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Abstract— Principal component analysis (PCA) is a powerful represent the process. In practice one often tries to detect
fault detection and isolation method. However, the classical outliers using diagnostic tools Starting from a C|assic[a'h@
PCA which is based on the estimation of the sample mean method. However, classical methods can be affected by

and covariance matrix of the data is very sensitive to outliers . . .
in the training data set. Usually robust principal component outliers so strongly that the resulting fitted model does not

analysis was applied to remove the effect of outliers on the PCA allow to detect the true outliers (masking and swamping
model. In this paper, a fast two-step algorithm is proposed. phenomena). To avoid these effects, the goal of robust PCA

First, the objective was to find a robust PCA model that methods is to obtain principal components that are not
could be used for outliers detection and isolation. Hence a jnhfluenced much by outliers.

scale-M estimator [1] is used to determine a robust model. S | f robustifvi incipal ts h
This estimator is computed using an iterative re-weighted least everal ways of robustifying principal components have

squares (IRWLS) procedure. This algorithm is initialized froma  Peen proposed. They can be grouped as follows. A first group
very simple estimate derived from a one-step weighted variance- of robust PCA methods is obtained by replacing the classical
covariance estimate [2]. Second, structured residuals are used covariance matrix by a robust covariance estimator, such as
for multiple fault detection and isolation. These structured e yinimum covariance determinant (MCD) estimator [5].
reslduals are pgsed on the reconstruction principle an.d the Thi ter-intensi thod h _defined t
existence condition of such residuals is used to determine the '_S computer-in ens!ve_me O_ as a user-denned paramete
detectable faults and the isolable faults. The proposed scheme Which has to be optimized with respect to the number of
avoids the combinatorial explosion of faulty scenarios related outliers (unknown). A second approach to robust PCA uses
to multiple faults to consider. Then, this procedure for outliers  Projection Pursuit (PP) techniques. These methods masimiz
Sv?ttﬁcrgﬂﬂi Jgdf;jﬁéat'on is successfully applied to an example 5 opyst measure of data spread to obtain consecutive di-
' rections on which the data points are projected [6], [7].
|. INTRODUCTION However, to make these algorithms computationally feasibl
o . . the robust directions obtained are approximations of the tr
Principal component analysis (PCA) has been aplolle(Sjnes. Last proposals for robust PCA consists in minimizing a

successfully in the mpnitgring of complex systems [.3]’ [4lrobust scale of the orthogonal distances of each obsenvatio
It enables the determination of the redundancy relathmshlto the PCA subspace, similar to least trimmed squares (LTS)

which are then used to detect and isolate faults. It transor estimator, scale-M estimator [1]. These methods are easy to
the d_ata_ to a smaller _s_et of vgrlables V\.'h'Ch are IInea5ompute but are based on iterative procedures for which it
combinations of the original variables while retaining 3Samains the problem of starting values

mgch information as possible. In the class-ical .appr(.)acdn,.th Our presentation is devoted to thé problem of sensor
pnnmpa} components cprrespond o the d|rect|ons_ in whic ult detection and isolation in data. In this paper, a fast
the projected observations have the largest variance. Tv?o-step algorithm is proposed. First, a scale-M estimator
principal components, correspond to the eigenvectors ef ttr ’

empirical covariance matrix. From a regression point ofwie is computed using an iterative re-weighted least squares

PCA also constructs the optimal orthogonal linear progei é WLS) procedure. This algorithm is initialized from a very

Elhne tc?;gscgt/a?]niizes?nﬁ:s(d _ﬁ:g)r)e];:‘g:nm;mieegfeg\é?tzi d mple estimate derived from a one-step weighted variance-
' P ovariance estimate [2]. Second, structured residualssee

is then based on the accurate estimation of the covarian o‘? multiple fault detection and isolation. These struetlir

matrix fr_om the data which is very sensitive to abnormaresiduals are based on the reconstruction principle. The
observations.

| | th ority of the training dat ti variable reconstruction approach assumes that each set of
N general, tne majonty of the training data set 1S aSSOC1"aulty variables is unknown and suggests to reconstruct

: ) . fhese variables using the PCA model from the remaining
(faulty data, data obtained during shutdown or startupopei variables [8]. If the faulty variables are reconstructdug t

or data issued from different gperating mode) are refemed ?ault effect is eliminated. This property is useful for faul

as “outliers’. They disturb the correlation structure o€ th jsolation. Moreover instead of considering the isolatidn o

normal data” and then the PCA model does not accurate'gne up to all sensors, we determine the maximum number
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1] is used to determine a robust model. This estimator



