WWTP diagnosis based on robust principal component analysis

Y. Tharrault, G. Mourot, J. Ragot, M.-F. Harkat

Centre de Recherche en Automatique de Nancy
Nancy-université, CNRS
2, Avenue de la forêt de Haye
54516 Vandœuvre-lès-Nancy Cedex

7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes
July 3, 2009, Barcelona, Spain
Outline

1. Principle of the Principal component analysis
2. Robust PCA
3. Fault detection and isolation
4. Application to hydraulic part of a wastewater treatment plant
Data matrix $X \in \mathbb{R}^{N \times n}$ in a normal process operation
Principle of the Principal component analysis

- Data matrix $X \in \mathbb{R}^{N \times n}$ in a normal process operation

PCA

Maximization of the variance projections $T = XP$

- $T \in \mathbb{R}^{N \times n}$: principal component matrix
- $P \in \mathbb{R}^{n \times n}$: projection matrix
Principal of the Principal component analysis

- Data matrix \(X \in \mathbb{R}^{N \times n} \) in a normal process operation

PCA

Maximization of the variance projections \(T = X P \)
- \(T \in \mathbb{R}^{N \times n} \): principal component matrix
- \(P \in \mathbb{R}^{n \times n} \): projection matrix

Decomposition in eigenvalues/eigenvectors of the covariance matrix

\[
\Sigma = \frac{1}{N-1} X^T X = P \Lambda P^T \quad \text{with} \quad PP^T = P^T P = I_n
\]

\[
\Sigma = \begin{bmatrix}
P_{\ell} & P_{n-\ell}
\end{bmatrix}
\begin{bmatrix}
\Lambda_{\ell} & 0 \\
0 & \Lambda_{n-\ell}
\end{bmatrix}
\begin{bmatrix}
P_{\ell}^T \\
P_{n-\ell}^T
\end{bmatrix}
\]
Principle of the Principal component analysis

- Data matrix $X \in \mathbb{R}^{N \times n}$ in a normal process operation

PCA

Maximization of the variance projections \[T = X P \]

- $T \in \mathbb{R}^{N \times n}$: principal component matrix
- $P \in \mathbb{R}^{n \times n}$: projection matrix

Decomposition in eigenvalues/eigenvectors of the covariance matrix

\[
\Sigma = \frac{1}{N-1} X^T X = P \Lambda P^T \quad \text{with} \quad PP^T = P^T P = I_n
\]

\[
\Sigma = \begin{bmatrix} P_l & P_{n-l} \end{bmatrix} \begin{bmatrix} \Lambda_l & 0 \\ 0 & \Lambda_{n-l} \end{bmatrix} \begin{bmatrix} P_l^T \\ P_{n-l}^T \end{bmatrix}
\]
Principle of the Principal component analysis

- Data matrix $X \in \mathbb{R}^{N \times n}$ in a normal process operation

PCA

Maximization of the variance projections
$T = X P$

- $T \in \mathbb{R}^{N \times n}$: principal component matrix
- $P \in \mathbb{R}^{n \times n}$: projection matrix

Decomposition in eigenvalues/eigenvectors of the covariance matrix

$$
\Sigma = \frac{1}{N-1} X^T X = P \Lambda P^T \quad \text{with} \quad PP^T = P^T P = I_n
$$

$$
\Sigma = \begin{bmatrix} P_\ell & P_{n-\ell} \end{bmatrix} \begin{bmatrix} \Lambda_\ell & 0 \\ 0 & \Lambda_{n-\ell} \end{bmatrix} \begin{bmatrix} P_\ell \\ P_{n-\ell} \end{bmatrix}
$$
Principle of the Principal component analysis

Data matrix $X \in \mathbb{R}^{N \times n}$ in a normal process operation

PCA

Maximization of the variance projections $T = XP$

- $T \in \mathbb{R}^{N \times n}$: principal component matrix
- $P \in \mathbb{R}^{n \times n}$: projection matrix

Decomposition in eigenvalues/eigenvectors of the covariance matrix

$$\Sigma = \frac{1}{N-1} X^T X = P \Lambda P^T \quad \text{with} \quad PP^T = P^T P = I_n$$

$$\Sigma = \begin{bmatrix} P_{\ell} & P_{n-\ell} \end{bmatrix} \begin{bmatrix} \Lambda_{\ell} & 0 \\ 0 & \Lambda_{n-\ell} \end{bmatrix} \begin{bmatrix} P_{\ell}^T \\ P_{n-\ell}^T \end{bmatrix}$$
Principle of the Principal component analysis

