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Motivations

! Dynamic behaviour of most of real systems is nonlinear
! Systems are inevitably subject to external perturbations (noise, etc.) and
unknown inputs (faults, etc.)

NONLINEAR SYSTEMINPUTS OUTPUTS

Perturbations

Unknown inputs (UI)

Goal
Simultaneously states and unknown inputs estimation of a nonlinear system
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Motivations

Why?
! State and UI of a system is a key problem in control and/or supervision
! State and UI estimations can be employed for providing fault symptoms

Problems
! Take into consideration the complexity of the system in the whole operating range
(nonlinear models are needed)

! Observer design problem for generic nonlinear models is very delicate

Proposed solution
! Multiple model representation of the nonlinear system
! Conception of an unknown input observer (UIO)
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Multiple model Approach
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Basis of Multiple model approach

! Decomposition of the operating space into operating zones
! Modelling each zone by a single submodel
! The contribution of each submodel is quantified by a weighting function

ξ1(t)

ξ2(t)

ξ1(t)

ξ2(t)

Operating

space

Operating
zone 1

Operating
zone 2

Operating
zone 3

Operating
zone 4

Multiple model representationNonlinear system

Multiple model = an association of a set of submodels blended by an interpolation
mechanism
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Multiple model approach

Why using a multiple model?
! Appropriate tool for modelling complex systems (e.i. black box modelling)
! Linear system tools can be extended to nonlinear systems
! Specific analysis of the system nonlinearity is avoided

How the submodels can be interconnected?

Classic structure
Takagi-Sugeno multiple model

! Using a common state vector to the
submodels

! Dimension of the submodels must
be identical

Proposed structure
Decoupled multiple model

! Using an independent state vector
for each submodel

! Dimension of the submodels may be
different
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Decoupled multiple model

Decoupled multiple model : Multiple model with local state vectors

ẋi (t) = Aixi (t)+Biu(t)+Diη(t)+Viw(t)

yi (t) = Cixi (t) ,

y(t) =
L

∑
i=1

µi (ξ (t))yi (t)+Eη(t)+Ww(t)

L

∑
i=1

µi (ξ (t)) = 1 and 0≤ µi (ξ (t)) ≤ 1, ∀t , ∀i ∈ {1, ...,L}

! The multiple model output is given by a weighted sum of the submodel outputs
(blending outputs)

! Dimension of the submodels can be different

PerturbationUI
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State estimation
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Preliminaries and notations

Augmented form of the multiple model
ẋ(t) = Ãx(t)+ B̃u(t)+ D̃η(t)+ Ṽw(t) ,

y(t) = C̃(t)x(t)+Eη(t)+Ww(t), x ∈ R
n, n =

L

∑
i=1

ni .

Notations

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L (t)

]T and µi (ξ (t)) = µi (t) ,

Ã =

















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL

















, B̃ =

















B1
...

Bi
...

BL

















, D̃ =

















D1
...

Di
...

DL

















, Ṽ =

















V1
...

Vi
...

VL

















,

C̃(t) =
[

µ1(t)C1 . . . µi (t)Ci 0 . . . µL(t)CL
]

,

=
L

∑
i=1

µi (t)C̃i , C̃i =
[

0 . . . Ci 0 . . . 0
]

.

Linear form

Nonlinear form
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UI observer structure

Goal
Our objective is to provide a simultaneous estimation of the state and the UI of a
system represented by a multiple model

Proportional-Integral Observer

˙̂x(t) = Ãx̂(t)+ B̃u(t)+ D̃η̂(t)+ K̃ (y(t)− ŷ(t)) ,
˙̂η(t) = K̃1(y(t)− ŷ(t)) ,

ŷ(t) = C̃(t)x̂(t)+E η̂(t) .

! This observer uses both proportional and integral action
! The use of this integral action allows a reconstruction of a constant UI
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Estimation errors

Assumption 1
The unknown input signal η(t) is supposed to be a constant signal.

Assumption 2
The perturbation is bounded energy signal, i.e. ‖w(t)‖22 < ∞.

Estimation errors
e(t) = x(t)− x̂(t) ,

ė(t) =
L

∑
i=1

µi (t)(Ã− K̃ C̃i )e(t)+(D̃− K̃ E)ε(t)+(Ṽ − K̃ W )w(t) .

ε(t) = η(t)− η̂(t) ,

ε̇(t) = η̇(t)− K̃1C̃(t)e(t)− K̃1Eε(t)− K̃1Ww(t) .
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Estimation errors

Augmented form
By using the following augmented state :

Σ(t) =

[

e(t)
ε(t)

]

∈ R
n+q ,

the equations of the state and UI estimation errors can be gathered as follows:

Σ̇(t) = Ãa(t)Σ(t)+(Va −KaW )w(t) ,

where

Ãa(t) =
L

∑
i=1

µi (t)Φi ,

Φi = Aa −KaCi ,

and

Aa =

[

Ã D̃
0 0

]

, Ka =

[

K̃
K̃1

]

, Ci =

[

C̃T
i

ET

]T

, Va =

[

Ṽ
0

]

.
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Observer design

Goal
The robust observer design problem can thus be formulated as finding the matrix gain
Ka ∈ R(n+p)×p such that the influence of w(t) on Σ(t) is attenuated.

