Trajectory tracking fault-tolerant controller design for Takagi-Sugeno systems subjects to actuator faults

Tahar Bouarar, Benoît Marx, Didier Maquin, José Ragot

Institut National Polytechnique de Lorraine

Centre de Recherche en Automatique de Nancy

International Conference on Communications, Computing and Control Applications. March 3-5, 2011. Hammamet, Tunisia.

Main contribution

Objectives of the work

- System supervision
- Fault detection (FD)
- Faut isolation (FI)
- Fault estimation
- Fault effect compensation (FTC)

Hypothesis

- Non linear systems
- System without uncertainty
- Multiple-model representation

- Process diagnosis
- Observer design
- 4 Some numerical results

1. Brief reminders : Multi-models or multiple-models

• Structure of the model

$$\begin{cases} \dot{x}(t) = \sum_{\substack{i=1 \\ r}}^{r} \mu_i(\xi(t)) (A_i x(t) + B_i u(t)) \\ y(t) = \sum_{i=1}^{r} \mu_i(\xi(t)) C_i x(t) \end{cases}$$

• Interpolation mechanism

$$\sum_{i=1}^r \mu_i(\xi(t)) = 1 \text{ and } 0 \leq \mu_i(\xi(t)) \leq 1, \forall t, \forall i \in \{1,...,r\}$$

• The premise variable $\xi(t)$ can be measurable or not.

1. Brief reminders : obtaining the Takagi-Sugeno model

- Direct identification of the model parameters^a
 Problems to be solved :
 - number of local models
 - structure of the weighting functions
 - data partitioning
- Linearisation of an existing non linear model^b Problems to be solved :
 - number of operating points
 - linearisation
 - structure of the weighting functions
- Transformations of an existing non linear model ^c
 Problems to be solved :
 - computation of the bounds of the variables
 - definition of the premise variables

a. K. Gasso, Identification des systèmes dynamiques non linéaires : Approche multimodèle, Ph.D., INPL, France, 2000.

b. R. Murray-Smith, T.A. Johansen. Multiple model approaches to modelling and control. Taylor & Francis, 1997.

c. A.M. Nagy, G. Mourot, B. Marx, G. Schutz, J. Ragot. Model 55% procession of a biological reactor, 15th IFAC Sympo-

2. Brief reminders : Observer / Diagnosis / Control

The link between Observer / Diagnosis / Control

- Estimate the state of the system
- Estimate the performances of the system
- Decide to take an action on the system

3. Principles of process diagnosis

 $\mathsf{Process}\ \mathsf{diagnosis}$: Detect the presence of faults in spite the influence of the disturbances

• Residual : indicator signals, which are sensitive to the faults f(t) :

$$r(t) = W(y(t) - \hat{y}(t)), \quad r \in \mathscr{R}^h, W(.) \in \mathscr{R}^{h \times \mu}$$

where W(.) is a filter to design

- ► Fault detection : analyse residuals in order to detect abnormal events
- ► Fault isolation : some specific filters allow to isolate the influence of each fault on the residual.
- Fault characterisation : try to estimate $\hat{f}(t)$ from r(t).

3. Fault Tolerant Control

In the presence of faults, FTC possess the ability to :

- detect and accommodate the faults
- maintain overall system stability
- maintain « acceptable » performances

 $\ensuremath{\operatorname{Figure}}$: Reconfiguration structure

4. Problem formulation : controller structure

• System without fault

$$\begin{cases} \dot{x} = \sum_{i=1}^{r} \mu_i(\xi) (A_i x + B_i u) \\ y = \sum_{i=1}^{r} \mu_i(\xi) (C_i x + D_i u) \end{cases}$$

Faulty system

$$\begin{cases} \dot{x}_{f} = \sum_{i=1}^{r} \mu_{i}(\xi) (A_{i}x_{f} + B_{i}(u_{f} + f)) \\ y_{f} = \sum_{i=1}^{r} \mu_{i}(\xi) (C_{i}x_{f} + D_{i}(u_{f} + f)) \end{cases}$$

Reference model

$$\begin{cases} \dot{x}_r = \sum_{i=1}^r \mu_i(\xi) (A_{ri}x_f + B_{ri}u_r) \\ y_r = \sum_{i=1}^r \mu_i(\xi) (C_{ri}x_r + D_{ri}u_r) \end{cases}$$

