Fault detection and isolation with robust principal component analysis

Y. Tharrault, G. Mourot, J. Ragot

Centre de Recherche en Automatique de Nancy Nancy-université, CNRS 2, Avenue de la forêt de Haye 54516 Vandœuvre-lès-Nancy Cedex

16th Mediterranean Conference on Control and Automation June 25-27, 2008, Ajaccio, Corsica, France

Principle of the Principal component analysis

2 Robust principal component analysis

Numerical example: multi-fault case

Principle of the Principal component analysis

• Data matrix $X \in \mathfrak{N}^{N \times n}$ in a normal process operation

PCA

Maximization of the variance projections T = X P

- $T \in \Re^{N \times n}$: principal component matrix
- $P \in \Re^{n \times n}$: projection matrix

Decomposition in eigenvalues/eigenvectors of the covariance matrix

$$\Sigma = \frac{1}{N-1} X^T X = P \Lambda P^T \quad \text{with} \quad P P^T = P^T P = I_n$$
$$\Sigma = \begin{bmatrix} P_\ell & P_{n-\ell} \end{bmatrix} \begin{bmatrix} \Lambda_\ell & 0\\ 0 & \Lambda_{n-\ell} \end{bmatrix} \begin{bmatrix} P_\ell^T\\ P_{n-\ell}^T \end{bmatrix}$$

Principle of the Principal component analysis

Decomposition

Principal part : $\hat{X} = X P_{\ell} P_{\ell}^{T} = X C_{\ell}$ Residual part : $E = X - \hat{X} = X (I - C_{\ell})$

Sensitive to outliers

Robust PCA with respect to outliers

 \rightarrow Outliers detection and isolation

Robust approach

A scale M-estimator with a robust covariance matrix as initialization

scale M-estimator

The residual r_i

$$r_i = ||\boldsymbol{P}_{n-\ell}^T (\boldsymbol{x}_i - \boldsymbol{\mu})||^2$$

with x_i an observation

 μ the mean of the data X

 $P_{n-\ell}$ is the eigenvector matrix of the robust covariance matrix corresponding to its $n-\ell$ smallest eigenvalues

Robust approach

A scale M-estimator with a robust covariance matrix as initialization

scale M-estimator

The residual r_i

$$r_i = ||\boldsymbol{P}_{\boldsymbol{n}-\boldsymbol{\ell}}^T(\boldsymbol{x}_i - \boldsymbol{\mu})||^2$$

The general scale-M estimator minimizes the following objective function with the constraint $P^T P = I$:

$$\frac{1}{N}\sum_{i=1}^{N} \Pr\left(\frac{r_i}{\hat{\mathbf{o}}}\right)$$

with $\hat{\sigma}$ the robust scale of the residual r_i and the function ρ choose as the bisquare function ($\rho(r) = \min\{1, 1 - (1 - r)^3\}$).

Robust approach

Robust covariance matrix use to initialize a scale M-estimator

Robust covariance matrix

$$V = \frac{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \mathbf{w}_{i,j} (x_i - x_j) (x_i - x_j)^T}{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \mathbf{w}_{i,j}}$$

where the weights $w_{i,j}$ themselves are defined by:

$$w_{i,j} = \exp\left(-rac{\beta}{2}(x_i - x_j)^T \Sigma^{-1}(x_i - x_j)
ight)$$

with β turning parameter

Tharrault, Mourot, Ragot (CRAN)

Reconstruction principle

Estimate *r* variables using the n - r remaining variables and the model

$$\hat{\mathbf{x}}_{R} = [I - \Xi_{R} (\tilde{\Xi}_{R}^{T} \tilde{\Xi}_{R})^{-1} \tilde{\Xi}_{R}^{T})] \mathbf{x}$$
$$\tilde{\Xi}_{R} = (I - C_{\ell}) \Xi_{R}$$

with Ξ_R : reconstruction directions matrix

To reconstruct 2 variables (R = 2, 4) among 5 variables

$$\Xi_{R} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]^{T}$$

Reconstruction condition : $(\Xi_R^T \Xi_R)^{-1}$

$$r <= n - k$$

Tharrault, Mourot, Ragot (CRAN)

If the matrix of the reconstruction directions is reorganized as follows:

$$\Xi_{R} = \begin{bmatrix} I_{h} & 0\\ (r \times r) & ((n-r) \times r) \end{bmatrix}^{T} \in \Re^{n \times r}$$

with $I_1 \in \mathfrak{R}^{r \times r}$ an identity matrix.

Then C_{ℓ} is splitted in four parts: $C_{\ell} = \begin{bmatrix} c_1 & c_2 \\ (r \times r) & (r \times (n-r)) \\ \hline c_2^T & c_4 \\ ((n-r) \times r) & ((n-r) \times (n-r)) \end{bmatrix} \in \Re^{n \times n}$

The reconstruction \hat{x}_R of the vector *x* is written as follows:

$$\hat{x}_{R} = \begin{bmatrix} 0 & (l_{1} - c_{1})^{-1} c_{2} \\ 0 & l_{2} \end{bmatrix} x$$

with $I_2 \in \Re^{n-r \times n-r}$ an identity matrix.

x_R projection in the residual space

$$\begin{split} \tilde{x}_R &= (I - C_\ell) \, \hat{x}_R \\ \tilde{x}_R &= P_R^{(\ell)} \, x, \qquad P_R^{(\ell)} = (I - C_\ell) \, [I - \Xi_R (\tilde{\Xi}_R^T \tilde{\Xi}_R)^{-1} \tilde{\Xi}_R^T)] \end{split}$$

A global indicator SPE_R (norm of the projection vector)

$$extsf{SPE}_{ extsf{R}} = \parallel ilde{ extsf{x}}_{ extsf{R}} \parallel^2$$

Fault detection

A fault is detected, if:

$$SPE > \delta_{lpha}^2$$

 δ_{α}^2 the detection threshold of SPE,

SPE correspond to the case without reconstruction *i.e.* $R = \{\phi\}$.