Decomposition
Principle of the Principal component analysis

Decomposition

Principal part

\[\hat{X} = X \, C_\ell \]
with

\[C_\ell = P_\ell \, P_\ell^T \]
Principle of the Principal component analysis

Decomposition

Principal part
\[\hat{X} = X C_\ell \]
with \(C_\ell = P_\ell P_\ell^T \)

Residual part
\[E = X - \hat{X} \]
\[= X (I_n - C_\ell) \]
\[= X P_{n-\ell} P_{n-\ell}^T \]
Principle of the Principal component analysis

Decomposition

Principal part
\[\hat{X} = X C_\ell \]
with \[C_\ell = P_\ell P_\ell^T \]

Residual part
\[E = X - \hat{X} \]
\[= X (I_n - C_\ell) \]
\[= X P_{n-\ell} P_{n-\ell}^T \]

Determination of the number of principal components \(\ell \)
PCA weakness

Sensitive to outliers

Outliers: Data different from the normal operating conditions (faulty data, data obtained during shutdown or startup periods or data issued from different operating mode)

Robust PCA with respect to outliers

→ Outliers detection and isolation
Outliers

- $n = 2$ variables (x_1, x_2)
- $X = [x_1 \ x_2]$
- $\ell = 1$
Outliers

- $n = 2$ variables (x_1, x_2)
- $X = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$
- $\ell = 1$
- Outliers 1: green observation
- Outliers 2: red observation
Robust PCA

Residual $r(k)$

$$r(k) = \|P_{n-\ell}^T (x(k) - \mu)\|^2$$

with $x(k)$ an observation

μ the mean of the data X

$P_{n-\ell}$ is the eigenvector matrix of the robust covariance matrix corresponding to its $n-\ell$ smallest eigenvalues

PCA minimise the following criterion:

$$\frac{1}{N} \sum_{k=1}^{N} (r(k))$$

with the constraint $P_{n-\ell}^T P_{n-\ell} = I_{n-\ell}$.
Robust PCA

Residual $r(k)$

$$r(k) = ||P_{n-\ell}^T (x(k) - \mu)||^2$$

with $x(k)$ an observation

μ the mean of the data X

$P_{n-\ell}$ is the eigenvector matrix of the robust covariance matrix corresponding to its $n-\ell$ smallest eigenvalues

The general scale-M estimator minimizes the following objective function with the constraint $P_{n-\ell}^T P_{n-\ell} = I_{n-\ell}$:

$$\frac{1}{N} \sum_{k=1}^{N} \rho \left(\frac{r(k)}{\hat{\sigma}} \right)$$

with the function ρ as the objective function, $\hat{\sigma}$ the robust scale of the residual $r(k)$ calculated by minimising the following criterion:

$$\frac{1}{N} \sum_{k=1}^{N} \rho \left(\frac{r(k)}{\hat{\sigma}} \right) = \delta$$
Initialization with a robust covariance matrix

Robust covariance matrix

\[V = \frac{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} w(i,j)(x(i) - x(j))(x(i) - x(j))^T}{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} w(i,j)} \]

where the weights \(w(i,j) \) themselves are defined by:

\[w(i,j) = \exp \left(-\frac{\beta}{2} (x(i) - x(j))^T \Sigma^{-1} (x(i) - x(j)) \right) \]

with \(\beta \) turning parameter

For \(\beta = 0 \), \(V = 2 \Sigma \)
Robust PCA

Only robust to outliers with a projection onto the residual space

scale M-estimator

The scale M-estimator maximizes the following criterion with the constraint $P_\ell^T P_\ell = I_\ell$:

$$\frac{1}{N} \sum_{k=1}^{N} \rho \left(\frac{\|P_\ell^T (x(k) - \mu)\|^2}{\hat{\sigma}} \right)$$

with $\hat{\sigma}$ the robust scale of the residual r and ρ the objective function.
The reconstruction \hat{x}_R

Minimizing the influence of fault

$$\hat{x}_R(k) = x(k) - \Xi_R f_R$$

with $x(k)$: an observation
- f_R: the fault magnitude (unknown)
- Ξ_R: matrix of reconstruction directions
Fault detection and isolation

The reconstruction \hat{x}_R

Minimizing the influence of fault

$$\hat{x}_R(k) = x(k) - \Xi_R f_R$$

with $x(k)$: an observation

- f_R: the fault magnitude (unknown)
- Ξ_R: matrix of reconstruction directions

For example, to reconstruct 2 variables ($R = 2, 4$) among 5 variables

$$\Xi_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}^T$$
Fault detection and isolation