Section 2 is a short reminder, on one hand, of the princip8. Robust approach
component analysis in the traditional case and, on the otherg, approach consists in carrying q®EA directly on the
hand, of the proposed robust principal component analysigata possibly contaminated by outliers. For that, a simple
A detection and isolation procedure for outliers is propiosergpyst estimator, called scale-M estimator, is used. Hewev
in section 3. Then, in section 4, this method is applied to aghjs estimator is computed by an iterative procedure. Then,
example emphasizing the generation of fault signatures. oo initialization parameters are needed to avoid local-mi
mum. To initialize this scale-M estimator a robust covatin
[I. PCA FAULT DETECTION AND ISOLATION matrix is first calculated with a low computational cost [9].
1) Robust covariance: Ruiz-Gazen (1996) define a “local”
matrix of variance in the sense that the suggested form
tends to emphasize the contribution of close observations i
comparison with distant observations (outliers). The matr
is defined in the following way:

Let us consider a data matrk € ON*", with row vector
x{ , which gathersN measurements collected on theystem
variables.

A. Classical approach N-1 N

In the classicaPCA case, data are supposed to be collected Zi z Wi j (X —Xj) (X% — XJ)T
on a system being in a normal process operatiB6A S Al (8)
determines an optimal linear transformation of the data NPy
matrix X in terms of capturing the variation in the data: i; j:.zHWI’J

T=XP and X=TP' (1) Where the weightsy; j themselves are defined by:
with T € ON*" the principal component matrix and the Wi j :exp(—g(xi—xj)Tzl(xi—xj)) 9)
matrix P € O™" contains the principal vectors which are . ) ’
the eigenvectors associated to the eigenvallief the B being a tuning parameter to reduce the influence of the
covariance matrix (or correlation matrig) of X: observations faraway, the authors recommend a value close
to 2. Forf3 =0, the robust covariance matrik is equal to
S =PAPT with PPT=P'P=1, (2) 2Z. And for a high value of3, only the closest observations

are taken into account in the robust covariance maktrix
whereA =diag(A;1 ... An) is a diagonal matrix with diagonal
elements in decreasing magnitude order. 2) Scale-M estimator: Two M-estimators are used, one for
The relations (1) are useful when the dimension of thestimation of the objective functioth (7) and another one
representation space is reduced. Once the component numiggrthe estimation of the robust residual scale. The general
¢ to retain is determined, the data matkxcan be approxi- scale-M estimator minimizes the following objective funat
mated. For that, the eigenvector matrix is partitioned the® ~ with the constrainP™P =1 [1]:

form: N )
P=(P P)  Pel™ ) éi;f)(g) (10)

From the decomposition (1X is the principal part of the With ri the residual defined by equation (62: the robust
data explained by thé first eigenvectors and the residualScale of the residual; and the functiono:0" — [0,1] is

partX is explained by the remaining components: nondecreasing, wittp(0) =0 andp(«) =1, and differen-
tiable. P is the eigenvector matrix of the robust covariance
X = XPPT = XC, (4) matrixC (12) corresponding to its— ¢ smallest eigenvalues.
K=X—_X = X(1 —Cy) (5) Then the weighted megm and the covarianc€ are defined
as follows:
- 56T — , T WX N
where the matrixC, = PP is not equal to the identity matrix, = 7'# with wi = p (f) (11)
excepted in the casé=n. 2i=1Wi o

; ; ; : . N
Hence the residual, for i = 1..N, is defined as follows: C— lei (% — 1) (% *H)T (12)
r = ||PTx —PT||? (6) P o
Then the scale factap is defined as the solution of:
where u correspond to the mean of the data 1 N r
ChoosingP as the eigenvectors of the covariance matrix Ni;p (5) =0 (13)
is equivalent as minimizing the functiop of the estimation jith 5 < (0, 1).
error with the constrainP™P = | such as: Then an iterative algorithm is necessary to determine all
1N these parameters. To avoid local minimum a good initializa-
¢ =— eri (7) tion is needed. Here the robust covariance mairix8) is
NS used to determined the values of the initial parameters.



