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Multiple model Approach |
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Basics on multiple model approach 4.

@ Decomposition of the operating space into operating zones
@ Modelling each zone by a single submodel
@ The contribution of each submodel is quantified by a weighting function

&(t &t

space

Operating \ |:>

Operating
zone 4

&(t) &(t)

Nonlinear system Multiple model representation
Multiple model = an association of a set of submodels blended by an
interpolation mechanism
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Basics on multiple model approach 4.

Interest of multiple models
@ Intuitive and simple way to represent a complex system.
@ Any nonlinear system can be approximated with a given precision by a
multiple model.

@ Some of the results obtained for linear systems can be generalized to
nonlinear systems.
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Basics on multiple model approach 4@

Definition. Takagi-Sugeno multiple model

KO = {3 WEOAL X0 +{5 HEDB ) |
V) = {3 HEOCHXO .

i pi(E(t) =1 and 0 < p(&()) <1,V Vi€ {1,....r}
i=1
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Basics on multiple model approach 4@

Definition. Takagi-Sugeno multiple model
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Remarks
@ The contribution of each sub-model is quantified by p;(&(t)).
@ Similar to the LPV structure.
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Objective of the work
o

{ X()= 3 W(ED) (Ax(t) +Bu(t)
y(t) = Cx(t)

Objective

@ State estimation of nonlinear systems by using a multiple model
approach.
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Objective of the work 4@
o

{ X()= 3 W(ED) (Ax(t) +Bu(t)
y(t) = Cx(t)

Objective

@ State estimation of nonlinear systems by using a multiple model
approach.

@ The decision variable is not measurable : &(t) = x(t).

@ Exact representation of nonlinear models : x(t) = f(x,u)

@ Diagnosis of sensor and actuator faults (observer banks) using the same
multiple model compared to the case where &(t) is measurable (u or y).
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State estimation |
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Observer structure

Proportional Observer

{ f=Aok+ 5 (%) (AR+Biu+Gi(y —9))

R R i=1
y =CX
with
10 —
Ao = Fi;Ai and A=A —Ao
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Observer structure

Proportional Observer

{ f=Aok+ 5 (%) (AR+Biu+Gi(y —9))

with

1 —
AO:FZAi and A=A —Ag
i=1

@ X(t) denotes the estimation of the state variable.
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Observer structure

Proportional Observer

. +i_§1ui(>z) (A% +Biu+Gi(y —9))

x>
I
>

with

1! —
AO:FZAi and A=A —Ag
i=1

@ X(t) denotes the estimation of the state variable.

@ The gains G; must be determined in order that the state estimation error
asymptotically converges to 0.
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Observer design

@ The evolution of the state estimation error e(t) is described by

&) = 3 Hi(R)(Ao—GiC)e(t) +Aid(t) +BiAi(t)

M-

with
() = ()X — (X)X and A= (Wi(x)— (X))
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&) = 3 Hi(R)(Ao—GiC)e(t) +Aid(t) +BiAi(t)

M-

with
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@ Itis well known that a system is asymptotically stable if there exists a
Lyapunov function V (e,t) verifying

V(e,t) <0
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Observer design

@ The evolution of the state estimation error e(t) is described by

&) = 3 Hi(R)(Ao—GiC)e(t) +Aid(t) +BiAi(t)

M-

I
with
G(t) = pi(X)x — (X)X and  Aj = (i(x) — Hi(X))u
@ Itis well known that a system is asymptotically stable if there exists a
Lyapunov function V (e,t) verifying
V(e,t) <0

@ The convergence of the estimation error is studied by defining the
following Lyapunov function

V(e,t)=e(t)"Pe(t), with P=PT >0
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Observer design —.

@ Under the following assumptions
@ Al. The weighting functions L;(x) are Lipschitz:

i (X) = i (R)] < Nj [x = K|
@ A2. The functions ;(x)x are Lipschitz:
[ (X)x — i (X)X] < Mj [x —X|
@ A3. The input u(t) of the system is bounded:

u(t)l < B
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Observer design —.

@ Under the following assumptions
@ Al. The weighting functions L;(x) are Lipschitz:

i (%) — i (X)] < Nj [x —X|
@ A2. The functions ;(x)x are Lipschitz:
1 (X)X — i (R)R] < Mi [x = X|
@ A3. The input u(t) of the system is bounded:
u(t)l < B
@ and with some basic linear algebra, the following sufficient conditions for
V(e,t) <0

are obtained ...
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1st observer design —@

The state estimation error is asymptotically stable if there exists matrices
P=PT >0,Q=0Q" >0, K; and positive scalars y, A; et A, such that:

AJP +PA;—CTK —KiC < —Q
-Q+AM2I PA; PB; Nyl

—T
AP Y 0 <0
B'P 0 Ml 0
Nyl 0 0 —)\zl
y—PB1A2 >0

The gains G; are derived from G; = P~1K;.

v

The weighting functions must be Lipschitz. \
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Generalization of the method

