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Motivations

Goal

State estimation of a nonlinear system with parameter uncertainties and subject to
disturbances

Context
◮ To take into consideration the complexity of the system in the whole operating

range (nonlinear models are needed)
◮ Observer design problem for generic nonlinear models is very delicate

Proposed strategy
◮ Multiple model representation of the nonlinear system
◮ Robust Proportional-integral observer design based on this representation
◮ Convergence conditions are obtained using the Lyapunov method
◮ Conditions are given under a LMI form
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Multiple model Approach
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Basis of Multiple model approach

◮ Decomposition of the operating space into operating zones
◮ Modelling each zone by a single submodel
◮ The contribution of each submodel is quantified by a weighting function

ξ1(t)

ξ2(t)

ξ1(t)

ξ2(t)

Operating

space

Operating

zone 1
Operating

zone 2

Operating

zone 3

Operating
zone 4

Multiple model representationNonlinear system

Multiple model = an association of a set of submodels blended by an interpolation
mechanism
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Multiple model approach

Why using a multiple model?
◮ Appropriate tool for modelling complex systems (e.g. black box modelling)
◮ Tools for linear systems can partially be extended to nonlinear systems
◮ Specific analysis of the system nonlinearity is avoided

How the submodels can be interconnected?

Classic structure
Takagi-Sugeno multiple model

◮ Common state vector for all
submodels

◮ Dimension of the submodels must
be identical

Proposed structure
Decoupled multiple model

◮ A different state vector for each
submodel

◮ Dimension of the submodels may be
different
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Uncertain decoupled multiple model

Decoupled multiple model: multiple model with local state vectors

ẋi (t) = (Ai +∆Ai (t))xi (t)+(Bi +∆Bi (t))u(t)+Di w(t)

yi (t) = Ci xi (t)

y(t) =
L

∑
i=1

µi (ξ (t))yi (t)+Ww(t)

◮ The multiple model output is given by a weighted sum of the submodel outputs
L
∑

i=1
µi (ξ (t)) = 1 and 0 ≤ µi (ξ (t)) ≤ 1, ∀t , ∀i ∈ {1, ...,L}

◮ Dimension of the submodels can be different !!!
◮ This multiple model offers a good flexibility and generality for black box modelling

Model uncertainties

Uncertainties of each submodel are taken into consideration according to the validity
degree of each submodel given by µi (ξ (t))

∆Ai (t) = µi (ξ (t))Mi Fi (t)Ni ∆Bi (t) = µi (ξ (t))Hi Si (t)Ei

Fi (t) and Si (t) are unknown terms satisfying: F T
i (t)Fi (t) ≤ I and ST

i (t)Si (t) ≤ I ∀t

Disturbances
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State estimation using a PI observer
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Preliminaries and notations

Augmented form of the multiple model

ẋ(t) = (Ã+∆Ã(t))x(t)+(B̃ +∆B̃(t))u(t)+ D̃w(t)

ż(t) = C̃(t)x(t)+Ww(t) ⇒ z(t) =

t
∫

0

y(ξ )dξ

y(t) = C̃(t)x(t)+Ww(t) x ∈ R
n n =

L

∑
i=1

ni

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L (t)

]T Ã = diag {A1 · · · Ai · · · AL}

B̃ =
[

B1
T · · · Bi

T · · · BL
T
]T

D̃ =
[

D1
T · · · Di

T · · · DL
T
]T

C̃(t) =
L

∑
i=1

µi (t)C̃i C̃i =
[

0 · · · Ci · · · 0
]

∆Ã(t) =
L

∑
i=1

µi (t)M̃i Fi (t)Ñi ∆B̃(t) =
L

∑
i=1

µi (t)H̃i Si (t)Ei

M̃i =
[

0 · · · MT
i · · · 0

]T H̃i =
[

0 · · · HT
i · · · 0

]T

Ñi =
[

0 · · · Ni · · · 0
]

Augmented
state vector ⇒

Supplementary variable
Integral term ⇒

Nonlinear form:
blending outputs
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Proportional-integral observer structure

Decoupled multiple model

ẋa(t) = (Ãa(t)+C1∆Ã(t)C
T
1 )xa(t)+C1(B̃ +∆B̃(t))u(t)+ D̃aw(t)

y(t) = C̃(t)C
T
1 xa(t)+Ww(t)

z(t) = C
T
2 xa(t)

Notations

xa(t) =

[

x(t)
z(t)

]

Ãa(t) =

[

Ã 0
C̃(t) 0

]

D̃a =

[

D̃
W

]

C1 =

[

I
0

]

C2 =

[

0
I

]

Proportional-integral Observer

˙̂xa(t) = Ãa(t)x̂a(t)+C1B̃u(t)+KP(y(t)− ŷ(t))+KI(z(t)− ẑ(t))

ŷ(t) = C̃(t)C
T
1 x̂a(t)

ẑ(t) = C
T
2 x̂a(t)

Proportional action

⇒ Integral term: supplementary variable

Integral action
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Proportional-integral observer design

State estimation error

ea(t) = xa(t)− x̂a(t)

ėa(t) = (Ãa(t)−KPC(t)C
T
1 −KIC

T
2 )ea(t)+C1∆Ãx(t)+C1∆B̃u(t)+(D̃a −KPW )w(t)

Main advantages of the PI observer

Two degrees of freedom for the observer design :

(i) KP can be used to reduce the impact of w(t) on ea(t)

(ii) KI can be used to improve the observer dynamics

Analysis of the state estimation error

ε̇(t) = Aobs(t)ε(t)+Φw̄(t)

ε(t) =
[

eT
a (t) xT (t)