The algorithm is described as follows: (with 0). For example, to reconstruct the set of varialites

1) it=1andgp = {2,4} among 5 variables, matriXg is formed as follows:
2) ComputeP the eigenvector matrix of the robust co- _ 0100 01"

variance matrixT corresponding to its1— ¢ smallest ZR=10 0 0 1 0

eigenvalues.
3) Computea = median(XP) The expression for the reconstructigg of the vectorx is
4) Computeo = trace(vVPTTP) given by:
5) Do untilit =N; or A <tol % — (I —ER(EEER)’%}{) X— GrX (17)

a) Computer; = ||Px —a||? for i = 1...N
b) If it > 1, computeo from (13)

c) SetA=1-0/0p andgp =0 o L
d) Compute thew; = p (r;/&) for i = 1...N The condition for fault detection is the same as for fault

e) Computeu from (11) reconst.ruction. Indeed, the fauIF direction projectiortoon
f) ComputeC from (12) the residual space have to be different from=p ¢ 0) for
sallowing fault reconstruction. This condition involvesath

C corresponding to ita— ¢ smallest eigenvalues. _the number of reconstructed variablefiave to respect the
h) Computea =BT me_quahty (18) and.that the columns of the matky are
i) Setit—it+1 neither null nor collinear:

6) End do. n—¢—r>1 (18)
In the experiments of this articley, defined by equation g gyyctured residual generation

(10), was chosen as the bisquare functiomgpresents the
squared distances).

whereZg = (I —C)) =g
Condition of reconstruction:

g) P the eigenvector matrix of the covariance matri

In a diagnosis objective, residuals are generated for fault
detection and isolation. The residuals are obtained by pro-
p(r) = min{l,l—(l—r)3} (14) jecting the reconstructed variables onto the residual espac

Residuals are defined b, projection ofxg onto the residual
The constantd in equation 13 is chosen as defined byspace:

Maronna (2005):

Nonti—1 XR = (|—Cg))?R=(|—Cg)GRX
_N- - o ¢
0= N (15) R = P}g Ix (19)
From this new model, detection and isolation of outlier§roperty 1. Matrix P,g) has the following property:
are carried out using the reconstruction principle. )=
PY)=r=0 (20)

l1l. FAULT DETECTION AND ISOLATION Considering (19) and (20), it means that the components

The variable reconstruction approach assumes that a grodfp¥r are not sensitive to the componentsxabelonging to
of variables may be faulty and suggests to reconstruct tiiee subseR. This property can be used to identify which
assumed faulty variables using the PCA model from theomponents ok are disturbed by faults.
remaining variables [8]. This reconstructed variables ar@roof: Considering a measuremertcomposed with the
then used to detect and isolate the faults. Moreover thetigie valuex®, a noisee with zero mean and one fault with
principle allows to determine replacement values for themplituded and directiorEr, whereF is a subset containing
faulty variables. the indices of the fault directions:

A. Data reconstruction X=X +€&+=pd (21)

The PCA model being known according to (4) and (5), a then the residual is:
new measurement vector (which may contains abnormal R = Péz) (X' +&+=pd) = Pé‘)(m—E.:d) (22)
values) can be decomposed as below:

L . 5 with Pr(é)x* =0 and its expected value is:
Xx=X+X , X=Cx , X=(1-Cy)x (16)

L , o E(%r) = PY)=Z¢d (23)
wherex and X are respectively the projections wfonto the
principal space and the residual space. « If the reconstruction directionSg are the same as the
The reconstruction of variables consists in estimating the ~fault directions, i.e. ifR=F, then all components of
reconstructed vectoi by eliminating the effect of the faults. the vectorP! = are null andE (%r) = 0
Matrix =g indicates the reconstruction directions. This matrix  If the reconstruction directionsr are different from
is orthonormal with dimensiom(x r), with r the number of the fault directions, then all components of the vector

component to reconstruct, and is built with 0 and 1, where 1 PF(f)EF are a priori not null except the components
indicates the reconstructed variables from the other bkasa belonging to the subs&.



The analysis of the residual amplitudesfor all possible 2) r =r+1: calculate for all available directionsg the
combinations shows the presence of faults and makes it values of the condition numbdtcond (27). If Rcond
possible to determine the components of the measurement is close to zero, then the faulty variables of the

vector affected by this fault. subseR are not detectable. Therefore, all combinations
For fault detection, a global indicat@Eg (norm of the which take into account these variables will not
projection vector) is calculated for each observation: be detectable. So they are useless. Moreover all the
~ 12 combinations ofr — 1 variables among the variables
SPER = %R | (24) of the subseR are only detectable because their fault
A fault is detected, ifSPE > 2 with &2 the detection signatures are identical. Then, it is useful to reconstruct
threshold of SPE. SPE correspond to the case without only one combination of these—1 variables from
reconstructiori.e. R= {@}. Then, the faulty variables of the theser variables. Therefore, among all combinations
subsetR are determined as follows: which take into account— 1 variables of the subs&
~ only one combination will be constructed, the others
R= argSPEr < & (25) are identical. Moreover all the combinations rof- 2
Rel variables among the variables of the subseR are
with [ is the set of all combinations of possible reconstruc- isolable.
tion directions. 3) Whiler <n—/ go to step 2

