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10 State observer

11 Process diagnosis

12 Control and Fault Tolerant Control (FTC)

13 Conclusion
2/45



Part 1. Generalities
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1. A short presentation of our lab

The ≪ Centre de Recherche en
Automatique de Nancy ≫ is a
Research Centre funded by the
”Centre National de la
Recherche Scientifique (CNRS)”
and two universities in Nancy :
UHP (Université Henri Poincaré)
and INPL (Institut National
Polytechnique de Lorraine).

The CRAN was set up in Nancy (France) in
1980. It totals 200 persons. The research
activities concentrate on 3 themes :

- Control, Identification, Diagnosis
- Sustainable Systems Engineering
- Health, Biology, Signal
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2. Control and diagnosis

ẋ(t) = f (x(t), u(t))

Design of the process

Control

Process

Model

Mesurement

Prediction

Diagnosis

Reference
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2. Control and diagnosis

For the elaboration of a global approach for the design and
the operation (supervision, maintenance, reconfiguration)
of complex automated industrial systems, it is necessary :

◮ to guarantee the system safety

◮ to forecast alternate modes

For that purpose, we need :

◮ to detect functioning modifications

◮ to detect any fault

◮ to isolate the faults

◮ to identify the faults

◮ to compensate the faults

Moreover, it would be interesting

◮ to analyze the severity of the faults

◮ to make a prognosis of the fault evolution
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3. A very simple multiple model
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Local model 2 : y2 = 11.5x− 17.3

Weight. function : µ1 = exp
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y(x) = µ1(x).y1(x)+ µ2(x).y2(x)

Each of the two local models has a physical meaning.
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3. Multiple model and local functioning interpretation
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y(x) = µ1(x).y1(x)+ µ2(x).y2(x)

The two local models have no physical meaning. However, the

approximation of the experimental data is quite satisfactory.
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4. Motivations : complexity of processes

◮ The multimodel approach
supposes the definition of a set
of local models which make
possible to replace the unique
model by a set of simpler
models.

◮ Each local model describes the
behavior of the considered
process around a specific
operating point.

◮ Moreover, it is possible to move
from one operating point to
another one by using an
adequate interpolation
mechanism.
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2. General multi-model

approach
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5. Some thesis of our laboratory

1 A. Boukhris. Identification de systèmes
non linéaires par une approche
multi-modèle. Application à la
modélisation de la relation pluie-débit,
1998.

2 C. Loverini. Identification de systèmes
dynamiques non-linéaires à l’aide de
représentations multi-modèles, 1999.

3 K. Gasso. Identification des systèmes
dynamiques non-linéaires : approche
multi-modèle, 2000.

4 I. Bara. Estimation d’état des systèmes
linéaires à paramètres variants, 2001.

5 M. Chadli. Analyse des systèmes non
linéaires décrits par des structures
multimodèles, 2002.

6 A. Akhenak. Conception de multi-
observateurs pour des multimodèles.
Application au diagnostic, 2004.

7 E. Cherrier. Estimation de l’état et des
entrées inconnues pour une classe de
systèmes non linéaires, 2006.

8 E. Domlan. Diagnostic des systèmes à
changement de régime de fonctionnement,
2006.

9 A. Hocine. Estimation d’état des systèmes
à commutation par l’approche
multi-modèle : application au diagnostic,
2006.

10 R. Orjuela. Identification et diagnostic des
systèmes représentés par un multimodèle,
2008.

11 D. Ichalal. Estimation et diagnostic de
systèmes non linéaires décrits par un
modèle de Takagi-Sugeno, 2009.

12 A.M. Nagy. Analyse et synthèse de
multimodèles pour le diagnostic :
application à une station d’épuration,
2011.

13 F. Ankoud. Apport de l’effet parc pour la
surveillance et le diagnostic des matériels
en centrale nucléaire, 2012.

14 S. Bezzaoucha. Diagnostic et contrôle
tolérant aux fautes de systèmes non
linéaires sous forme multimodèle (thèse en
cours), 2013.
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6. Principle of multiple models (Takagi-Sugeno)

◮ Operating range decomposition in several local zones.

◮ A local model represents the behavior of the system in a
specific zone and for a specific regime.

◮ The overall behavior of the system is obtained by the
aggregation of the sub-models with adequate weighting
functions.