The reconstruction \hat{x}_R

Minimizing the influence of fault

$$\hat{x}_R(k) = x(k) - \Xi_R f_R$$

with $x(k)$: an observation

- f_R: the fault magnitude (unknown)
- Ξ_R: matrix of reconstruction directions

For example, to reconstruct 2 variables ($R = 2, 4$) among 5 variables

$$\Xi_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}^T$$

Estimation of the fault magnitude \hat{f}_R:

$$\hat{f}_R = \arg \min_{f_R} \{ D_R(k) \}$$

with $D_R(k) = \hat{x}_R(k)^T P \Lambda^{-1} P^T \hat{x}_R(k)$
The reconstruction vector $\hat{x}_R(k)$ of the vector $x(k)$ is given by:

$$\hat{x}_R(k) = (I - \Xi_R(\Xi_R^T P \Lambda^{-1} P^T \Xi_R)^{-1} \Xi_R^T P \Lambda^{-1} P^T) x(k)$$
The reconstruction vector $\hat{x}_R(k)$ of the vector $x(k)$ is given by:

$$ \hat{x}_R(k) = (I - \Xi_R(\Xi_R^T \Lambda^{-1} P^T \Xi_R)^{-1} \Xi_R^T \Lambda^{-1} P^T) x(k) $$

Condition of reconstruction:

Existence of $(\Xi_R^T \Lambda^{-1} P^T \Xi_R)^{-1} \Rightarrow$ matrix $\Xi_R^T \Lambda^{-1} P^T \Xi_R$ of full rank
The reconstruction vector $\hat{x}_R(k)$ of the vector $x(k)$ is given by:

$$\hat{x}_R(k) = (I - \Xi_R(\Xi_R^T P\Lambda^{-1} P^T \Xi_R)^{-1} \Xi_R^T P\Lambda^{-1} P^T) x(k)$$

Condition of reconstruction:

Existence of $(\Xi_R^T P\Lambda^{-1} P^T \Xi_R)^{-1}$ \Rightarrow matrix $\Xi_R^T P\Lambda^{-1} P^T \Xi_R$ of full rank

To reconstruct a fault, it must be at least projected onto the principal space ($r \leq \ell$) or onto the principal space ($r \leq n - \ell$). This implies that the number of reconstructed variables r must respect the following inequality:

$$r \leq \max(n - \ell, \ell)$$

with r : Number of reconstructed variables
ℓ : Number of principal components
n : Number of variables
Fault detection and isolation

The reconstruction vector $\hat{x}_R(k)$ of the vector $x(k)$ is given by:

$$\hat{x}_R(k) = \left(I - \Xi_R(\Xi_R^T P \Lambda^{-1} P^T \Xi_R)^{-1} \Xi_R^T P \Lambda^{-1} P^T \right) x(k)$$

Condition of reconstruction:

Existence of $(\Xi_R^T P \Lambda^{-1} P^T \Xi_R)^{-1}$ \Rightarrow matrix $\Xi_R^T P \Lambda^{-1} P^T \Xi_R$ of full rank

To reconstruct a fault, it must be at least projected onto the principal space ($r \leq \ell$) or onto the principal space ($r \leq n - \ell$). This implies that the number of reconstructed variables r must respect the following inequality:

$$r \leq \max(n - \ell, \ell)$$

with r : Number of reconstructed variables
ℓ : Number of principal components
n : Number of variables

The number of maximum reconstruction:

$$\max(n - \ell, \ell) - 1 \sum_{r=1}^{\max(n - \ell, \ell)} \binom{n}{r}$$

with $\binom{n}{r}$ denotes the combination of r from n.
Fault detection indicator D_R

$$D_R(k) = \hat{x}_R(k)^T P \Lambda^{-1} P^T \hat{x}_R(k)$$
Fault detection indicator D_R

$$D_R(k) = \hat{x}_R(k)^T P \Lambda^{-1} P^T \hat{x}_R(k)$$

Fault detection

A fault is detected, if:

$$D_R(k) > \gamma^2_\alpha$$

with γ^2_α the detection threshold of indicator D_R,
Fault detection and isolation

Fault detection indicator D_R

$$D_R(k) = \hat{x}_R(k)^T P \Lambda^{-1} P^T \hat{x}_R(k)$$

Fault detection

A fault is detected, if:

$$D_R(k) > \gamma_2^2$$

with γ_2^2 the detection threshold of indicator D_R.