The global indicators take into account their correspomdin - This analysis of the structure of the model allows to
residuals).e. for exampleSPE,, which correspond t® =1,  getermine the detectable faults and the isolable faulte. Th

is computed fromx{i, Xi2, ... Xin. Then, they use all the nymper of useful reconstructions can then be reduced.
sensitivity of the residuals to the faults.

IV. NUMERICAL EXAMPLE : MULTIPLE FAULT CASE

C. Fault isolation We consider here the situation in which several faults

All the directions of reconstructioBigr have to be explored zffect variables at the same time.
for fault detection and isolation. Solutions for which the _
faults associated to the reconstruction directions aredeet A. Data generation
tectable are useless. The number of possible reconstnactio The matrix X includesN = 128 observations of a vector
can then be reduced, and the detectable faults are definegt.with 8 components generated in the following way:
The maximum reconstruction number can be calculated as

follows: X1 = V7 +sin(0.1i) (28)
”f(cr (26) X2 = 2sin(i/6) cogi/4)exp(—i/N), vi~ 47(0,1)
& x3=10g0¢2), Xi4=X1+X2

with CJ, denotes the combination offrom n. Xisg=Xi1—Xi2, Xie=2X1+X2

This pumber takes only into account the number of recon- X7=X1+%3 Xg~ 4(0,1)

structions and not the amplitude of the projection of the o
reconstructed directions onto the residual space. It can beOn the data thus generated were added realizations of ran-
reduced when the matrix of projected fault directions iskran dom variables with centred normal distribution and staddar
deficient or near rank-deficient. To detect these cases, tAgviations equal t0.02 as well as fault®xy, dxz, 6x3, dx4,
condition number Reond), defined by equation (27) as the X5, OXe represented by a bias of amplitude equal to 10%
ratio between the smallest singular value and the greatégtthe amplitudes of the variables. Faults are defined in the

singular value of the matri€g, is used: followin_g way: observations from 10 to 24 (_interval) for
. the variablex;, observations from 35 to 49 (intervhl) for

Reond — min (o (Zr)) 07 the variables; andxs, observations from 60 to 74 (interval

cond = max(a(iR)) 27) I3) for the variablesxs and xs, observations from 85 to 99

(interval 1) for the variablex;, x4 andXg.

For the near rank-deficient case, fault detection and grom the contaminated data. the robB&A model. with
localisation are possible only if its amplitude is huge.he t ¢ principal axes{= 4), was chosen.

following, faults with huge amplitude are not considered
as realistic. The process to detect useful directions of
reconstruction can be summarized as follows: B. Choice of the tuning parameters

To highlight advantages of this method, a discussion on
1) r = 1 (single-fault): calculate all available directionsthe influence of thg3 value for fault detection and isolation
Zg. If Zk=Rr is closed to zero, it means that the faultwith and without scale-M estimator is carried out. The resul
is not projected onto the residual space and theare shown with the global indicat®PE; (24). Two extreme
not detectable. To detect and localise this fault, iteases are distinguished, firstly data are disturbed by small
projection onto the principal space can be used. faults which involved small perturbation on the covariance
matrix (figure 1), and secondly data are disturbed by huge
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Fig. 1. SPE; with small outliers
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Fig. 3. SPE for R={3}, R={7}, R={2,3} andR={2,7}

80 100 120
| 50 I O R Mp):lpel space. To analyse the multiple fault directions, the irdica
% e 80 10 120 Rcond (27) is calculated for all available directions (for
Fig. 2. SPE; with huge outliers r =2 to 4). The result for the reconstruction of two variables
is shown in the table Il. For example, f& = {1,2}, the
faults which involved large perturbation on the covariancealues ofRcond is the intersection of the first row and the
matrix (figure 2). LegendT+M) denotes the use of a model second column of the table II.

based on the robust covariance estimation and the scale-M_et us notice that foR = {3,7}, Reond is close to zero.

