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Abstract— Principal component analysis (PCA) is a powerful
fault detection and isolation method. However, the classical
PCA which is based on the estimation of the sample mean
and covariance matrix of the data is very sensitive to outliers
in the training data set. Usually robust principal component
analysis was applied to remove the effect of outliers on the PCA
model. In this paper, a fast two-step algorithm is proposed.
First, the objective was to find a robust PCA model that
could be used for outliers detection and isolation. Hence a
scale-M estimator [1] is used to determine a robust model.
This estimator is computed using an iterative re-weighted least
squares (IRWLS) procedure. This algorithm is initialized from a
very simple estimate derived from a one-step weighted variance-
covariance estimate [2]. Second, structured residuals are used
for multiple fault detection and isolation. These structured
residuals are based on the reconstruction principle and the
existence condition of such residuals is used to determine the
detectable faults and the isolable faults. The proposed scheme
avoids the combinatorial explosion of faulty scenarios related
to multiple faults to consider. Then, this procedure for outliers
detection and isolation is successfully applied to an example
with multiple faults.

I. I NTRODUCTION

Principal component analysis (PCA) has been applied
successfully in the monitoring of complex systems [3], [4].
It enables the determination of the redundancy relationships
which are then used to detect and isolate faults. It transforms
the data to a smaller set of variables which are linear
combinations of the original variables while retaining as
much information as possible. In the classical approach, the
principal components correspond to the directions in which
the projected observations have the largest variance. The
principal components, correspond to the eigenvectors of the
empirical covariance matrix. From a regression point of view,
PCA also constructs the optimal orthogonal linear projections
(in terms of mean squared error) from the eigenvectors of
the data covariance matrix. The performance of PCA model
is then based on the accurate estimation of the covariance
matrix from the data which is very sensitive to abnormal
observations.

In general, the majority of the training data set is associ-
ated with normal operating conditions. The remaining data
(faulty data, data obtained during shutdown or startup periods
or data issued from different operating mode) are referred to
as “outliers”. They disturb the correlation structure of the
“normal data” and then the PCA model does not accurately
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represent the process. In practice one often tries to detect
outliers using diagnostic tools starting from a classical fitting
method. However, classical methods can be affected by
outliers so strongly that the resulting fitted model does not
allow to detect the true outliers (masking and swamping
phenomena). To avoid these effects, the goal of robust PCA
methods is to obtain principal components that are not
influenced much by outliers.

Several ways of robustifying principal components have
been proposed. They can be grouped as follows. A first group
of robust PCA methods is obtained by replacing the classical
covariance matrix by a robust covariance estimator, such as
the minimum covariance determinant (MCD) estimator [5].
This computer-intensive method has a user-defined parameter
which has to be optimized with respect to the number of
outliers (unknown). A second approach to robust PCA uses
Projection Pursuit (PP) techniques. These methods maximize
a robust measure of data spread to obtain consecutive di-
rections on which the data points are projected [6], [7].
However, to make these algorithms computationally feasible,
the robust directions obtained are approximations of the true
ones. Last proposals for robust PCA consists in minimizing a
robust scale of the orthogonal distances of each observation
to the PCA subspace, similar to least trimmed squares (LTS)
estimator, scale-M estimator [1]. These methods are easy to
compute but are based on iterative procedures for which it
remains the problem of starting values.

Our presentation is devoted to the problem of sensor
fault detection and isolation in data. In this paper, a fast
two-step algorithm is proposed. First, a scale-M estimator
[1] is used to determine a robust model. This estimator
is computed using an iterative re-weighted least squares
(IRWLS) procedure. This algorithm is initialized from a very
simple estimate derived from a one-step weighted variance-
covariance estimate [2]. Second, structured residuals areused
for multiple fault detection and isolation. These structured
residuals are based on the reconstruction principle. The
variable reconstruction approach assumes that each set of
faulty variables is unknown and suggests to reconstruct
these variables using the PCA model from the remaining
variables [8]. If the faulty variables are reconstructed, the
fault effect is eliminated. This property is useful for fault
isolation. Moreover instead of considering the isolation of
one up to all sensors, we determine the maximum number
of faulty scenarios to take into account by evaluating the
existence condition of structured residuals. Note that this
number is usually much less than the number of total sensors.
The proposed scheme avoids the combinatorial explosion
of faulty scenarios related to multiple faults to consider.



