of binary rules on which a genetic algorithm alters and selects the best rules.
Rule utility is decided by a reinforcement learning technique instead of using a fitness
function. Learning classifier systems are classified in two families depending upon where
the genetic algorithm acts:

∙ the Pittsburgh-type: in those learning classifier systems, the population consists of
separate rule sets and the genetic algorithm recombines and reproduces the best of
these rule sets;

230 APPENDIX A. SENSOR NETWORK OPTIMIZATION METHOD

∙ the Michigan-type: in that type of learning classifier systems, there is only a single
population and the genetic algorithm focuses on selecting the best classifiers within
that rule set. They have two main types of reinforcement learning: fitness sharing
and accuracy-based.

At the beginning, learning classifier systems used binary rules, but thanks to the recent
research, they can now use populations of neural networks and other methods.
Learning classifier systems are not well defined in a mathematical point of view and remain
an area of research even if they have been applied successfully to many different types of
problems.

A.3 Genetic algorithms

Genetic algorithms are random research algorithms based on natural selection and genetic
mechanisms. They were created by John Holland (Holland, 1975), his students and col-
leagues at the beginning of the sixties in the University of Michigan. His objectives were
the abstraction and the rigorous explanation of the processes of natural systems adaptation
as well as the design of artificial systems from a software using the same mechanisms than
natural systems.
Genetic algorithms combine the survival of the best individuals of the parent population
with a structured and random exchange of information between individuals. At each
generation, a set of new individuals (children) is created using parts of the best parents.
Genetic algorithm exploit efficiently information from the previous population to search
for children with better goal function or fitness.
Robustness is one the the main advantages of genetic algorithms. Indeed, robustness impli-
cations for artificial systems are numerous: if artificial systems can be made more robust,
the most expensive solutions can be eliminated or reduced; if higher level of adaptation can
be achieved, systems can carry out their function during a longer time and more efficiently.
Biological systems are robust, efficient and flexible. Laws governing those systems are
selection, reproduction, cross-over and mutation. They appear only in a rough way in
artificial systems so that nature always remains more efficient in the robustness point of
view. Moreover, genetic algorithms have given proofs of their robustness as well in the
mathematical point of view than in the empirical point of view.
Genetic algorithms differ from traditional optimization methods. Indeed:

A.3. GENETIC ALGORITHMS 231

∙ Genetic algorithms code the parameter set instead of the parameters themselves;

∙ The search carried out by genetic algorithms are made from a population of points
instead of a single-point;

∙ Genetic algorithms use information coming from a goal function instead of derivatives
or other auxiliary knowledge;

∙ Genetic algorithms use probabilistic transition rules instead of deterministic rules.

Applications of genetic algorithms are numerous and from very different domains: opti-
mization of difficult numerical function (discontinuous, multimodal, with noise...), pictures
processing, timetable optimization, design optimization, industrial systems control, learn-
ing of neural networks... Genetic algorithms can be used to control time involving systems
(production lines, nuclear power plants) because the population can adapt to condition
changes. They can also be used to find the parameter of a model from the experimental
measurements, to optimize networks for water or gas distribution. They can be integrated
in electronic chips so that they would be able to reconfigure themselves in function of their
surroundings.

A.3.1 Individuals coding

Genetic algorithms use a population of points also called individuals or chromosomes. Each
chromosome is made of a set of parameters that are translated in a binary form. Each
coded parameter is named gene. There are three types of genes:

∙ boolean genes made of a single binary character. They translate parameters that
have only two possible values, they translate binary decisions. In the case of sensor
network design, they translate the decision to put or not a sensor at a specified
location.

∙ integer genes made of several binary characters. They translate integer parameters;

∙ real genes made of several binary characters. They translate real parameters.

In our implementation of the algorithm, when the first individual is created, a gene is
added for each parameter of the problem. In addition to the gene, different characteristic
of the gene are also coded:

∙ the number of the gene in the chromosome;

∙ the name of the gene;

∙ the type of the gene;

∙ the length of the gene;

232 APPENDIX A. SENSOR NETWORK OPTIMIZATION METHOD

∙ the minimal value of the parameter represented by the gene;

∙ the position of the first binary character of the gene in the chromosome;

∙ the length of the chromosome after the insertion of the gene.

The values of the parameters of the first chromosomes are fixed arbitrarily while the values
of the parameters of the other chromosomes of the first population are determined at
random knowing that each parameter has a fixed probability to have the arbitrary values
fixed for the first chromosome.

A.3.2 Natural mechanisms description

In this section, four useful genetic mechanisms are described: the selection, the reproduc-
tion, the cross over and the mutation. As in the case of sensor network design there are only
binary choices (presence or absence of sensors in the plant), all those mechanisms are ex-
plained for binary decisions only, although those algorithms can be used for combinatorial
problems for which the choice can be made between more than two solutions.

Selection

Individuals are selected in function of an objective function called fitness. Individuals with
the best fitness have a higher probability to be chosen. This fitness operator is an artificial
version of natural selection in which only the best individuals survive. In the nature,
the fitness represents the capacity to survive to predators, diseases and all obstacles that
prevent reaching the adult age and excluding reproduction. In the case of artificial systems,
the fitness decides if individuals can live or if they have to die.
Two selection methods are described here after: the roulette wheel and the tournament
selection.

6. Tournament selection
In tournament selection mechanism, two individuals are chosen at random. The
one with the best fitness is kept as the father individual. A mother individual is
chosen in the same way. To make the choice of the pairs of individual random, all
the individuals of the population are numbered at random before the first selection.
They are then compared two by two following this new order: the first one with
the second one to give the father, the third one with the fourth one to give the
mother... Let N be the size of the population. Individuals are renumbered each time
the number of chosen parents is N

2
if N is even and N−1

2
if N is odd. In this method,

the individual with the lowest fitness, is never chosen and individuals with the best
fitness have a great probability to be chosen.
This technique can be used as well if the fitness has to be maximized as if it has to
be minimized.
This method has been chosen for the genetic algorithm used in this research.

A.3. GENETIC ALGORITHMS 233

7. Roulette wheel
In roulette wheel selection method, the probability of selecting an individual in the
population is proportional to the value of its fitness function. This technique is only
used if the fitness has to be maximized.
Let a population of five individuals composed of six binary genes (Figure A.1). Those
individuals are represented on the wheel in function of the contribution of their fitness
to the global fitness of the population. (Table A.1).

Figure A.1: Roulette wheel

Numbers Individuals Fitness Proportions (%)
1 100110 143 11
2 101001 364 28
3 110010 52 4
4 101011 234 18
5 001011 507 39

Sums 1300 100

Table A.1: Roulette wheel: table of values

During selection mechanism, the roulette wheel rotates. When it stops, the individual
situated in front of the wheel cursor is selected. Doing this way, individuals with the
highest values of the fitness have a higher probability to be selected than those with
the lowest values.