Synthesize an observer while relaxing the assumption A1, A2 and A3. l

@ The evolution of e(t) can be written as

(1) = 3 1(%)(Ro - GCIe(t) + i)
i=1

where the signals &(t) and Aj(t) are considered as a disturbance w(t)
QO=[T(1 MOUTO] ad 'O =[wl(t) .. o (V)]
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@ The evolution of e(t) can be written as

(1) = 3 1(%)(Ro - GCIe(t) + i)
i=1

where the signals &(t) and Aj(t) are considered as a disturbance w(t)

W ()= [8T() auTE)] ad W (O)=[f(t) .. o )

@ It is well known that the .%,-gain from cw(t) to e(t) is bounded if there
exists a Lyapunov function V (e,t) verifying

V(e,t)+e'(t)e(t) — Y (t)w(t) <0
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Generalization of the method

Synthesize an observer while relaxing the assumption A1, A2 and A3. l

@ The evolution of e(t) can be written as
r
(t) =5 Hi(X)(Ao—GiC)e(t) +Hiw(t)
i=1

where the signals &(t) and Aj(t) are considered as a disturbance w(t)
QO)=[3T1) AMOUTR] ad o ()= [ (1) . o 1)
@ It is well known that the .%,-gain from cw(t) to e(t) is bounded if there
exists a Lyapunov function V(e t) verifying
V(e,t)+e' — Vo' (Hw(t) <0

@ Defining the following Lyapunov function V(e7t) = e(t)T Pe(t) with
P =PT > 0 and after some manipulations the following conditions are
obtained ...
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2nd observer design —@

The optimal proportional observer for the system is obtained by minimizing
¥ > 0 under the constraints

PH;

S
N J 0, Vi,j=1,..,N
T y ) ) PR
i P~

P:PT>0[
]

H

where
Si=AlP+PA;—KC-CTK +1

The observer gains are given by G; = P~1K; and the %-gain from w(t) to

e(t)isy=/¥.
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Eigenvalue assignment

@ Pole-clustering is used to improve the temporal response of e(t)
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Eigenvalue assignment

@ Pole-clustering is used to improve the temporal response of e(t)

@ The gains G; are determined in order that the poles of the system
generating e(t) should lie in S(a, 3), defined by

S(a,B)={z e C|Re(z) < —a, |z| < B}
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Eigenvalue assignment

@ Pole-clustering is used to improve the temporal response of e(t)

@ The gains G; are determined in order that the poles of the system
generating e(t) should lie in S(a, 3), defined by

S(a,B)={z e C|Re(z) < —a, |z| < B}

@ The eigenvalues of M lie in S(a,B) if 3P =PT > 0 such that

[(PBJV Z“S] -0

MTP +PM +2aP <0

@ The previous result is slightly modified in order to add the eigenvalue
assignment constraints
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Eigenvalue assignment 4@

The optimal observer for the multiple model, satisfying the pole clustering in
S(a,B), is obtained by minimizing ¥ > 0 under the following constraints:

P=PT>0
BP P(Ao—GiC)
[ (ho-GC)TP  pP }>°

AP +PA;—CTK" —KC +2aP <0

Si PpH
N J 0, Vi,j=1,....N
[ HITP _Ny ‘| < b ’J b) bl

where: - -
Si :PA0+A0P7KiC7C K +1

The observer gains are given by G; = P~1K;, and the %-gain is y = \/7
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Example |
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Simulation example

@ Let us consider the system defined by:

2 1 1 -3 2 -2
AM=|1 -3 o A=[5 -3 0
2 1 -6 05 05 -4

1 0.5
Bi= (05| By,=|[ 1 CZBFG (1) 'D
0.5 0.25

@ The weighting functions are

{ lll(X) — lftar21h(x1)

Hp(x) = 1— py (x) = LHagn0a)

@ The eigenvalues are clustered in the region S(a, 3) defined by 3 = 15
and a =5
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Simulation example

@ After solving the optimization problem in theorem 2, we obtain :

0.10 0.04 0.12

P=(004 018 0.15

0.12 0.15 0.40
9.04 5.08 841 5.68
G,=[1024 -758| G,=|1087 -8.06
~5.60 1.63 -5.30 0.73

@ The minimal value of the attenuation of the perturbation terms is

y=0.46
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Simulation example

Figure: State estimation
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Conclusions and perspectives —@

Conclusions

@ State estimation of nonlinear systems modeled by a multiple model is
achieved with a P observer

@ The decision variable is assumed to be not measurable (useful in the
framework of system diagnosis).

@ Sufficient conditions for asymptotic convergence of the state estimation
error are proposed in LMI formulation.

@ The method is generalized for all types of weighting functions, and the
performances of the observer are improved by eigenvalues assignment.

@ Application to the diagnosis of complex systems.

@ Reduction of the conservatism of the conditions by using other types of
Lyapunov functions (Polytopic functions, etc.).
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Thank you for your attention!
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