Section 2 is a short reminder, on one hand, of the principal
component analysis in the traditional case and, on the other
hand, of the proposed robust principal component analysis.
A detection and isolation procedure for outliers is proposed
in section 3. Then, in section 4, this method is applied to an
example emphasizing the generation of fault signatures.

II. PCA FAULT DETECTION AND ISOLATION

Let us consider a data matrixX ∈ ℜN×n, with row vector
xT

i , which gathersN measurements collected on then system
variables.

A. Classical approach

In the classicalPCA case, data are supposed to be collected
on a system being in a normal process operation.PCA
determines an optimal linear transformation of the data
matrix X in terms of capturing the variation in the data:

T = XP and X = T PT (1)

with T ∈ ℜN×n the principal component matrix and the
matrix P ∈ ℜn×n contains the principal vectors which are
the eigenvectors associated to the eigenvaluesλi of the
covariance matrix (or correlation matrix)Σ of X :

Σ = PΛPT with PPT = PT P = In (2)

whereΛ = diag(λ1 . . .λn) is a diagonal matrix with diagonal
elements in decreasing magnitude order.

The relations (1) are useful when the dimension of the
representation space is reduced. Once the component number
ℓ to retain is determined, the data matrixX can be approxi-
mated. For that, the eigenvector matrix is partitioned intothe
form:

P =
(

P̂ P̃
)

P̂ ∈ ℜn×ℓ (3)

From the decomposition (1),̂X is the principal part of the
data explained by theℓ first eigenvectors and the residual
part X̃ is explained by the remaining components:

X̂ = XP̂P̂T = XCℓ (4)

X̃ = X − X̂ = X(I −Cℓ) (5)

where the matrixCℓ = P̂P̂T is not equal to the identity matrix,
excepted in the caseℓ = n.

Hence the residualri, for i = 1..N, is defined as follows:

ri = ||P̃T xi − P̃T µ||2 (6)

whereµ correspond to the mean of the dataX .
ChoosingP as the eigenvectors of the covariance matrix

is equivalent as minimizing the functionϕ of the estimation
error with the constraintPT P = I such as:

ϕ =
1
N

N

∑
i=1

ri (7)

B. Robust approach

Our approach consists in carrying outPCA directly on the
data possibly contaminated by outliers. For that, a simple
robust estimator, called scale-M estimator, is used. However,
this estimator is computed by an iterative procedure. Then,
good initialization parameters are needed to avoid local mini-
mum. To initialize this scale-M estimator a robust covariance
matrix is first calculated with a low computational cost [9].

1) Robust covariance: Ruiz-Gazen (1996) define a “local”
matrix of variance in the sense that the suggested form
tends to emphasize the contribution of close observations in
comparison with distant observations (outliers). The matrix
is defined in the following way:

T =

N−1

∑
i=1

N

∑
j=i+1

wi, j(xi − x j)(xi − x j)
T

N−1

∑
i=1

N

∑
j=i+1

wi, j

(8)

where the weightswi, j themselves are defined by:

wi, j = exp

(

−β
2

(xi − x j)
T Σ−1(xi − x j)

)

(9)

β being a tuning parameter to reduce the influence of the
observations faraway, the authors recommend a value close
to 2. Forβ = 0, the robust covariance matrixT is equal to
2Σ. And for a high value ofβ , only the closest observations
are taken into account in the robust covariance matrixT .

2) Scale-M estimator: Two M-estimators are used, one for
estimation of the objective functionϕ (7) and another one
for the estimation of the robust residual scale. The general
scale-M estimator minimizes the following objective function
with the constraintPT P = I [1]:

1
N

N

∑
i=1

ρ
( ri

σ̂

)

(10)

with ri the residual defined by equation (6),σ̂ the robust
scale of the residualri and the functionρ :ℜ+ → [0,1] is
nondecreasing, withρ(0) = 0 and ρ(∞) = 1, and differen-
tiable. P̃ is the eigenvector matrix of the robust covariance
matrixC (12) corresponding to itsn−ℓ smallest eigenvalues.
Then the weighted meanµ and the covarianceC are defined
as follows:

µ =
∑N

i=1 wixi

∑N
i=1 wi

with wi = ρ̇
( ri

σ̂

)

(11)

C =
N

∑
i=1

wi(xi −µ)(xi −µ)T (12)

Then the scale factor̂σ is defined as the solution of:

1
N

N

∑
i=1

ρ
( ri

σ̂

)

= δ (13)

with δ ∈ (0,1).
Then an iterative algorithm is necessary to determine all

these parameters. To avoid local minimum a good initializa-
tion is needed. Here the robust covariance matrixT (8) is
used to determined the values of the initial parameters.



