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State estimation of a nonlinear system with parameter uncertainties and subject to
disturbances

» To take into consideration the complexity of the system in the whole operating
range (nonlinear models are needed)

» Observer design problem for generic nonlinear models is very delicate

5\

Proposed strategy
» Multiple model representation of the nonlinear system
» Robust Proportional-integral observer design based on this representation
» Convergence conditions are obtained using the Lyapunov method

» Conditions are given under a LMI form

v
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Multiple model Approach ]

Orjuela, Marx, Ragot, Maquin (CRAN) Decoupled multiple model CDC 2008 4/20



Basis of Multiple model approach ... ==~~~

» Decomposition of the operating space into operating zones
» Modelling each zone by a single submodel

» The contribution of each submodel is quantified by a weighting function
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Multiple model approach ...

» Appropriate tool for modelling complex systems (e.g. black box modelling)
» Tools for linear systems can partially be extended to nonlinear systems
» Specific analysis of the system nonlinearity is avoided

How the submodels can be interconnected?

Classic structure Proposed structure

Takagi-Sugeno multiple model Decoupled multiple model

» Common state vector for all » A different state vector for each
submodels submodel

» Dimension of the submodels must Dimension of the submodels may b
be identical different

e ——— e o
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Uncertain decoupled multiple model ...

Decoupled multiple model: multiple model with local state vector.
%) = (Ai+AAi(t))xi(t)+(Bi+ABi(t>)u(t)

vi(t) = Cixi(t)

@@) Disturbances
7

» The multiple model output is given by a weighted sum of the submodel outputs

» Dimension of the submodels can be different !!!
» This multiple model offers a good flexibility and generality for black box modelling

Model uncertainties

Uncertainties of each submodel are taken into consideration according to the validity
degree of each submodel given by ;(&(t))

AA;(t) = Hi (EO)IMF (N, AB;(t) = 1 (&(t))H;i Si(t)E;

Fi(t) and S;i(t) are unknown terms satisfying: FT (t)F(t) <| and ST(t)Si(t)<I| W
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State estimation using a Pl observer )
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Preliminaries and notations

Augmented form of the multiple model

Augmented ) : ; ) ;
state vector = X(t) = (A+AA(t))x(t)+(B+AB(t))u(t) +Dw(t)
Supplementary variable . ;
integral term > 20 = COXO+Ww(®) =2z(0) = [y(&)de
0
Nonlinear form: t) = COx{)+Ww(t) xeR" n= ini
blending outputs i=1
x(t) =[x (t)---xT (@) x7 (®)] A=diag {A; - A - AL}
B=[B, B BLT]T '5:[D1T"'DiT"-DLT]T
= iui(t)él Ci=[0--Ci--0
is1
AA(t) = i 1 ()MiF; (DN AB(t) = illi (FiSi (DE;
i=1 i=1
M =[0---MT...0] Fi=[0--HT---0]"
Ni=[0-N;---0]
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Proportional-integral observer structure ...

Decoupled multiple model

%a(t) = (Aa(t)+C1AA(L)T] )xa(t) +Cy(B+ AB(L))u(t) + Daw(t)
y() = E@OCIxa(t)+Ww(t)
z(t) = E;Xa(t) = Integral term: supplementary variable

v

)= [50)] Z‘a(t):{é?t) o Ba=lw] e=lo =[]

A\

%a(t) = Aa(t)Ra(t)+C1Bu(t) +Kp(y(t) -9 (1)) +Ki(z(t) - 2(t))
yit) = é(t)é}f(a(t) Proportional action Integral action
2() = Crtalt)
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Proportional-integral observer design

State estimation error
Xa(t) — Ra(t) Disturbances on the estimation error
C1AAX(t) +C1 ABU(t) 4 (Da — Kp W )w (T

ea(t)

8a(t) = (Rat)—KpC(t)C1 —KiC7)ea(t)
Main advantages of the Pl observer
Two degrees of freedom for the observer design :

(i) Kp can be used to reduce the impact of w(t) on ea(t)

(ii) K, can be used to improve the observer dynamics
Analysis of the state estimation error
E(t) = Aops(t)e(t) +dw(t) = Compact form
"]

W(t)=[w'(t) u

e®)=[el(t) xT(1)]" ]
A Da—KpW C;AB
o= [P g %G

Aobs t) - |:
(i) £(t) is stable if the decoupled muItlpIe model is stable and
—T .