Performance constraints
Now let us consider the following objective signal:

z(t) = HΣ(t) ,

where H is a prescribed constant matrix and the following H∞ performance
constraints:

lim
t→∞

Σ(t) = 0 for w(t) = 0 ,

‖z(t)‖22 ≤ γ2 ‖w(t)‖22 for w(t) (= 0 and z(0) = 0 ,

where γ is the L2 gain from w(t) to z(t) to be minimised.
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Convergence conditions

Idea
(i) Robust performances are guaranteed with

V̇ (t) < −2αV (t)−zT (t)z(t)+ γ2wT (t)w(t) .(ii)
∞

∫

0

(V̇ (t)+2αV (t))dt < −

∞
∫

0

zT (t)z(t)dt + γ2
∞

∫

0

wT (t)w(t)dt ,

and by taking into consideration the fact that V (∞) > 0 and V (0) = 0, then :
‖z(t)‖22 < γ2 ‖w(t)‖22 ,

(iii) Exponential convergence is guaranteed with V̇ (t) < −2αV (t)

(iv) Using the following Lyapunov function

V (t) = ΣT (t)PΣ(t), P > 0 P = PT ,

(v) Using the estimation error equations and after some algebraic manipulations...
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Convergence conditions

Theorem
The PI observer for the decoupled multiple model is obtained if there exists a
symmetric, positive definite matrix P and a matrix M minimizing γ > 0 under the
following LMIs

[

Δi +ΔT
i +HT H Γ
ΓT −γ, I

]

< 0, i = 1...L

where Δi = P(Aa +αI)−MCi ,

Γ = PVa −MW ,

for a prescribed α > 0. The observer gain is given by Ka = P−1M and the L2 gain
from w(t) to z(t) is given by γ =

√

γ.

Comments
! Convergence velocity of the estimation error is adjusted by α
! Attenuation level is adjusted by γ
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Example
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Simulation example

Example
Consider the following decoupled multiple model with L = 2 submodels, the
parameters are given by:

A1 =





−0.2 0.1 0
0.2 −0.9 0.8
0 −0.8 −0.7



 , A2 =

[

−0.25 0
−0.4 −0.3

]

,

B1 =
[

0.5 0.4 0.3
]T

, B2 =
[

−0.5 0.7
]T

,

C1 =

[

0.8 0.5 0.7
0.4 −0.7 −0.2

]

, C2 =

[

0.9 0.6
0.5 −0.4

]

,

D1 =





0.1 0.3
0.2 0.4
0 −0.2



 , D2 =

[

0.1 0.3
−0.1 0.5

]

,

V1 =

[

0.0 −0.1 0.0
0.2 −0.3 0.1

]T

, V2 =

[

0.0 −0.1
0.2 0.0

]T

,

E =

[

0.1 0.2
0.5 −0.3

]

, W =

[

0.1 0
0 0.1

]

.
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Simulation example

The eigenvalues of the submodels are

λ1 =
[

−0.19 −0.80±0.78i
]

and λ2 =
[

−0.3 −0.25
]

,

The weighting functions are normalised Gaussian functions

µi (ξ (t)) = ωi (ξ (t))/
L

∑
j=1

ωj (ξ (t)) with ωi (ξ (t)) = exp
(

−(ξ (t)−ci )
2/σ2

)

,

with σ = 0.5, c1 = 0.25 et c2 = 0.75. The decision variable is ξ (t) = u(t).

Choosing a decay rate α = 0.1, conditions of the proposed theorem are fulfilled with:

Ka =

[

2.56 −0.08 −1.82 2.28 3.80 3.18 2.94
0.95 −0.64 −1.29 0.81 1.64 3.34 1.07

]T

with a minimal attenuation level given by γ = 1.29.
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Simulation example
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Figure: ηi (t) and its estimate
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Conclusion and perspectives

Conclusion
! A PI observer is used for estimating the state and the constant unknown inputs of
nonlinear systems modelled by a decoupled multiple model.

! In this multiple model, the dimension of each submodel may be different
(flexibility in a black box modelling stage can be provided).

! Sufficient conditions for ensuring exponential convergence and robust
performances of the estimation error are proposed.

Perspectives
! The suggested observer can be used in the detection and the isolation of sensor
and actuator failures of complex systems.

! The use of several integral actions (Multi-Integral Observer) can be a way to take
into consideration a more general class of UI (non constant UI).
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Thank you!
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