The algorithm is described as follows:

1) it = 1 andσ0 = ∞
2) ComputeP̃ the eigenvector matrix of the robust co-

variance matrixT corresponding to itsn− ℓ smallest
eigenvalues.

3) Computea = median(XP̃)
4) Computeσ = trace(

√
P̃T T P̃)

5) Do until it = N1 or ∆ ≤ tol

a) Computeri = ||P̃xi −a||2 for i = 1...N
b) If it > 1, computeσ from (13)
c) Set∆ = 1−σ/σ0 andσ0 = σ
d) Compute thewi = ρ̇ (ri/σ̂) for i = 1...N
e) Computeµ from (11)
f) ComputeC from (12)
g) P̃ the eigenvector matrix of the covariance matrix

C corresponding to itsn−ℓ smallest eigenvalues.
h) Computea = P̃T µ
i) Set it = it +1

6) End do.

In the experiments of this article,ρ, defined by equation
(10), was chosen as the bisquare function (r represents the
squared distances).

ρ(r) = min{1,1− (1− r)3} (14)

The constantδ in equation 13 is chosen as defined by
Maronna (2005):

δ =
N −n+ ℓ−1

2N
(15)

From this new model, detection and isolation of outliers
are carried out using the reconstruction principle.

III. FAULT DETECTION AND ISOLATION

The variable reconstruction approach assumes that a group
of variables may be faulty and suggests to reconstruct the
assumed faulty variables using the PCA model from the
remaining variables [8]. This reconstructed variables are
then used to detect and isolate the faults. Moreover these
principle allows to determine replacement values for the
faulty variables.

A. Data reconstruction

The PCA model being known according to (4) and (5), a
new measurement vectorx (which may contains abnormal
values) can be decomposed as below:

x = x̂+ x̃ , x̂ = Cℓ x , x̃ = (I −Cℓ) x (16)

where ˆx and x̃ are respectively the projections ofx onto the
principal space and the residual space.

The reconstruction of variables consists in estimating the
reconstructed vector ˆxR by eliminating the effect of the faults.
Matrix ΞR indicates the reconstruction directions. This matrix
is orthonormal with dimension (n × r), with r the number of
component to reconstruct, and is built with 0 and 1, where 1
indicates the reconstructed variables from the other variables

(with 0). For example, to reconstruct the set of variablesR =
{2,4} among 5 variables, matrixΞR is formed as follows:

ΞR =

[

0 1 0 0 0
0 0 0 1 0

]T

The expression for the reconstruction ˆxR of the vectorx is
given by:

x̂R =
(

I −ΞR(Ξ̃T
R Ξ̃R)−1Ξ̃T

R

)

x = GR x (17)

whereΞ̃R = (I −Cℓ) ΞR

Condition of reconstruction:
The condition for fault detection is the same as for fault
reconstruction. Indeed, the fault direction projection onto
the residual space have to be different from 0 (Ξ̃R 6= 0) for
allowing fault reconstruction. This condition involves that
the number of reconstructed variablesr have to respect the
inequality (18) and that the columns of the matrixΞ̃R are
neither null nor collinear:

n− ℓ− r ≥ 1 (18)

B. Structured residual generation

In a diagnosis objective, residuals are generated for fault
detection and isolation. The residuals are obtained by pro-
jecting the reconstructed variables onto the residual space.
Residuals are defined by ˜xR, projection of ˆxR onto the residual
space:

x̃R = (I −Cℓ) x̂R = (I −Cℓ)GRx

x̃R = P(ℓ)
R x (19)

Property 1. Matrix P(ℓ)
R has the following property:

P(ℓ)
R ΞR = 0 (20)