Reproduction

Reproduction is a mechanism during which a part of the parent individuals are copied to
generate identical children. The parents that are copied are chosen in function of their
fitness thanks to one of the selection mechanisms described before. In the algorithm that
was used, the parents are selected thanks to a tournament and 50% of those selected
individuals are copied.

234 APPENDIX A. SENSOR NETWORK OPTIMIZATION METHOD

Cross-over

Cross-over mechanism consists of combining the genotypes of a mother individual and a
father individual in a way that the two children obtained genetic characteristics from both
parents. Three cross-over methods are described here after: one-point cross-over, two-
points cross-over and uniform crossover. Only the one-point cross-over is applied in the
genetic algorithm used in this research.
Cross-over concern the parents pairs that have not given children by reproduction, that
means the halve of the parent pairs.

8. One-point cross-over
In the case of one-point cross-over, the crossing point is chosen randomly at the
binary level. If the genes are made of more than one binary decision, the crossing
point can be situated in the middle of a gene, whose binary characters are shared
out between the two children. The distribution between the binary characters of the
parents is made in the following way (figure A.2):

∙ The first child is made with the binary characters of the father that are situated
on the left of the crossing point and those from the mother that are on the right
of that point;

∙ The second child is made with the binary characters of the mother that are
situated on the left of the crossing point and those from the father that are on
the right of that point.

Chromosomes are divided in 32 bits parts which are examined one after the other:

∙ If the crossing point is on the left of the itℎ part, the itℎ part of the father is
copied in the itℎ place of the first child and the itℎ part of the mother is copied
in the itℎ place of the second child;

∙ If the crossing point is on the right of the itℎ part, the itℎ part of the father
is copied in the itℎ place of the second child and the itℎ part of the mother is
copied in the itℎ place of the first child;

∙ If the crossing point is inside the itℎ part, the binary characters of the itℎ part
of the father that are on the left of the crossing point are copied in the left part
of the itℎ place of the first child and the ones situated on the right, in the right
part of the itℎ place of the second child. The binary characters of the itℎ part of
the mother that are on the left of the crossing point are copied in the left part
of the itℎ place of the second child and the ones situated on the right, in the
right part of the itℎ place of the first child.

9. Two points cross-over
Two-points cross-over is similar to the one-point cross-over. It is generally said to be
more efficient. The distribution between the binary characters of the parents is now
made as can be seen on figure A.3:

A.3. GENETIC ALGORITHMS 235

Father

Mother

First child

Second child

F1 F2L F2R F3 F4

M1 M2L M2R M3 M4

F1 F2L M2R M3 M4

M1 M2L F2R F3 F4

Figure A.2: One-point cross-over

10. Uniform cross-over
In uniform cross-over, a random decision is taken for each binary character: either
the itℎ character of the father is copied at the itℎ place of the first child and the
itℎ character of the mother is copied at the itℎ place of the second child or the itℎ

character of the mother is copied at the itℎ place of the first child and the itℎ character
of the father is copied at the itℎ place of the second child (figure A.4).

Mutation

Mutations are alterations of the genetic material. In natural systems, three types of mu-
tations take place: the substitution, the deletion and the insertion of one or several nu-
cleotides in a gene. In genetic algorithms, mutations are occasional and random alterations
of the value of one or several characters of a gene. It consists of the inversion of the value
of one or several bits of a gene. Mutation plays the role of noise and prevent the evolution
to be frozen. It allows to secure a research as well global than local since it can introduce
in the population features that where not present in the previous generation. Furthermore,
they guarantee mathematically that a global optimum can be reached after sometimes a
very long computing time.
Mutations play another important role in genetic algorithm. Indeed, even if reproduction
and cross-over are efficient research and recombination methods, they can drive to a genetic

236 APPENDIX A. SENSOR NETWORK OPTIMIZATION METHOD

Father

Mother

First child

Second child

F1 F2L F2R F3 F4L F4R

M1 M2L M2R M3 M4L M4R

F1 F2L M2R M3 M4L F4R

M1 M2L F2R F3 F4L M4R

Figure A.3: Two-points cross-over

drift. Indeed, a too small population can get homogenized because of stochastic errors:
genes that are favored by luck may spread in the population to the detriment of the
others. Because of the genetic drift, the final solution may be not optimal. Mutations
counterbalance this phenomenon by introducing regularly new genes in the population.
Empirical researches on genetic algorithms show that, to obtain good results, the frequency
of mutation must be in the order of one mutation for thousand binary characters transferred
to the children.

11. Jump mutation
Jump mutation mechanism consists in the inversion of the value of one bit, chosen
randomly in one gene of an individual. (figure A.5):

12. Creep mutation
Creep mutation consists of the exchange of the values of two bits in a same gene.
(figure A.6):

A.4 Others optimization methods

Other meta-heuristic algorithms could have been used to solve the sensor network design
problem. One can cite ant colonies, simulated annealing, tabu search, greedy randomized

A.4. OTHERS OPTIMIZATION METHODS 237

Father

Mother

First child

Second child

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

M1 F2 M3 M4 F5 F6 F7 M8 M9 F10 M11 M12 F13 F14 F15 M16

F1 M2 F3 F4 M5 M6 M7 F8 F9 M10 M11 F12 M13 M14 M15 F16

Figure A.4: Uniform cross-over

Individual before mutation

Individual after mutation

1 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0

1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0

Figure A.5: Jump mutation

238 APPENDIX A. SENSOR NETWORK OPTIMIZATION METHOD

Individual before mutation

Individual after mutation

1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1

Figure A.6: Creep mutation

adaptive search procedures...
Those methods have not been used in this study. Indeed, as it will be illustrated in the
case studies, the estimation of our goal function required the inversion of a large sparse
matrix, which requires a rather long time. However simulated annealing is a sequential
algorithm that can not be parallelized and it was estimated that it would not allow to
reach the solution within a reasonable computing time for large size problems. The others
algorithms were not tested because the results reached with genetic algorithm gave solutions
that satisfied us.

Appendix B

Parallelization

B.1 Notions of parallelization

The development in sciences was traditionally based on a theoretical or on an experimental
approach. Thanks to more and more powerful and fast computers, scientists can nowadays
simulate problems that are too complex to be reliably predicted by theory, too dangerous
or too expensive to be reproduced in the laboratory. The demand on supercomputers has
strongly increased during the last years.
At the same time, parallel computers have evolved from theoretical concept to everyday
tool to solve problems needing more and more computer ressources. Several factors have
simulated this evolution: the speed of computers is limited by the speed of the light and the
efficiency of heat dissipation, the cost of powerful computer increased more rapidly than
their power, and the ratio between the cost and the performance is favorable if the computer
ressources can be found instead of bought. This last factor has simulated laboratories to
exploit existing computers in parallel and the development of clusters of computers. The
rise in performance and capacity of wide-area networks has made it possible to write
applications that span the world. The concept of a grid of computational ressources and
connections is being explored. This concept is analogous to the electric power grid.
Thus, parallelization seems to be the best compromise between performance and the ratio
between cost and performance. However there remains some obstacles to an universal use
of parallelization coming from the material or from the software, but most of the time the
main obstacle comes from an inadequate software environment. The ideal mechanism to
communicate between a parallel algorithm and a parallel computer must be expressive,
efficient and portable.
There exists several parallel computational models: data parallelism, shared memory, mes-
sage passing, remote memory operations, threads and combined models.
For parallelizing the optimal sensor network design algorithm, a message passing model,
the message passing interface, has been used. That kind of model consists of a set of
processors that have only local memory and can communicate with other processors by
sending and receiving messages. Data transfer from the local memory of one processor to

239

240 APPENDIX B. PARALLELIZATION

the local memory of another one requires that both processors perform operations. This
model is represented on figure B.1.