estimator whereas legeii@) means the use of a model basedt means that the fault signatures for a fault &n or on

only on the robust covariance estimation. Fdrclose to x; are identical °Ez = SPE;). So we can only detect the
zero, the robust covariance matrix is close to the classicglult and conclude that the variables or x; or x3 and

covariance matrix. In the small fault case, the fault dédect x; are faulty. To illustrate this case, figure 3 shows the

is identical for small values g8 and better with the scale-M reconstructions of the variabl&= {3},R={7},R={2,3}
estimator for large values @. In the huge fault case, f@f= and R = {2,7} with the detection threshold. This figure
0.5, it is not possible to detect faults. The robust covariancénows thaSPE; = SPE; and SPE»3 = SPE,7, then only one
matrix is badly estimated, and the scale-M estimator isyoadisPE of each combination is useful to detect a fault. In the
initialized. For the other values ¢ it is possible to detect following, only the combinations with 3 are considered (not
the fault only with the addition of the scale-M estimator. Towith 7). On the interval (figure 3), SPE3 is not equal to
conclude, adding a scale-M estimator allows to reduce th&ro, so there is an other fault at the same time. Moreover,
importance of the8 value. Then, in the followingB =2, as  this figure shows that foBPE,3, on the interval,, the SPE

recommended by the authors of the robust covariance matrix,zero. We conclude that on the inter¥a| variablesx, and
is chosen to ensure the detection of all faults. x3 or/andx; are faulty.

C. Useful reconstruction For all the directions of reconstruction these indicators

. . are calculated. Another case wheReond is close to zero
From the size of the residual space, we cannot reconstr%ﬁh R—{2,4,5,6} is detected. Then all the combinations

more than four variables simultaneously. The maximunaf 3 variables among the variables of the sulRetre only
number of reconstructions is then equal to 162 (26). Now, th

fetectable and their fault signatures are identiSREp45 =
norm of the projections of fault directions onto the resldua.SF,E246 — PEyse :I SPEU456) IgTheurefore o:ﬂy olneSDES is

space are studied (table I). From this table, let us note thﬁgeful to detect a fault, for exampBPEo4s, Thus, a fault can

the last variable is not detectable. Indeed the variables . .
) . . be detected but not isolated, the faulty variables are amon
uncorrelated with the other variables. To detect and isola y g

. . . ) o Ehe variables<, X4, X5 and Xg.
a fault on this variable, it is better to work in the principal . N
P P& From the 162 reconstruction possibilities, only 91 are

TABLE | really reconstructible. Among these reconstructible dire
EXISTENCE CONDITION OF RESIDUALS tions, only 21 combinations are useful to isolate the faulty
== =R =rE == == == == variables. For the others, a set of variable is considered as
=1=1|=2=2]=3=3 | 44| =575 |=6=6 | =7=7 | =88 faulty but it is not possible to determine the faulty varesbl
0.84 | 0.72 | 0.46 | 0.71 | 0.41 | 0.40 | 0.46 | 0.00 in the set.
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Fig. 4. SPE for some reconstruction directions

D. Fault detection

TABLE Il
FAULT SIGNATURES

Ii1 Iy I3 g

SPE; 0 X X X
SPEy3 X 0 x x
SPEss X X 0 x
$E146 0 X X 0

V. CONCLUSION

Principal components analysis reduces the data represen-
tation space and enables the determination of the redupdanc
relationships which are then used to detect and isolate
the faults. Usually PCA is constructed with fault-free data
from a decomposition in eigenvalues and eigenvectors of a
covariance matrix. However, real data set being usually not
fault-free, the covariance matrix is then disturbed byietsl
In order to reduce the sensitivity of the model to outliers,
a fast two-step algorithm is proposed. First, a scale-M
estimator is used to determine a robust model. This estimato
is computed using an iterative re-weighted least squares
(IRWLS) procedure. This algorithm is initialized from a very
simple estimate derived from a one-step weighted variance-
covariance estimate. Therefore, a model robust with réspec
to outliers has been constructed. Second, structureduedsid
based on the reconstruction principle, are generated for
multiple faults detection and isolation. For fault isodatj
the proposed scheme avoids the combinatorial explosion of
faulty scenarios related to multiple faults. Indeed, iadtef
considering all combinations of one up to all sensors, we
limit the maximum number of faulty scenarios to consider

The N reconstructed data were then projected onto thgy evaluating the existence condition of structured ressiu

residual space. For each observation fault indica@tBg
(24) were calculated.

Therefore the detectable faults and the isolable faults are
determined as well as the different faulty scenarios forcihi

The first graph of the figure 4 shows the global indicatof s not possible to distinguish the faulty variables.
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