Considering (19) and (20), it means that the components
of x̃R are not sensitive to the components ofx belonging to
the subsetR. This property can be used to identify which
components ofx are disturbed by faults.
Proof: Considering a measurementx composed with the
true valuex∗, a noiseε with zero mean and one fault with
amplituded and directionΞF , whereF is a subset containing
the indices of the fault directions:

x = x∗ + ε +ΞF d (21)

then the residual is:

x̃R = P(ℓ)
R (x∗ + ε +ΞF d) = P(ℓ)

R (ε +ΞF d) (22)

with P(ℓ)
r x∗ = 0 and its expected value is:

E(x̃R) = P(ℓ)
R ΞF d (23)

• If the reconstruction directionsΞR are the same as the
fault directions, i.e. ifR = F , then all components of
the vectorP(ℓ)

R ΞF are null andE(x̃R) = 0
• If the reconstruction directionsΞR are different from

the fault directions, then all components of the vector
P(ℓ)

R ΞF are a priori not null except the components
belonging to the subsetR.



The analysis of the residual amplitudes ˜xR for all possible
combinations shows the presence of faults and makes it
possible to determine the components of the measurement
vector affected by this fault.

For fault detection, a global indicatorSPER (norm of the
projection vector) is calculated for each observation:

SPER =‖ x̃R ‖2 (24)

A fault is detected, ifSPE > δ 2
α with δ 2

α the detection
threshold of SPE. SPE correspond to the case without
reconstructioni.e. R = {φ}. Then, the faulty variables of the
subsetR̂ are determined as follows:

R̂ = arg
R∈ℑ

SPER < δ 2
α (25)

with ℑ is the set of all combinations of possible reconstruc-
tion directions.

The global indicators take into account their corresponding
residuals,i.e. for exampleSPE1, which correspond toR = 1,
is computed from ˜x11, x̃12, ... x̃1n. Then, they use all the
sensitivity of the residuals to the faults.

C. Fault isolation

All the directions of reconstructionΞR have to be explored
for fault detection and isolation. Solutions for which the
faults associated to the reconstruction directions are notde-
tectable are useless. The number of possible reconstructions
can then be reduced, and the detectable faults are defined.

The maximum reconstruction number can be calculated as
follows:

n−ℓ

∑
r=1

C
r
n (26)

with C
r
n denotes the combination ofr from n.

This number takes only into account the number of recon-
structions and not the amplitude of the projection of the
reconstructed directions onto the residual space. It can be
reduced when the matrix of projected fault directions is rank-
deficient or near rank-deficient. To detect these cases, the
condition number (Rcond), defined by equation (27) as the
ratio between the smallest singular value and the greatest
singular value of the matrix̃ΞR, is used:

Rcond =
min

(

σ
(

Ξ̃R
))

max
(

σ
(

Ξ̃R
)) (27)

For the near rank-deficient case, fault detection and
localisation are possible only if its amplitude is huge. In the
following, faults with huge amplitude are not considered
as realistic. The process to detect useful directions of
reconstruction can be summarized as follows:

1) r = 1 (single-fault): calculate all available directions
Ξ̃R. If Ξ̃T

R Ξ̃R is closed to zero, it means that the fault
is not projected onto the residual space and then
not detectable. To detect and localise this fault, its
projection onto the principal space can be used.

2) r = r +1: calculate for all available directions̃ΞR the
values of the condition numberRcond (27). If Rcond
is close to zero, then ther faulty variables of the
subsetR are not detectable. Therefore, all combinations
which take into account theser variables will not
be detectable. So they are useless. Moreover all the
combinations ofr − 1 variables among the variables
of the subsetR are only detectable because their fault
signatures are identical. Then, it is useful to reconstruct
only one combination of theser − 1 variables from
theser variables. Therefore, among all combinations
which take into accountr−1 variables of the subsetR,
only one combination will be constructed, the others
are identical. Moreover all the combinations ofr−2
variables among ther variables of the subsetR are
isolable.

3) While r ≤ n− ℓ go to step 2

This analysis of the structure of the model allows to
determine the detectable faults and the isolable faults. The
number of useful reconstructions can then be reduced.

IV. N UMERICAL EXAMPLE : MULTIPLE FAULT CASE

We consider here the situation in which several faults
affect variables at the same time.