Figure B.1: Message passing model

MPI is a programming method on parallel computers (Gropp et al., 1999a),(Gropp et al.,
1999b). It is a collection of the best features of many message passing systems that have
been developed over the years. Those features have first been improved if necessary before
being standardized. The main characteristics of MPI are the following ones: MPI is a
library of routines, not a language, it is a specification and not a particular implementation
and it addresses the message passing model. The advantages of MPI are the universality,
the expressivity, the performance and the debugging relative easiness.
Mpi routines (Gropp, 2005) that have been used to parallelize the optimal sensor network
design algorithm are of three types:

∙ The routines linked to the environment: the environment has to be initialized so that
the different processors are created and a space of memory addresses is attributed
to each of them. Inversely, another routine deactivates the environment. There
exists also routines that allow to know the number of processors managed by the
communicator or the rank of a given processor in a specified communicator.

∙ The point-to-point communications: those communications take place between two
processors: the emitting processor and the receiving processor. Those two processors
are identified by their rank in the communicator. Point-to point communications can
be blocking: the emitting processor remains blocked until the receiving processor has
received the message, or non-blocking: the emitting processor continues even if the
receiving one has not received the message.

B.1. NOTIONS OF PARALLELIZATION 241

∙ The collective communications: those communications allow to carry out in a single
operation a set of point-to-point communications. A collective communication con-
cerns always all the processors of a given communicator. Three of them have been
used in the parallelized version of the genetic algorithm:

– the broadcast routine allows to give the same information to all processors of a
given communicator (figure B.2);

P4 P4 A

P3 P3 A

P2 P2 A

P1 P1A A

Broadcast

Figure B.2: Broadcast routine

– the scatter routine allows to distribute a message between all the processors
of the communicator. Each processor receives a message whose size is equal
to the size of the original message divided by the number of processors in the
communicator (figure B.3):

P4 P4 A4

P3 P3 A3

P2 P2 A2

P1 P1A1 A2 A3 A4 A1

Scatter

Figure B.3: Scatter routine

242 APPENDIX B. PARALLELIZATION

– the gather routine allows collecting data of all the processors of the communi-
cator. The receiving processor receives from each emitting processor a message
of the same size and of the same type of data (figure B.4).

P4 P4A4

P3 P3A3

P2 P2A2

P1 P1A1 A1 A2 A3 A4

Gather

Figure B.4: Gather routine

The parallelization methods allow to reduce the computing time by sharing the computing
work between several processors. However, this gain in solution time must be done without
increasing the computing ressources too much. The speed up is the gain in time obtained
when a sequential code is parallelized. If T1 is the time required to solve the problem B on
a sequential computer and Tp the time required to solve the same problem on a cluster of
p processors, the speed up is given by the ratio:

Speed up =
T1

Tp

(B.1)

Parallelization techniques can be compared thanks to the efficiency, which is estimated this
way:

Efficiency =
Speed up

p
=

T1

Tp

1

p
(B.2)

The computing work is given by:
Work = p Tp (B.3)

The speed up can be linear, under-linear or over-linear (figure B.5):

∙ The speed up is linear if the processors have an activity level equal to 100 %. The
corresponding gain of time is equal to the number p of processors.

∙ The speed up is under-linear if the processors have an activity level lower than 100
%. The speed up can be under-optimal if some parts of the program are sequential
or because of the time required for the communications between processors.

B.2. ALGORITHMS PARALLELIZATION 243

Figure B.5: Speed up

∙ The speed up is over-linear if the processors have an activity level higher than 100
%. That seems impossible under Amdhal’s rule.
Let B a problem implemented in parallel. f is the part of the program that has to
be executed sequentially and p the number of processors. The Amdhal’s rule is the
following one:

Speed up ≤ 1

f + 1−f

p

≤ 1

f
(B.4)

This rule is optimist in the sense that it does not take into account the additional
work due to parallelization (communications between processors). It is pessimist in
the sense that it does not take into account the algorithm that is used, the use of
hierarchic memory and the part of sequential time of the application, which is a
decreasing function of the global time.
An over-linear speed up can nevertheless occurs: indeed, in the case of a multi-
processors computer, the parallel algorithm can allow a better use of hierarchic mem-
ory. It can also occurs when the parallel algorithm look for different ways to solve
the problem more quickly.

B.2 Parallelization of the optimal sensor network design

algorithm

To reduce the computing time, the optimal sensor network design algorithm has been
parallelized in two ways, which are explained in this section: global parallelization and
distributed genetic algorithms.
Both parallelized versions of the algorithm have been tested on two different computer
clusters:

∙ the first cluster was placed to our disposal during some months by the company
Hemeris (http://www.hemeris.com). It was composed 64 nodes (Apple Power Mac

244 APPENDIX B. PARALLELIZATION

G4 bi-processors).

∙ the second one was composed of 12 computers of the network available for students in
the chemical engineering department. Eight of them had Celeron 2.2 GHz processors
while the four others had Pentium 4.3 GHz processors.

B.2.1 Global parallelization (GP)

The objective of parallelization is to decrease the computing time while keeping an optimal
efficiency. In our case, the limiting task is the evaluation of the fitness function of each
individual of the population. This evaluation requires the factorization of at least two
square matrices (whose size is equal to the sum of the number of equations and the number
of variables of the problem):

∙ the first matrix that is factorized is the sensitivity matrix of the model, evaluated
assuming ideal thermodynamic. This matrix is used to ensure that the incidences
of the pressures on the enthalpies are not taken into account in the analysis of the
occurrence matrix of the problem.

∙ the other matrices are the incidence matrices of all the operating points. The in-
version of those matrices allows to estimates a posteriori variances for the candidate
sensor network.