Fault isolation

For the faulty observations, the faulty variables \hat{R} are determined as follows:

$$\hat{R} = \arg \min_{R \in \mathcal{S}} D_R(k) < \gamma_2^2$$

with γ_2^2 the detection threshold of indicator D_R and \mathcal{S} all combinations of possible reconstruction directions.
Fault detection and isolation

Reduction of the number of reconstruction

Determination of the colinear direction projection

A global indicator K is built:

$$K(R_1, R_2) = \max\{d(R_1, R_2), \tilde{d}(R_1, R_2)\}$$

with R_1 and R_2 correspond to sets of variable reconstruction and $d(R_1, R_2)$ distance between two sub-spaces onto principal space and $\tilde{d}(R_1, R_2)$ distance between two sub-spaces onto residual space

$$d(R_1, R_2) = ||\tilde{\Xi}_R_1 (\tilde{\Xi}_R_1^T \tilde{\Xi}_R_1)^{-1} \tilde{\Xi}_R_1^T - \tilde{\Xi}_R_2 (\tilde{\Xi}_R_2^T \tilde{\Xi}_R_2)^{-1} \tilde{\Xi}_R_2^T||_2$$

$$\tilde{d}(R_1, R_2) = ||\tilde{\Xi}_R_1 (\tilde{\Xi}_R_1^T \tilde{\Xi}_R_1)^{-1} \tilde{\Xi}_R_1^T - \tilde{\Xi}_R_2 (\tilde{\Xi}_R_2^T \tilde{\Xi}_R_2)^{-1} \tilde{\Xi}_R_2^T||_2$$

with $\tilde{\Xi}_R_1 = \Lambda_n^{1/2} P_{n-\ell}^T \Xi_{R_1}, \tilde{\Xi}_{R_1} = \Lambda_{n-\ell}^{1/2} P_{n-\ell}^T \Xi_{R_1}$.

For example, to reconstruct 2 variables ($R_1 = 2, 4$) among 5 variables

$$\Xi_{R_1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}^T$$
Fault detection and isolation
Algorithm for the determination of the detectable and isolable faults

- $r = 1$
- Calculate for all available directions ($R_1 \in \mathcal{I}$ and $R_2 \in \mathcal{I}$) the indicator $K(R_1, R_2)$.
 - If $K(R_1, R_2)$ is equal to zero:
 - Only a set of variables potentially faulty may be determined, i.e. the faulty variables are associated to the indices R_1 or R_2 or R_1 and R_2. Thus, it is only required to determine one direction, for example R_1.
 - If $K(R_1, R_2)$ is closed to zero:
 - Magnitude of the fault has to be important to ensure fault isolation.
 - Else the fault are isolable
- $r = r + 1$
- While $r < \max(\ell, n - \ell)$ do to the step 2
Construction of the data matrix

Dynamic process: Temporal lag
Non linear process: Transformed variables

\[
x(k) = \begin{bmatrix} H1(k) & H2(k) & H3(k) & Q5(k) & H6(k) \\
\tanh((Q5(k-1) - 550)/150) & H1(k-1) & H6(k-1) & C4(k) \end{bmatrix}^T
\]

The data matrix \(X \) is constituted of \(N \) observations of the vector \(x(k) \).
Construction of the model

4 principal components are determined
Application to hydraulic part of a wastewater treatment plant

Analysis of the reconstruction directions

The maximum number of reconstructions is then equal to 255 \(\max(n - \ell, \ell) - 1 = 4 \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.94</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
<td>0.99</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.52</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
<td>0.96</td>
<td>0.90</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.80</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indicator \(K \) for \(r = 1 \)

The number of useful reconstruction can be reduced to 202
Fault detection

Figure: Fault detection with Mahalanobis distance
Fault isolation

<table>
<thead>
<tr>
<th>Fault index</th>
<th>Reconstruction direction under the detection threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>16, 17</td>
<td>D_1</td>
</tr>
<tr>
<td>3, 10, 11, 14, 15, 19, 20, 21</td>
<td>D_3</td>
</tr>
<tr>
<td>7, 12</td>
<td>$D_{1,6}$</td>
</tr>
<tr>
<td>6, 8, 13, 18, 22</td>
<td>$D_{3,9}$</td>
</tr>
<tr>
<td>1, 2, 5</td>
<td>$D_{1,3,4}$</td>
</tr>
<tr>
<td>4</td>
<td>$D_{3,7,9}$</td>
</tr>
<tr>
<td>9</td>
<td>$D_{1,2,3,7}$</td>
</tr>
</tbody>
</table>

Table: Summary of fault isolation

Faults 16 and 17 are under the threshold when the first variable ($H_1(k)$) is reconstructed.
⇒ variable $H_1(k)$ is faulty
Conclusion

- Robust PCA with respect to outliers
 → directly applicable on data containing potential faults

- use of the principle of reconstruction and projection of the reconstructed data together
 → outliers detection and isolation

- Reduction of the computational load
 → determination of the detectable and isolable faults

- Application to hydraulic part of a wastewater treatment plant