A. Data generation

The matrixX includesN = 128 observations of a vector
x with 8 components generated in the following way:

xi,1 = v2
i +sin(0.1i) (28)

xi,2 = 2sin(i/6)cos(i/4)exp(−i/N), vi ∼ N (0,1)

xi,3 = log(x2
i,2), xi,4 = xi,1 + xi,2

xi,5 = xi,1− xi,2, xi,6 = 2xi,1 + xi,2

xi,7 = xi,1 + xi,3, xi,8 ∼ N (0,1)

On the data thus generated were added realizations of ran-
dom variables with centred normal distribution and standard
deviations equal to 0.02 as well as faultsδx1, δx2, δx3, δx4,
δx5, δx6 represented by a bias of amplitude equal to 10%
of the amplitudes of the variables. Faults are defined in the
following way: observations from 10 to 24 (intervalI1) for
the variablex1, observations from 35 to 49 (intervalI2) for
the variablesx2 andx3, observations from 60 to 74 (interval
I3) for the variablesx4 and x5, observations from 85 to 99
(interval I4) for the variablex1, x4 andx6.

From the contaminated data, the robustPCA model, with
four principal axes (ℓ = 4), was chosen.

B. Choice of the tuning parameters

To highlight advantages of this method, a discussion on
the influence of theβ value for fault detection and isolation
with and without scale-M estimator is carried out. The results
are shown with the global indicatorSPE1 (24). Two extreme
cases are distinguished, firstly data are disturbed by small
faults which involved small perturbation on the covariance
matrix (figure 1), and secondly data are disturbed by huge
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Fig. 1. SPE1 with small outliers
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Fig. 2. SPE1 with huge outliers

faults which involved large perturbation on the covariance
matrix (figure 2). Legend(T+M) denotes the use of a model
based on the robust covariance estimation and the scale-M
estimator whereas legend(T) means the use of a model based
only on the robust covariance estimation. Forβ close to
zero, the robust covariance matrix is close to the classical
covariance matrix. In the small fault case, the fault detection
is identical for small values ofβ and better with the scale-M
estimator for large values ofβ . In the huge fault case, forβ =
0.5, it is not possible to detect faults. The robust covariance
matrix is badly estimated, and the scale-M estimator is badly
initialized. For the other values ofβ it is possible to detect
the fault only with the addition of the scale-M estimator. To
conclude, adding a scale-M estimator allows to reduce the
importance of theβ value. Then, in the following,β = 2, as
recommended by the authors of the robust covariance matrix,
is chosen to ensure the detection of all faults.

C. Useful reconstruction

From the size of the residual space, we cannot reconstruct
more than four variables simultaneously. The maximum
number of reconstructions is then equal to 162 (26). Now, the
norm of the projections of fault directions onto the residual
space are studied (table I). From this table, let us note that
the last variable is not detectable. Indeed the variablex8 is
uncorrelated with the other variables. To detect and isolate
a fault on this variable, it is better to work in the principal

TABLE I

EXISTENCE CONDITION OF RESIDUALS

Ξ̃T
1 Ξ̃1 Ξ̃T

2 Ξ̃2 Ξ̃T
3 Ξ̃3 Ξ̃T

4 Ξ̃4 Ξ̃T
5 Ξ̃5 Ξ̃T

6 Ξ̃6 Ξ̃T
7 Ξ̃7 Ξ̃T

8 Ξ̃8

0.84 0.72 0.46 0.71 0.41 0.40 0.46 0.00

TABLE II

EXISTENCE CONDITION OF RESIDUALS

Rcond 1 2 3 4 5 6 7
1 0.88 0.72 0.88 0.57 0.57 0.72
2 0.79 0.73 0.42 0.68 0.80
3 0.80 0.75 0.76 0.01
4 0.68 0.41 0.80
5 0.79 0.75
6 0.75
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Fig. 3. SPE for R = {3}, R = {7}, R = {2,3} andR = {2,7}

space. To analyse the multiple fault directions, the indicator
Rcond (27) is calculated for all available directions (for
r = 2 to 4). The result for the reconstruction of two variables
is shown in the table II. For example, forR = {1,2}, the
values ofRcond is the intersection of the first row and the
second column of the table II.