The fitness evaluations can be shared between several processors, each of them calculat-
ing the goal function of one or several individuals of the population. The other tasks are
carried out by the master processor only. They consists of the population evolution, the
distribution of the individuals between the different processors, the search of the optimal
fitness value between those of the current population, the report generation. Those op-
erations take very little time in comparison to matrix inversions, so that their sequential
treatment only introduces very small losses of efficiency. Another loss of efficiency comes
from the communications between the master processor and his slaves.
In a first time, the task of fitness evaluation has been shared between a number of processors
p equal to the size of the population Npop. If the master processor remains idle while each
slave is evaluating the fitness of one individual, there will be a great loss of efficiency,
so that is was decided that the master processor would also estimate the fitness of one
individual. Thus there is one master processor and Npop − 1 slaves.
Once the environment has been initialized, all processors execute several identical opera-
tions:

∙ reading the Vali4 reports model files and the data files;

∙ determination of all possible sensors for the processor;

∙ evaluation of the fitness of the first individual;

∙ creation of the first population of individuals.

B.2. ALGORITHMS PARALLELIZATION 245

This list of operations is executed by all the processors because all the slaves need to know
most of the information contained in the files and the information about the potential
sensors. If all processors did not carry out all those operations, the information should
be transferred to each of them by means of collective communications. Moreover, those
communications between the master and the slaves would introduce losses of efficiency.
While the master was alone to carry out those operations, the slaves would remain idle.
Requiring of the slaves to carry out those operations in parallel does not change the elapsed
computing time and should not create losses of efficiency.
Once all those operations have been completed, each processor evaluates the goal function
of one individual and sends the value to the master that receives it. To avoid to carry out
one point-to-point operation by slave, the gather routine is used.
After reception of the values of the fitness, the master processor compares those values
to the value corresponding to the current best solution. If one of them is better, the
chromosome corresponding to this new best network is kept in memory.
Then, the master prepares the next generation by means of selection, reproduction, cross-
over and mutation. New chromosomes are stocked in a vector which is distributed to all
processors by means of the scatter routine. Each processor evaluates the fitness of the
received chromosome and sends the value to the master, and so on until the solution is
achieved. When the convergence is detected, the master reevaluates the best individual
and generates the report before the environment is deactivated.
A flow diagram of this parallelization mode of the programme is drawn in figure B.6.
The global parallelization of the optimal sensor network design algorithm allows a gain
of time smaller than the number of active processors, so that the efficiency is lower than
100 %. As it was mentioned before, the losses of efficiency come from the communications
between the master processors and the slaves and from the sequential parts of the program.
However, another source of efficiency loss comes from the fact that some individuals corre-
spond to singular sensitivity matrices. In that case, the inversion of the sensitivity matrices
relative to the operating points is not carried out and the corresponding processor remains
idle until the next call of the gather routine, which allows to collect the fitness values of
all individuals. Moreover, if all machines were not identical, the gain should be smaller
because they would not have the same execution speed so that some machines should wait
a longer time before the call of the gather routine.

In a second attempt, the program has been transformed so that the number of processors
could be smaller than the number of individuals of the population. In this case, each
processor estimates the fitness of a number kcℎrom of chromosomes determined as follow:

∙ if the number of processors is a divisor of the size of the population Npop:

kcℎrom =
Npop

p
(B.5)

∙ if the number of processors is not a divisor of the size of the population and if rcℎrom
is the remainder of the division of the number of chromosomes by the number of

246 APPENDIX B. PARALLELIZATION

Figure B.6: Flow diagram of global parallelization

B.2. ALGORITHMS PARALLELIZATION 247

processors:

kcℎrom =
Npop

p
+ 1 (B.6)

for the rcℎrom first processors and

kcℎrom =
Npop

p
(B.7)

for the other processors.

To achieve the best possible efficiency, the number of processors must be a divisor of the
number of chromosomes. In that case, each processor has the same work if it is not taken
into account that some individuals correspond to a singular sensitivity matrix. The losses
of efficiency have the same origines has explained before.

In a last attempt, the case of a number of processors higher than the size of the population
has been studied. This version of the program can only be used if the objective is to
determine a sensor network that remains observable in the case of one sensor failure.
Indeed, the number of fitness evaluation per chromosome is then equal to the number of
sensors in the network plus one, so that several processors can carry out those evaluations.
Let nsensors be the number of sensors in the network and rsensors the remainder of the
division of the number of sensors in the chromosomes plus one by the number of processors.
The number of evaluations neval that are carried out by one processor for one chromosome
is determined this way:

neval =
nsensors + 1

p
+ 1 (B.8)

for the rsensors first processes and

neval =
nsensors

p
+ 1 (B.9)

for the other processors.
Information is transferred this way: the first processor that is in charge of one chromosome,
receives the fitness values from the other processors in charge of this chromosome and look
for the worst one. The worst fitness values of each chromosome are then collected by the
master processor, which compares them as before.
This version of the algorithm needs a lot of computing ressources to be applied, so that is
is not the most interesting one.

B.2.2 Distributed genetic algorithms (DGA)

Another way to parallelize the genetic algorithm is to distribute the individuals of the pop-
ulation between several sub-populations. This parallelization method is called distributed
genetic algorithms. It allows to avoid premature convergence to a local minimum that is
different from the optimal one and should be faster than the global parallelization.

248 APPENDIX B. PARALLELIZATION

This method has been implemented this way: after the verification of the existence of a
solution for the problem, the individuals of the first generation are shared between the
sub-populations, so that each sub-population starts with different individuals. The first
individual of each sub-population is then replaced by the chromosome corresponding to the
sensor network containing all possible measurement tools. This way, we ensure that each
sub-population contains at least one individual that corresponds to a feasible solution for
the problem. Each sub-population evolves independently from one another tanks to the
genetic algorithm mechanisms (tournament selection, reproduction, single-point cross-over
and jump mutation). As the individuals are different at the beginning of the search, each
sub-population evolves in a different way. After a number ngeneration of generations, the
fitness value of the best solution of each sub-population is collected by the master proces-
sor, which compares all of them. If this value remains unchanged after N collects of the
master processor (N ∗ ngeneration generations in the sub-populations), the stop criterion
is satisfied and the solution is reached. If the stop criterion is not satisfied, a fixed number
of individuals are chosen at random in each sub-populations and are sent to the master
processor, which redistributes them at random in the different sub-populations. The two
chromosomes that are replaced by the moving ones in each sub-populations are also chosen
at random. If one of the replaced chromosome corresponds to the best solution of the sub-
population, it is not replaced and the sub-population has only one new individual. The
move of individuals is called migration. Instead of being chosen at random, the moving
chromosomes could be the best ones of each sub-population, and the replaced individuals,
the worst ones of each sub-population. This method for choosing chromosomes has not
been adopted, even if it would converge faster, because it would have been the same as
keeping only the best individuals of each sub-population and would have lead to a loss of
information contained in the global population. Indeed, even if they have a worse fitness
than the best individuals, those chromosomes that would be eliminated contain genes that
can make the sub-populations evolve favorably. A flow diagram of distributed genetic al-
gorithms is drawn on figure B.7.