(i) Kp and K, are chosen so that Aa(t) — KpC(t)GI —K,C, is also stable
CDC 2008
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observerdesign

» Ensuring the stability of £(t) for any w(t)
» Finding the matrices Kp and K; such that the influence of w(t) on ea(t) is

attenuated
Performances of the Pl observer
tIim ea(t) = 0 forw(t) =0, Fi(t) =0, S;j(t) =0 = Convergence toward zero

vz < Iw(t)3  forw(t)#0and v(0)=0 = Disturbance attenuation

v(t)=Yea(t) and yisthe £, gain from w(t) to v(t) to be minimized.

v

Main difficulties

» Interaction between submodels must be taken into consideration

» Ensuring the observer stability for any combination between the submodels and
for any initial conditions (Vea(0))
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Proportional-integral observer existence conditions

Theorem

There exists a PIO ensuring the robust objectives if there exists symmetric positive
definite matrices P; and P, matrices Lp and L, and positive scalars y, ; and 1} such
that the following condition holds fori =1...L
miny subject to
N+rr+y'y o w 0 PiCiM; PiCif
2

0 A P.D PoB PoM P, H;
(%) (x) =yl 0 0 0
0 ) 0 @ 0 o |<©°
(%) (*) 0 0 —il 0
(*) (x) O 0 0 —7)
where N = P.A-LoGCy —LCy
v = P;Da-LpW
AN = P2A+AT P2+T:i|_"\]iT Ni
@ —VI+TE'E

for a prescribed matrix Y.
Kp = P;1Lp and K; = Py ~1L; the £, gain from w(t) to v(t) is given by y= /7.
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PIO existence conditions: idea

(i) Consider the following quadratic Lyapunov function:

V(t) =eq (t)Prea(t) +xT (t)P2x(t)
(i) Robust performance (||v(t)||3 < y?|[W(t)|3) is guaranteed if
V(t) < —vT ()v(t)+ W' (t)W(t) where v(t)=Y ea(t)

(iii) The unknown bounded-norm terms (i.e. uncertainties ) can be avoided using the
well known inequality

XFO)Y +YTET(OXT <XQ7IXT+vTQy

(iv) Using the estimation error equation and some algebraic manipulations...
(v) See the proceedings for a detailed proof
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Example J
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Simulation example

Multiple model parameters

L = 2 submodels with different dimensions (n; = 3 and n, = 2), given by:
A= {:8; “os 8:?} o= [’0943 :g:ﬂ
-03 -02 -06
Bi=[03 05 06]" B,=[04 03]
Di=[01 -01 o01] D,=[-01 -01]"
C = -04 03 0.5] C,— 0.4 —0.2]
05 03 04 03 02
M =[-01 02 -01] Mp=[-02 01]"
N;=[01 -02 03] Np=[01 0.2]
Hi=[03 -01 02] Hy=[-01 -02]"
E;=-02 E;=-03
W=1[01 -0.1] Y =l@x7)
The weighting functions are .
Hi(§(t)) = ni (E(t))/j;ﬂj(f(t)) where  ni(§(t)) = exp (*(E(t)*ci)z/az):

with 0 = 0.6 and ¢c; = —0.3 and ¢, = 0.3, £(t) is the input signal u(t) € [-1,1].
v
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Simulation example
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Figure: States of submodels and their estimates
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Simulation example ..
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Figure: Output, its estimates and the output estimation errors

» The minimal attenuation level is y = 0.8654

» The state estimation of each submodel is not always close to zero

» Interaction between submodels is at the origin of some compensation
phenomenons in the state estimation

» The overall output estimation of the multiple model is not truly affected

Orjuela, Marx, Ragot, Maquin (CRAN) Decoupled multiple model CDC 2008 18/20



Conclusions

Conclusions

» Robust state estimation based on a multiple model representation of an
uncertain nonlinear system is investigated

» Originality: the dimension of each submodel may be different (flexibility in a black
box modelling stage can be provided)

» Conception of a Proportional-Integral observer is proposed using the Lyapunov
theory

» The Proportional-Integral observer offers more degrees of freedom with respect
to a classic proportional (Luenberger) observer
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Thank you!
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