Let us notice that forR = {3,7}, Rcond is close to zero.
It means that the fault signatures for a fault onx3 or on
x7 are identical (SPE3 = SPE7). So we can only detect the
fault and conclude that the variablesx3 or x7 or x3 and
x7 are faulty. To illustrate this case, figure 3 shows the
reconstructions of the variablesR = {3}, R = {7}, R = {2,3}
and R = {2,7} with the detection threshold. This figure
shows thatSPE3 = SPE7 andSPE23 = SPE27, then only one
SPE of each combination is useful to detect a fault. In the
following, only the combinations with 3 are considered (not
with 7). On the intervalI2 (figure 3), SPE3 is not equal to
zero, so there is an other fault at the same time. Moreover,
this figure shows that forSPE23, on the intervalI2, the SPE
is zero. We conclude that on the intervalI2, variablesx2 and
x3 or/andx7 are faulty.

For all the directions of reconstruction these indicators
are calculated. Another case whereRcond is close to zero
with R = {2,4,5,6} is detected. Then all the combinations
of 3 variables among the variables of the subsetR are only
detectable and their fault signatures are identical (SPE245 =
SPE246 = SPE256 = SPE456). Therefore only oneSPE is
useful to detect a fault, for exampleSPE245. Thus, a fault can
be detected but not isolated, the faulty variables are among
the variablesx2, x4, x5 andx6.

From the 162 reconstruction possibilities, only 91 are
really reconstructible. Among these reconstructible direc-
tions, only 21 combinations are useful to isolate the faulty
variables. For the others, a set of variable is considered as
faulty but it is not possible to determine the faulty variables
in the set.
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Fig. 4. SPE for some reconstruction directions

D. Fault detection

The N reconstructed data were then projected onto the
residual space. For each observation fault indicatorsSPER

(24) were calculated.
The first graph of the figure 4 shows the global indicator

SPE1 (24). For the observations of the intervalI1 this norm
close to the value 0 thus shows the absence of outliers
in the variables used for the reconstruction, i.e. all the
variables exceptx1. Let us note that the three other groups of
observations (I2, I3, I4) are affected by faults, and we don’t
know exactly which components of the measurement vector
are faulty. Finally, by taking into account the fault presence
in the four intervals, the examination of the first graph of the
figure 4 concludes that:

• in each intervalI2, I3, I4, a variable other thanx1 is
faulty or more than one variable is faulty.

Other projections are built and are interpreted in a similar
way. Figure 4 shows the global indicator for some recon-
struction directions. The table III summarizes the conclusions
resulting from theSPER analysis (figure 4). TheSPE1 relates
to the reconstructed residuals without using the first variable,
the symbol 0 denotes the fault absence in the considered
interval. The diagnosis is then:

• in the intervalI1, x1 is faulty
• in the intervalI2, x2 andx3 or/andx7 are faulty, the fault

is not isolable
• in the intervalI3, x4, x5 are faulty
• in the intervalI4, x1, x4, x6 are faulty

TABLE III

FAULT SIGNATURES

I1 I2 I3 I4
SPE1 0 × × ×
SPE23 × 0 × ×
SPE45 × × 0 ×
SPE146 0 × × 0

V. CONCLUSION

Principal components analysis reduces the data represen-
tation space and enables the determination of the redundancy
relationships which are then used to detect and isolate
the faults. Usually PCA is constructed with fault-free data
from a decomposition in eigenvalues and eigenvectors of a
covariance matrix. However, real data set being usually not
fault-free, the covariance matrix is then disturbed by outliers.
In order to reduce the sensitivity of the model to outliers,
a fast two-step algorithm is proposed. First, a scale-M
estimator is used to determine a robust model. This estimator
is computed using an iterative re-weighted least squares
(IRWLS) procedure. This algorithm is initialized from a very
simple estimate derived from a one-step weighted variance-
covariance estimate. Therefore, a model robust with respect
to outliers has been constructed. Second, structured residuals,
based on the reconstruction principle, are generated for
multiple faults detection and isolation. For fault isolation,
the proposed scheme avoids the combinatorial explosion of
faulty scenarios related to multiple faults. Indeed, instead of
considering all combinations of one up to all sensors, we
limit the maximum number of faulty scenarios to consider
by evaluating the existence condition of structured residuals.
Therefore the detectable faults and the isolable faults are
determined as well as the different faulty scenarios for which
it is not possible to distinguish the faulty variables.
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