There are four parameters in distributed genetic algorithms that can be modified to obtain
more quickly the solution and with as few computing ressources as possible:

∙ The size of the sub-populations: it must be high enough to allow a continuous evo-
lution of the individuals of each sub-population until the obtention of the solution,
independently of the migrations. Moreover, if it is too small, the algorithm converges
prematurely to a local minimum. A size of sub-populations comprises between 10
and 20 seems to be reasonable as the size of the population was fixed to 20 for
the initial non-parallelized algorithm. In the next chapter, results are discussed for
sub-populations of 10 and 20 individuals in the case of an ammonia synthesis loop.

∙ The number of sub-populations: this parameter is also studied in the next chapter;

∙ The number of generations in the sub-populations between two migrations. In liter-
ature, a value of five can be found. To confirm this value, tests have been done on

B.2. ALGORITHMS PARALLELIZATION 249

Figure B.7: Flow diagram of distributed genetic algorithms

250 APPENDIX B. PARALLELIZATION

the ammonia synthesis loop and the results are presented in the next chapter.

∙ The number of migrating chromosomes was fixed to 2 what seems to be reasonable.

Appendix C

Orthogonal collocations

In this chapter, some polynomial approximations are discussed before the choice of collo-
cation points (Villadsen and Stewart, 1967), (Villadsen and Michelsen, 1978).

C.0.3 Polynomial approximations

Taylor series

To illustrate this method, we apply it to the solution of a differential equation of the form:

d2y (t)

dt2
+

1

t

dy (t)

dt
− Φ2 y (t)n = 0 (C.1)

This equation has for boundary conditions:

dy(t)
dt

= 0
y (t) = 1

for t = 0
for t = 1

(C.2)

The derivatives of the Taylor series take a simpler form if equation C.1 is rewritten in terms
of u = t2 for 0 ≤ t ≤ 1 :

dy

dt
=

dy

du

du

dt
=

dy

du
2
√
u for u ≥ 0 (C.3)

d2y

dt2
=

d

dt

(
2
√
u

dy

du

)
= 2

d

du

(√
u

dy

du

)
du

dt
= 2

dy

du
+ 4 u

d2y

du2
(C.4)

Thus one obtains:

u
d2y

du2
+

dy

du
=

Φ2

4
y = py (C.5)

The first boundary condition
dy

dt

∣∣∣∣
t=0

= 0 (C.6)

is satisfied in equation C.5 as y = f(u = t2).

251

252 APPENDIX C. ORTHOGONAL COLLOCATIONS

Thus the boundary conditions of equation C.5 are

y∣u=1 = 0 (C.7)

dky

duk

∣∣∣∣
u=0

= y(k)
∣∣
u=0

finite for k=0,1,... (C.8)

If one differentiates equation C.5 k times with respect to u, one obtains:

u y(3) + 2 y(2) = p y(1)

u y(4) + 3 y(3) = p y(2)

u y(k+2) + (k + 1) y(k+1) = p y(k) (C.9)

The following recurrence formula allows thus to build derivatives of any order at u = 0:

y(k+1)
∣∣
u=0

= y
(k+1)
0 =

p

k + 1
y
(k)
0 =

p2

(k + 1) k
y
(k−1)
0 = ... =

pk+1

(k + 1)!
y0 (C.10)

The Taylor series for y (u) from u = 0 is defined by:

y (u) =

∞∑

k=0

1

k!
y
(k)
0 uk =

∞∑

k=0

bk uk =

∞∑

k=0

1

k!

pk

k!
y0 uk =

∞∑

k=0

pk

(k!)2
y0 uk (C.11)

The boundary condition y∣u=1 = 1 allows to determine y0 :

y0 =
1

∞∑

k=0

pk

(k!)2

(C.12)

Finally, one obtains for yN (u) :

yN (u) =
N∑

k=0

bk uk =

N∑

k=0

pk

(k!)2
uk

N∑

k=0

pk

(k!)2

N = 1, 2, ...,∞ (C.13)

The way the coefficients bk have been built shows that the residual Rn (u) and its (N − 1)st

derivatives are zero at u = 0. Conversely the Taylor series is a method in which the N
constants bi are the solution of the following equations:

R
(k)
N [yN (u)]

∣∣∣
u=0

= R
(k)
N (u)

∣∣∣
u=0

= 0 k = 0, 1, ..., N − 1 (C.14)

The approximations by Taylor series are unsatisfactory in the way that other approximation
methods converge more quickly.

253

Lowest-order MWR (Weighted residuals method): y1 (t) approximation

To illustrate this technique, let us solve equation C.1 in which n = 1. One obtains

y (t) =
I0 (Φt)

I0 (Φ)
(C.15)

where I0 is a first order Bessel function :

I0 (x) =

∞∑

i=0

(
1
4
x2
)i

(i!)2
= 1 +

1

4
x2 +

1

4

(
1

4
x2

)2

+
1

36

(
1

4
x2

)3

+ ... (C.16)

So, equation C.15 becomes:

y (t) =
1 +

(
Φ2t2

4

)
+ 1

4

(
Φ2t2

4

)2
+ 1

36

(
Φ2t2

4

)3
+ ...

1 +
(
Φ
2

)
+ 1

4

(
Φ
2

)4
+ 1

36

(
Φ
2

)6
+ ...

(C.17)

In first approximation, equation C.1 can be written

y1 (t) = 1 + a1
(
1− t2

)
(C.18)

The term a1 (1− t2) is a perturbation of the known boundary value y (t) = 1 at t = 1. The
equation C.18 satisfies both boundary conditions C.2. For the preceding serie C.17, y1 (t)
takes the form:

y1 (t) =
1 + Φ t2

2

1 + Φ2

2

(C.19)

By transforming y1 (t) :

y1 (t) =
4 + Φ2 − Φ2 + Φ2 t2

4 + Φ2

= 1− Φ2 (1− t2)

4 + Φ2
(C.20)

one obtains for a1 :

a1 = − Φ2

4 + Φ2
(C.21)

Replacing y1 (t) from equation C.18 in equation C.1 for n = 1, the following residual is
obtained:

R (y1 (t)) = R (a1, t) = −4 a1 − Φ2
[
1− a1

(
1− t2

)]
(C.22)

a1 is determined so that the weighted residual W ∗ R has a zero mean value, or in an
equivalent way : ∫ 1

0

R1 (a1, t) W (t) dt2 = 0 (C.23)

where W (t) is a weighting function which depends on the MWR method that is chosen.
Some of those methods are described later in this section.