Fault isolation

The faulty variables of the subset \hat{R} are determined as follows:

$$\hat{\textit{R}} = \mathop{\text{arg SPE}}_{\textit{R} \in \mathfrak{I}}\textit{SPE}_{\textit{R}} < \delta_{\alpha}^{2}$$

with $\ensuremath{\mathfrak{I}}$ is the set of all combinations of possible reconstruction directions.

Diagnosis with robust PCA

Fault isolation

Determination of the detectable and isolable faults

Reconstruction condition : $r <= n - \ell$

The maximum reconstruction number can be calculated as follows:

$$\sum_{r=1}^{n-\ell} \mathbb{C}_n^r$$

with \mathbb{C}_n^r denotes the combination of *r* from *n*.

Reduction of the number reconstruction

It can be reduced when the matrix of projected fault directions is rank-deficient or near rank-deficient.

To detect these cases, the condition number (Rcond) is used:

$$Rcond = \frac{\min\left(\sigma\left(\tilde{\Xi}_{R}\right)\right)}{\max\left(\sigma\left(\tilde{\Xi}_{R}\right)\right)}$$

Algorithm to determine the detectable faults and the isolable faults

- r = 1 (single-fault): calculate all available directions $\tilde{\Xi}_R$. If $\tilde{\Xi}_R^T \tilde{\Xi}_R$ is closed to zero -> fault is not detectable
- ② r = r + 1: calculate for all available directions Ξ_R the values of the condition number *Rcond*.
 - If *Rcond* is close to zero :
 - the *r* faulty variables of the subset *R* are not detectable.
 - all the combinations of r-1 variables are only detectable.
 - all the combinations of r-2 variables are isolable.
 - If *Rcond* is not close to zero :
 - all the combinations of r-1 variables are isolable.
- Solution While $r \le n \ell$ go to step 2

One considers:

•
$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \end{bmatrix}$$

N = 108 observations

x6

 I_4

Х 0 0 Х 0

Х

0

for r = 1

$\tilde{\Xi}_1^T \tilde{\Xi}_1$	$\tilde{\Xi}_2^T \tilde{\Xi}_2$	$\tilde{\Xi}_3^T \tilde{\Xi}_3$	$\tilde{\Xi}_4^T \tilde{\Xi}_4$	$\tilde{\Xi}_5^T \tilde{\Xi}_5$	$\tilde{\Xi}_6^T \tilde{\Xi}_6$	$\tilde{\Xi}_7^T \tilde{\Xi}_7$	$\tilde{\Xi}_8^T \tilde{\Xi}_8$
0.84	0.72	0.46	0.71	0.41	0.40	0.46	0.00

 \rightarrow Fault on x_8 is not detectable in the residual space

If or r = 2

Rcond	1	2	3	4	5	6	7
1		0.88	0.72	0.88	0.57	0.57	0.72
2			0.79	0.73	0.42	0.68	0.80
3				0.80	0.75	0.76	0.01
4					0.68	0.41	0.80
5						0.79	0.75
6							0.75

 \rightarrow Fault signatures on x_3 and x_7 are identical

 \rightarrow Fault on x_3 or x_7 is not isolable

$\tilde{\Xi}_1^T \tilde{\Xi}_1$	$\tilde{\Xi}_2^T \tilde{\Xi}_2$	$\tilde{\Xi}_3^T \tilde{\Xi}_3$	$\tilde{\Xi}_4^T \tilde{\Xi}_4$	$\tilde{\Xi}_5^T \tilde{\Xi}_5$	$\tilde{\Xi}_6^T \tilde{\Xi}_6$	$\tilde{\Xi}_7^T \tilde{\Xi}_7$	$\tilde{\Xi}_8^T \tilde{\Xi}_8$
0.84	0.72	0.46	0.71	0.41	0.40	0.46	0.00

 \rightarrow Fault on x_8 is not detectable in the residual space

 \rightarrow Fault signatures on x_3 and x_7 are identical

 \rightarrow Fault on x_3 or x_7 is not isolable

Tharrault, Mourot, Ragot (CRAN)

Diagnosis with robust PCA

For all the directions of reconstruction *Rcond* is calculated

Rcond is close to zero with $R = \{2, 4, 5, 6\}$

Useful reconstruction

- From the 162 reconstruction possibilities
- 91 are really reconstructible
- 21 combinations are useful to isolate the faulty variables
- For the others, a set of variable is considered as faulty

Numerical example: Useful reconstruction

Tharrault, Mourot, Ragot (CRAN)

MED'08 21 / 23

	<i>I</i> ₁	I_2	l ₃	<i>I</i> 4		
Δ_1	0	×	×	\times		
Δ_{23}	×	0	\times	×		
Δ_{45}	×	\times	0	\times		
Δ_{146}	0	\times	\times	0		
Fault signatures						

- in the interval I_1 , x_1 is faulty
- in the interval I_2 , x_2 and x_3 or/and x_7 are faulty
- in the interval I_3 , x_4 and x_5 are faulty
- in the interval I_4 , x_1 , x_4 and x_6 are faulty

Conclusion

- Robust PCA with respect to outliers
 - -> directly applicable on data containing potential faults
- use of the principle of reconstruction and projection of the reconstructed data together
 - -> outliers detection and isolation

Reduction of the computational load

-> determination of the dectable and isolable faults