4. Problem formulation : classical controller structure

Control strategy

$$u_f = \sum_{i=1}^r \mu_i(\xi) K_i(x_r - \hat{x}_f) + u_r$$

State observer

$$\begin{cases} \dot{\hat{x}}_{f} = \sum_{i=1}^{r} \mu_{i}(\xi) \left(A_{i}x + B_{i}u_{f} + H_{i}^{1}(y_{f} - \hat{y}_{f}) \right) \\ \hat{y}_{f} = \sum_{i=1}^{r} \mu_{i}(\xi) \left(C_{i}x + D_{i}u_{f} \right) \end{cases}$$

4. Problem formulation : FTC controller structure

• Control strategy • State observer $\begin{aligned}
u_f &= \sum_{i=1}^r \mu_i(\xi) K_i(x_r - \hat{x}_f) + u_r - \hat{f} \\
\hat{x}_f &= \sum_{i=1}^r \mu_i(\xi) \left(A_i x + B_i(u_f + \hat{f}) + H_i^1(y_f - \hat{y}_f) \right) \\
\hat{f} &= \sum_{i=1}^r \mu_i(\xi) H_i^2(y_f - \hat{y}_f) \\
\hat{y}_f &= \sum_{i=1}^r \mu_i(\xi) (C_i x + D_i(u_f + f))
\end{aligned}$

4. Controller design

• Estimation errors

$$\begin{cases} e_s(t) = x_f(t) - \hat{x}_f(t) :\\ e_f(t) = f(t) - \hat{f}(t) :\\ e_p(t) = x_r(t) - x_f(t) :\\ e_y(t) = y_f(t) - \hat{y}_f(t) : \end{cases}$$

- state estimation error fault estimation error tracking error
- : output error

• Dynamic of the errors

$$\begin{pmatrix} \dot{e}_{p}(t) \\ \dot{e}_{s}(t) \\ \dot{e}_{d}(t) \\ \dot{e}_{y}(t) \end{pmatrix} = \begin{pmatrix} A_{\mu} - B_{\mu}K_{\mu} & -B_{\mu}K_{\mu} & -B_{\mu} & 0 \\ 0 & A_{\mu} & B_{\mu} & -H_{\mu}^{1} \\ 0 & -H_{\mu}^{2}C_{\mu} & -H_{\mu}^{2}D_{\mu} & 0 \\ 0 & C_{\mu} & D_{\mu} & -I \end{pmatrix} \begin{pmatrix} e_{p}(t) \\ e_{s}(t) \\ e_{d}(t) \\ e_{y}(t) \end{pmatrix}$$

$$\Phi_{\mu} = \sum_{i=1}^{n} \mu_i(\xi) \Phi_i, \quad \Phi = A, B, C, D, K, H^1, H^2$$

• Parameters adjustment \rightarrow Lyapunov approach

5. Numerical results

$$A_{1} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -3 & 0 \\ 2 & 1 & -8 \end{pmatrix} \quad A_{2} = \begin{pmatrix} -3 & 2 & 2 \\ 0 & -3 & 0.2 \\ 0.5 & 2 & -5 \end{pmatrix} \quad B_{1} = \begin{pmatrix} 0 \\ 1 \\ 0.25 \end{pmatrix}, \quad B_{2} = \begin{pmatrix} 1 \\ 1 \\ -0.5 \end{pmatrix}$$
$$C_{1} = \begin{pmatrix} -1 & 0.5 & 0 \end{pmatrix}, \quad C_{2} = \begin{pmatrix} -1 & 0.5 & 0 \end{pmatrix}, \quad D_{1} = -0.87, \quad D_{2} = -0.5$$
$$\mu_{1}(u) = \frac{1 - tanh(0.5 - u)}{2}, \quad \mu_{2}(u) = 1 - \mu_{1}(u)$$

5. Numerical results

FIGURE: Tracking errors

FIGURE: State with classical control

FIGURE: Fault : thrue and estimated

14/18

5. Numerical results

FIGURE: States

Contribution

- Non linear system framework
- State estimation
- Fault estimation
- Fault tolerant control

Future works

Noise influence analysis

$$y = \sum_{i=1}^r \mu_i(\xi) C_i x + b$$

Unmeasured weighting functions

$$\dot{x} = \sum_{i=1}^{r} \mu_i(x) \left(A_i x + B_i u \right)$$

- Bank of observers using a subset of measurements
- Fault affecting the system

$$\dot{x} = \sum_{i=1}^{r} \mu_i(x) \left(A_i(f) x + B_i u \right)$$

Ladies and Gentleman, Thank you very much for your attention !