254 APPENDIX C. ORTHOGONAL COLLOCATIONS

Higher-order MWR: yN (t) approximation

If one approximates yN (t) by the following series :

yN (t) = T0 +
n∑

i=1

ai Ti (C.24)

where,

∙ T0 satisfies the boundary conditions C.2 of the differential equation C.1;

∙ les Ti are boundary conditions satisfying the boundary conditions of the problem,
namely:

dTi

dt

∣∣∣∣
t=0

= Ti∣t=1 = 0 ∀i > 0 (C.25)

The choice of those functions is generally free as long as they satisfy the conditions
C.25 and are linearly independent. The following polynomial functions satisfy the
conditions C.25 for equation C.1:

T0 = 1

Ti =
(
1 + t2

)
t2i−2 i = 1, 2, ... (C.26)

yN (t) can thus be written :

yN (t) = 1 +
(
1 + t2

) n∑

i

ai t
2i−2 (C.27)

If a change of variable is carried out in equation C.1:

u
d2y (u)

du2
+

dy (u)

du
− p y (u) = 0 (C.28)

with

p =
Φ2

4
(C.29)

and with boundary conditions :

y (u)∣u=1 = 1

yk (u)∣u=0 finite for k ≥ 0 (C.30)

yN can then be written in the following way:

yN (u) = 1 + (1− u)

N∑

i=1

ai u
i−1 (C.31)

255

The first and the second derivatives of equation C.31 are calculated this way:

dyN (u)

du
=

N∑

i=1

ai (i− 1) ui−2 −
N∑

i=1

ai i u
i−1 (C.32)

u
d2yN (u)

du2
=

N∑

i=1

ai (i− 1) (i− 2) ui−2 −
N∑

i=1

ai i (i− 1) ui−1 (C.33)

Replacing equations C.31, C.32 et C.33 in equation C.28, the residual becomes :

RN (a, u) = u
d2yN (u)

du2
+

dyN (u)

du
− p yN (u)

=

N∑

i=1

ai
[
(i− 1)2 ui−2 − i2 ui−1

]
− p

[
1 + (1− u)

n∑

i

ai u
i−1

]
(C.34)

The N following relations allow to determine the coefficients ai:
∫ 1

0

RN (a, u) Wj (u) du = 0 j = 1, 2, ..., N (C.35)

Each MWR is characterized by a different choice of the sequence of the N (N st order)
weighting functions Wj (u). Five MWR are described here after:

13. The collocations method: in this method, the weighting functions are taken from
the family of the Dirac � functions in the domain:

Wj (u) = � (u− uj) j = 1, 2, ..., N (C.36)

where

� (u− uj) =

{
1
0

u = uj

otherwise
(C.37)

The integration of the weighted residual statement results in the forcing of the resid-
ual to zero at specific points uj in the domain ([0, 1]). This is equivalent to:

RN (a, uj) = 0 j = 1, 2, ..., N (C.38)

This first weighted residuals method is used for the dynamic data reconciliation
algorithm described in this chapter.

14. The sub-domains method: this method does not use weighting factor explicitly
but can be considered as a modification of the collocations method. In this method,
the weighted residuals are fixed to zero not only at fixed points of the domain but
over various subsections of the domain. So, the weight functions are fixed to unity
and the integral over the entire domain can be broken into a number of integral equal
to the number of sub-domains so that all unknown parameters can be estimated:

∫

domain

RN (a, u) du =

N∑

i=1

∫ uj

uj−1

RN (a, u) du = 0 (C.39)

256 APPENDIX C. ORTHOGONAL COLLOCATIONS

15. The least squares method: this method consists of the continuous minimization
of the sum of squared residuals:

S =

∫

domain

RN (a, u) RN (a, u) du =

∫

domain

R2
N (a, u) du (C.40)

The minimum of this function is reached when its derivative with respect to the
unknown parameters aj is zero:

∂S

∂aj
= 0 = 2

∫

domain

RN (a, u)
∂RN (a, u)

∂aj
du j = 1, 2, ..., N (C.41)

So that the weighting functions are:

Wj = 2
∂RN (a, u)

∂aj
du j = 1, 2, ..., N (C.42)

The "2" factor can be dropped so that the weighting functions for this method are
just the derivatives of the residuals with respect to the unknown parameters aj :

Wj =
∂RN (a, u)

∂aj
du j = 1, 2, ..., N (C.43)

16. The Galerkin method: this method can be considered as a modification of the least
squares method in which the derivative of the approximating function with respect
to the unknown parameters aj is used instead of the derivative of the residual:

Wj (u) = Tj =
∂yN
∂aj

= (1− u) uj−1 (C.44)

This is equivalent to:

∫ 1

0

RN (a, u) (1− u) uj−1 du = 0 j = 1, 2, ..., N (C.45)

17. The method of moments: in this last method, the weighting functions are chosen
from the family of polynomials:

Wj (u) = uj−1
j j = 1, 2, ..., N (C.46)

This is equivalent to:

∫ 1

0

RN (a, u) uj−1 du = 0 j = 1, 2, ..., N (C.47)

257

Non linear problem

Let equation C.28 with n ∕= 1:

u
d2y (u)

du2
+

dy (u)

du
− p yn (u) = 0 (C.48)

with y∣u=1=1.
As before, the first order approximation is written:

y1 (u) = 1 + a1 (1− u) (C.49)

It has for residual:
R1 (a1, u) = −a1 − p [1 + a1 (1− u)]n (C.50)

If the collocations method is used:

R1 (a1, u) = −a1 − p [1 + a1 (1− u)]n = 0 (C.51)

This equation is non linear and must be solved numerically. It is generally not possible to
obtain a parametric solution in p.
If Galerkin method is used:

∫ 1

0

R1 (a1, u) (1− u) du =

∫ 1

0

[−a1 − p [1 + a1 (1− u)]n] (1− u) du = 0 (C.52)

If n is not an integer, this integral must be evaluated numerically and it is not possible
to obtain an explicit equation in a1. Even if n is an integer (n=2,3,...), complex algebraic
manipulations are needed to evaluate the integral. A choice must be done between the col-
locations method which is easily applicable but somewhat less precise and the more precise
Galerkin method which is more difficult to use. A compromise could be to approximate
the integral C.52 thanks to a numerical quadrature, like the Gauss-Jacobi quadrature or
the Radau-Lobatto quadrature.

Optimal Fourier type expression

For the following approximation

yN (u) = 1 + (1− u)

N∑

i=1

ai u
i−1 (C.53)

the boundary condition y(u) = 1 for u = 1 has been used to eliminate one of the N + 1
parameters ai that are necessary to the determination of a polynomial of degree N. A
polynomial of degree N − 1 can then be extracted:

gN−1 (u) =
yN (u)− 1

1− u
=

N∑

i=1

ai u
i−1 =

N∑

i=1

bi Pi−1 (u) (C.54)

258 APPENDIX C. ORTHOGONAL COLLOCATIONS

The Pi (u) are often chosen as orthogonal polynomials of degree N in u and satisfying the
following equation:

∫ 1

0

u� (1− u)� uj P �,�
N (u) du = 0 j = 0, 1, ..., N − 1 (C.55)

Those polynomials can also take the form:

P �,�
i (u) =
i u

i −
i−1 ui−1 +
i−2 ui−2 − ... + (−1)i (C.56)

They can also be normalized so that the leading coefficient is 1:

P �,�
i (u) = ui −

′

i−1 ui−1 +

′

i−2 ui−2 − ...+ (−1)i

′

0 (C.57)

In equations C.56 and C.57, all
i and

′

i are positives.
The advantage of this reformulation of equation C.31 is that the coefficients bi allow to
obtain a more rapid convergence than the ai series that decreases less quickly.