]T
w̄(t) =

[

wT (t) uT (t)
]T

Aobs(t) =

[

Ãa(t)−KPC(t)C
T
1 −KIC

T
2 C1∆Ã

0 Ã+∆Ã

]

Φ =

[

D̃a −KPW C1∆B̃
D̃ B̃ +∆B̃

]

(i) ε(t) is stable if the decoupled multiple model is stable and

(ii) KP and KI are chosen so that Ãa(t)−KPC(t)C
T
1 −KIC

T
2 is also stable

Disturbances on the estimation error

⇒ Compact form
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Observer design

Goal
◮ Ensuring the stability of ε(t) for any w̄(t)
◮ Finding the matrices KP and KI such that the influence of w̄(t) on ea(t) is

attenuated

Performances of the PI observer

lim
t→∞

ea(t) = 0 for w(t) = 0, Fi (t) = 0, Si (t) = 0 ⇒ Convergence toward zero

‖ν(t)‖2
2 ≤ γ2‖w(t)‖2

2 for w(t) 6= 0 and ν(0) = 0 ⇒ Disturbance attenuation

ν(t) = Y ea(t) and γ is the L2 gain from w̄(t) to ν(t) to be minimized.

Main difficulties
◮ Interaction between submodels must be taken into consideration
◮ Ensuring the observer stability for any combination between the submodels and

for any initial conditions (∀ea(0))
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Proportional-integral observer existence conditions

Theorem

There exists a PIO ensuring the robust objectives if there exists symmetric positive
definite matrices P1 and P2, matrices LP and LI and positive scalars γ, τ i

1 and τ i
2 such

that the following condition holds for i = 1...L

minγ subject to
















Γi +ΓT
i +Y T Y 0 Ψ 0 P1C1M̃i P1C1H̃i

0 Λi P2D̃ P2B̃ P2M̃i P2H̃i
(∗) (∗) −γ I 0 0 0
0 (∗) 0 φi 0 0

(∗) (∗) 0 0 −τ i
1I 0

(∗) (∗) 0 0 0 −τ i
2I

















< 0

where
Γi = P1Ai −LP C̃i C

T
1 −LIC

T
2

Ψ = P1D̃a −LPW

Λi = P2Ã+ ÃT P2 + τ i
1ÑT

i Ñi

φi = −γ I+ τ i
2ET

i Ei

for a prescribed matrix Y .
KP = P1

−1LP and KI = P1
−1LI ; the L2 gain from w̄(t) to ν(t) is given by γ =

√

γ.
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PIO existence conditions: idea

Idea

(i) Consider the following quadratic Lyapunov function:

V (t) = eT
a (t)P1ea(t)+xT (t)P2x(t)

(ii) Robust performance (‖ν(t)‖2
2 ≤ γ2‖w(t)‖2

2 ) is guaranteed if

V̇ (t) < −νT (t)ν(t)+ γ2wT (t)w(t) where ν(t) = Y ea(t)

(iii) The unknown bounded-norm terms (i.e. uncertainties ) can be avoided using the
well known inequality

XF (t)Y +Y T F T (t)X T ≤ XQ−1X T +Y T QY

(iv) Using the estimation error equation and some algebraic manipulations...

(v) See the proceedings for a detailed proof
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Example
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Simulation example

Multiple model parameters
L = 2 submodels with different dimensions (n1 = 3 and n2 = 2), given by:

A1 =





−0.1 −0.3 0.6
−0.5 −0.4 0.1
−0.3 −0.2 −0.6



 A2 =

[

−0.3 −0.1
0.4 −0.2

]

B1 =
[

0.3 0.5 0.6
]T B2 =

[

0.4 0.3
]T

D1 =
[

0.1 −0.1 0.1
]T D2 =

[

−0.1 −0.1
]T

C1 =

[

−0.4 0.3 0.5
0.5 0.3 0.4

]

C2 =

[

0.4 −0.2
0.3 0.2

]

M1 =
[

−0.1 0.2 −0.1
]T M2 =

[

−0.2 0.1
]T

N1 =
[

0.1 −0.2 0.3
]

N2 =
[

0.1 0.2
]

H1 =
[

0.3 −0.1 0.2
]T H2 =

[

−0.1 −0.2
]T

E1 = −0.2 E2 = −0.3

W =
[

0.1 −0.1
]

Y = I(7×7)

The weighting functions are

µi (ξ (t)) = ηi (ξ (t))/
L

∑
j=1

ηj (ξ (t)) where ηi (ξ (t)) = exp
(

−(ξ (t)−ci )
2/σ2

)

,

with σ = 0.6 and c1 = −0.3 and c2 = 0.3, ξ (t) is the input signal u(t) ∈ [−1,1].
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Simulation example
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Figure: Input, weighting functions and outputs (left) Fi (t), Si (t) and w(t) (right)
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Figure: States of submodels and their estimates
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Simulation example
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Figure: Output, its estimates and the output estimation errors

Comments
◮ The minimal attenuation level is γ = 0.8654
◮ The state estimation of each submodel is not always close to zero
◮ Interaction between submodels is at the origin of some compensation

phenomenons in the state estimation
◮ The overall output estimation of the multiple model is not truly affected
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Conclusions

Conclusions
◮ Robust state estimation based on a multiple model representation of an

uncertain nonlinear system is investigated
◮ Originality: the dimension of each submodel may be different (flexibility in a black

box modelling stage can be provided)
◮ Conception of a Proportional-Integral observer is proposed using the Lyapunov

theory
◮ The Proportional-Integral observer offers more degrees of freedom with respect

to a classic proportional (Luenberger) observer

Orjuela, Marx, Ragot, Maquin (CRAN) Decoupled multiple model CDC 2008 19 / 20



Thank you!
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