Lagrange interpolation polynomials

Two kinds of polynomial approximations of degree N have been discussed previously:

yN =
N∑

i=0

ai x
i (C.58)

yN =

N∑

i=0

bi Pi (t) (C.59)

In this paragraph, a third type of approximations is discussed: the Lagrange interpolation
polynomials:

yN =
N∑

i=0

yi li (t) (C.60)

In this formula:

∙ the yi are the values of yN at the interpolation points ti;

∙ the li (t) are Lagrange interpolation polynomial of degree N defined as follow:

li (t) =
pN (t)

(t− ti) p
(1)
N (t)

(C.61)

∙ pN (t) is a polynomial of degree N with a leading coefficient equal to 1, called the
node polynomial.

pN (t) = (t− t0) (t− t2) ... (t− tN) (C.62)

259

This equation can be transformed:

N∏

j=0

j ∕=i

(t− tj) =
pN (t)

t− ti
if t ∕= ti (C.63)

N∏

j=0

j ∕=i

(ti − tj) =
dpN (t)

dt
if t = ti (C.64)

The li (t) can then be written:

li (t) =

N∏

j=0

j ∕=i

(t− tj)

(ti − tj)
(C.65)

with

li (tj) =

{
0
1

if i ∕= j
if i = j

(C.66)

As a reasonable approximation of the yi at the collocation times is quite easy to obtain if
enough measurements are carried out during the chosen time interval, this method will be
preferred to the two other ones previously studied. Nevertheless, it should be noted that
the li(t) can not be derived or integrated as easily as the ti or the Pi :

dkyN
dtk

=

N∑

i=0

ai

[
dk

dtk
ti−1

]
=

[
dk

dtk
t

]T
a (C.67)

∫ 1

0

W (t) yNdt =

N∑

i=0

ai

[∫ 1

0

W (t) ti−1dt

]
=

[∫ 1

0

W (t) t dt

]T
a (C.68)

Similar formulas can nevertheless be obtained for the Lagrange interpolation polynomials:

dkyN
dtk

=

[
dk

dtk
l (t)

]T
y (C.69)

∫ 1

0

W (t) yNdt =

[∫ 1

0

W (t) l (t) dt

]T
y (C.70)

Demonstration of the derivative formula C.69 is described in the following paragraph.

260 APPENDIX C. ORTHOGONAL COLLOCATIONS

Derivative of the Lagrange interpolation polynomials

The first derivative of equation C.60 gives:

d

dt
[yN (t)] =

N∑

i=0

dli (t)

dt
y (ti) =

[
l(1)
]T

y (C.71)

One has for the following orders:

dkyN (t)

dtk

[
l(k)
]T

y (C.72)

The interesting derivatives are the ones obtained at the N + 1 interpolation points xj .
If one transforms the following formula

li =
pN (t)

(t− ti) p
(1)
N (ti)

(C.73)

one obtains :
pN (t)

p
(1)
N (ti)

= (t− ti) li (t) (C.74)

Deriving with respect to t:

p
(1)
N (t)

p
(1)
N (ti)

= (t− ti) l
(1)
i (t) + li (t) (C.75)

p
(2)
N (t)

p
(1)
N (ti)

= (t− ti) l
(2)
i (t) + 2 l

(1)
i (t) (C.76)

p
(k)
N (t)

p
(1)
N (ti)

= (t− ti) l
(k)
i (t) + k l

(k−1)
i (t) (C.77)

So one obtains for the Lagrange polynomial derivatives:

l
(k−1)
i (ti) =

1

k

p
(k)
N (ti)

p
(1)
N (ti)

if t = ti (C.78)

l
(k)
i (ti) =

1

tj − ti

[
p
(k)
N (ti)

p
(1)
N (ti)

− k l
(k−1)
i (tj)

]
if t = tj ∕= ti (C.79)

For most of differential equations, only the two first orders are needed. They are:
If t = ti

l
(1)
i (ti) =

1

2

p
(2)
N (ti)

p
(1)
N (ti)

(C.80)

l
(2)
i (ti) =

1

3

p
(3)
N (ti)

p
(1)
N (ti)

(C.81)

261

Otherwise, t = tj ∕= ti

l
(1)
i (tj) =

1

tj − ti
as li (tj) = 0 (C.82)

l
(2)
i (tj) =

1

tj − ti

[
p
(2)
N (ti)

p
(1)
N (ti)

− 2 l
(1)
i (tj)

]
(C.83)

= l
(1)
i (tj)

[
p
(2)
N (ti)

p
(1)
N (ti)

− 2
1

tj − ti

]
as l

(1)
i (tj) =

1

tj − ti
(C.84)

= 2 l
(1)
i (tj)

[
p
(2)
N (ti)

2 p
(1)
N (ti)

− 1

tj − ti

]
(C.85)

= 2 l
(1)
i (tj)

[
l
(1)
j (tj)−

1

tj − ti

]
(C.86)

The next formula allows to calculate the derivatives of the node polynomial at the inter-
polation points tj

pN (t) =

N∏

i=0

(t− ti) (C.87)

From there, one has the following recurrence formula:

p0(t) = 1

pj (t) = (t− tj) pj−1 (t) j = 0, 1, 2, ..., N (C.88)

Deriving the equation C.88, one obtains

p
(1)
j (t) = (t− tj) p

(1)
j−1 (t) + pj−1 (C.89)

p
(2)
j (t) = (t− tj) p

(2)
j−1 (t) + 2 p

(1)
j−1 (C.90)

p
(3)
j (t) = (t− tj) p

(3)
j−1 (t) + 2 p

(2)
j−1 (C.91)

with
p
(1)
0 (t) = p

(2)
0 (t) = p

(3)
0 (t) = 0

If t is replaced by ti and if the interpolation points are reordered in a way that the ti
at which the derivatives are calculated is placed in first position, the preceding equations
become:

p0 (ti) = 1 (C.92)

p
(k)
0 (ti) = 0 k = 1, 2, 3 (C.93)

p1 (ti) = (ti − ti) p0 (ti) = 0 (C.94)

p
(1)
1 (ti) = (ti − ti) p

(1)
0 (ti) + p0 (ti) = 1 (C.95)

p
(2)
1 (ti) = (ti − ti) p

(2)
0 (ti) + 2 p

(1)
0 (ti) = 0 (C.96)

p
(3)
1 (ti) = (ti − ti) p

(3)
0 (ti) + 3 p

(2)
0 (ti) = 0 (C.97)

262 APPENDIX C. ORTHOGONAL COLLOCATIONS

For j = 1, 2, 3, ..., i− 1, i+ 1, ..., N , one has:

pj (ti) = (ti − tj) pj (ti) = 0 (C.98)

p
(1)
j (ti) = (ti − tj) p

(1)
j (ti) + pj (ti) = 1 (C.99)

p
(2)
j (ti) = (ti − tj) p

(2)
j (ti) + 2 p

(1)
j (ti) = 0 (C.100)

p
(3)
j (ti) = (ti − tj) p

(3)
j (ti) + 3 p

(2)
j (ti) = 0 (C.101)

C.0.4 Determination of the collocation nodes

There exists several possible choices for the collocation nodes: the nodes can be chosen by
the user of the method, at random, equidistant, at the measurements times, at the zeros
of orthogonal polynomials,... Villadsen and Michelsem (Villadsen and Michelsen, 1978)
have shown that the collocation nodes chosen at the zeros of orthogonal polynomials give
the best results for the solving of many types of differential equations. Other authors
like Mingfang et al. (Kong et al., 2000) proposed to choose the measurement times as
collocation nodes in the case of dynamic data reconciliation. In the case of this study,
the collocation points are chosen at the zeros of the Jacobi orthogonal polynomials. Those
zeros are determined using Newton’s method with suppression of the previously determined
zeros.

Jacobi orthogonal polynomials are written this way:

P
(�,�)
N (t) =

N∑

i=0

(−1)Ni
i t
i (C.102)

In this equation,
0 is chosen equal to 1 and the N other coefficient
i are determined
thanks to the orthogonality property:

∫ 1

0

t� (1− t)� Pj (t) PN (t) dt = 0 j = 0, 1, ..., N − 1 (C.103)

or equivalently:
∫ 1

0

t� (1− t)� tj PN (t) dt = 0 j = 0, 1, ..., N − 1 (C.104)

where the tj are linear combinations of the Pk with k = 0, 1, ..., N − 1.
If PN is replaced in equation C.104 by its value in formula C.102:

∫ 1

0

t� (1− t)� tj
N∑

i=0

(−1)Ni
i t
i dt = 0 j = 0, 1, ..., N−1 and i = 0, 1, ..., N (C.105)

Let, for fixed i:
∫ 1

0

t�+i+j (1− t)� (−1)Ni
i dt = 0 j = 0, 1, ..., N − 1 and i = 0, 1, ..., N (C.106)

263

Knowing that: ∫ 1

0

tm (1− t)n =
Γ (m+ 1) Γ (n+ 1)

Γ (m+ n+ 2)
(C.107)

one obtains:

(−1)Ni
i

∫ 1

0

t�+i+j (1− t)� = (−1)Ni
i
Γ (� + i+ j + 1) Γ (� + 1)

Γ (� + � + i+ j + 2)

j = 0, 1, ..., N − 1 and i = 0, 1, ..., N (C.108)

If � = 0 and � = 0, Legendre polynomials are obtained :

(−1)Ni
i

∫ 1

0

ti+j (1− t)0 = (−1)Ni
i
Γ (i+ j + 1) Γ (1)

Γ (i+ j + 2)

j = 0, 1, ..., N − 1 and i = 0, 1, ..., N (C.109)

Now, by definition:

Γ (1) = 1 (C.110)

Γ (n + 1) = n Γ (n) = Γ (1) (n− 1)! (C.111)

Thus one obtains:

(−1)Ni
i

∫ 1

0

ti+j (1− t)0 = (−1)Ni
i
(i+ 1)!

Γ (i+ j + 1)!

j = 0, 1, ..., N − 1 and i = 0, 1, ..., N (C.112)

The next formula allows to obtain the
i :

i =
N !

i! (N − i)!

Γ (N + � + � + i+ 1) Γ (� + 1)

Γ (N + � + � + 1) Γ (� + i+ 1)
(C.113)

From there, the following recurrence formula is obtained:

i =
N − i+ 1

i

N + � + � + i
� + i
i−1
0 = 1 and i = 1, 2, ..., N (C.114)

	Summary
	Résumé
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Nomenclature
	Introduction
	Problem position
	Objectives
	Summary

	State of the art
	I Network design for steady-state processes
	Steady-state data reconciliation
	Formulation for non linear steady-state systems

	Algorithm description
	Formulation of the reconciliation model and model linearisation
	Files of requirements
	Sensor database
	Precision requirements
	Sensor requirements

	Verification of the problem feasibility
	Optimization of the sensor network
	Report generation

	Case studies
	Ammonia synthesis loop
	Process description
	Solution
	Global parallelization
	Distributed genetic algorithms
	Methods comparison

	Combined cycle power plant
	Process description
	Solution
	Parallelization: methods comparison

	Ketene cracker
	Process description
	Solution
	Parallelization: methods comparison

	Naphta reformer
	Process description
	Solution
	Parallelization: methods comparison

	Fault detection and localisation
	Fault detection and isolation
	Method description
	Process and faults simulation
	Specification of the sensor database and the sensor requirements
	Verification of the problem feasibility
	Optimisation of the sensor network
	Report generation

	Cases study
	First example
	Second example
	Conclusions

	Conclusions part I

	II Dynamic data reconciliation
	Formulation dynamic data reconciliation
	Filtering methods
	Introduction
	Extended Kalman Filter
	Filtering equations or observation update
	Prediction equations or time update
	Diagram of the extended Kalman filter

	Disadvantages

	Moving-Horizon estimation
	Explicit integration method
	Method based on orthogonal collocations
	Description of the moving window algorithm
	Constraints of the optimization problem
	Description of the sequential algorithm
	Description of the simultaneous algorithm

	Calculation of a posteriori variances
	Cases study
	One tank
	Results for the steps
	Results for the linear variations of feed
	Results for the smooth perturbations dxdt=0.1 (x-xtarget)

	Stirred tank reactor with heat exchange
	Results

	A network of five tanks
	Results

	Conclusions

	Conclusions part II

	III Networks design for dynamic processes
	Algorithm description
	Introduction
	Observability and variable discretization
	Method description
	Formulation of the reconciliation model and model linearisation
	Files of requirements
	Verification of the problem feasibility
	Optimization of the sensor network
	Report generation

	Case studies
	One tank
	A network of five tanks
	Stirred tank reactor with heat exchange

	Conclusions part III
	General conclusions and future work
	Publications
	Bibliography
	Sensor network optimization method
	Introduction
	What are evolutionary algorithms ?
	Evolution strategy
	Evolutionary programming
	Genetic programming
	Learning classifier systems

	Genetic algorithms
	Individuals coding
	Natural mechanisms description

	Others optimization methods

	Parallelization
	Notions of parallelization
	Algorithms parallelization
	Global parallelization (GP)
	Distributed genetic algorithms (DGA)

	Orthogonal collocations
	Polynomial approximations
	Determination of the collocation nodes