ξ1(t)

ξ2(t)

ξ1(t)

ξ2(t)

Operating

space

zone 1

zone 2

zone 3

zone 4

Multiple Model representationNonlinear system
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6. Obtaining the Takagi-Sugeno’s model

We collect data on a system
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We already have a model

y = x3.sin(x)− x .log(x2+4)

Direct identification of the parameters

Mesures : xk ,yk ,k = 1 . . .N

Model







y = µ1.y1(x)+ µ2.y2(x)
y1 = a1.x+b1 y2 = a2.x+b2
µ1 = exp(x−m) µ2 = 1− µ1

→ a1,b1,a2,b2,m

Problem to be solved :

- number of local models
- structure of the weighting functions
Transformation of the existing model







y = µ1.y1(x)+ µ2.y2(x)
y1 = a1.x+b1 y2 = a2.x+b2
µ1 = exp(x−m) µ2 = 1− µ1

Problem to be solved :

- determination of the variable bounds
- structure of the weighting functions
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6. Get the structure of a dynamic MM system

◮ Non linear state equation

{

ẋ1 = x1+ x1.x2+2.u
ẋ2 = x21 +u

← ẋ = f (x ,u)

◮ State vector

x =

(

x1
x2

)

◮ The system is nonlinear, difficult to use, but . . .

◮ A quasi LPV form































(

ẋ1
ẋ2

)

=

(

1 x1
x1 0

)(

x1
x2

)

+

(

2
1

)

u

ẋ = A(x).x +B.u

A(x) =

(

1 x1
x1 0

)

B =

(

2
1

)
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ẋ2 = x21 +u
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6. Exercise : get the structure of a MM system

◮ LPV form
{

ẋ1 = x1+x1.x2+2.u
ẋ2 = x21 +u

A(x) =

(

1 x1
x1 0

)

B =

(

2
1

)

◮ A useful decomposition : if x1 ∈ [a b], it is always possible to write :

x1 =
x1−a

b−a
b+

b−x1

b−a
a

◮ In a more concise way :

x1 = µ1(x) b+µ2(x) a, µ1(x) =
x1−a

b−a
µ2(x) =

b−x1

b−a

◮ Thus : 













A(x) =

(

1 µ1(x) b+µ2(x) a
µ1(x) b+µ2(x) a 0

)

A(x) = µ1(x)

(

1 b

b 0

)

+µ2(x)

(

1 a

a 0

)

◮ Finally, the MM form obtained without loss of information :

ẋ = A(x).x+B.u → ẋ =
2

∑
i=1

µi (x)(Aix+Biu)
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ẋ1 = x1+x1.x2+2.u
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7. Multi-model or Takagi-Sugeno’s model

Basic model

• Structure of the model






ẋ(t) =
r

∑
i=1

µi (ξ (t))(Aix(t)+Biu(t))

y(t) = C x(t)

• Interpolation mechanism

r

∑
i=1

µi(ξ (t)) = 1

0≤ µi(ξ (t))≤ 1, ∀t, ∀i ∈ {1, ..., r}

• The premise variable ξ (t) can be
measurable or not : y(t), u(t), x(t)

M 1 M 2

M 3

Système

µ1
µ2

µ3
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7. Multi-model with coupling effect

Structure with coupling effect











ẋ(t) =

(

r

∑
i=1

µi (ξ (t))Ai

)

x(t)+

(

r

∑
i=1

µi(ξ (t))Bi

)

u(t)

y(t) = C x(t)

r

∑
i=1

µi(ξ (t)) = 1 and 0≤ µi (ξ (t))≤ 1, ∀t, ∀i ∈ {1, ..., r}

Z

u

µ1

µ2

B2

A1

A2

x

∏

∏ ∑ y
C

ẋ1

ẋ2

B1
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7. Multi-model with decoupled states

Structure with decoupling effect

◮ Structure of the decoupled multi-model
{

ẋi (t) = Aixi (t)+Biu(t)
yi (t) = Cixi (t)

, i = 1, . . . , r

{

x(t) = ∑r
i=1 µi (ξ )xi (t)

y(t) = ∑r
i=1 µi(ξ )yi (t)

with







0≤ µi (ξ )≤ 1
r

∑
i=1

µi(ξ ) = 1

u
Z

Z

x1

x2

B2

B1

A1

A2

∏

∏

∑

C1

y

C2

µ1

µ2
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8. Multi-model : saturated control

ẋ(t) = Ax(t)+Busat(t)

usat =







u(t) if umin ≤ u(t)≤ umax

umax if u(t)≥ umax

umin if u(t)≤ umax u(t)

usat(t)

umin

umax







































usat(t) = µ1(t)umin+ µ2(t)u(t)+ µ3(t)umax

µ1(t) =
1− sign(u(t)−umin)

2

µ2(t) =
sign(u(t)−umin)− sign(u(t)−umax)

2

µ3(t) =
1+ sign(u(t)−umax)

2

usat(t) = ∑3
i=1 µi(t)(aiu(t)+bi)
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usat(t)

umin
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usat(t) = µ1(t)umin+ µ2(t)u(t)+ µ3(t)umax
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8. Multi-model : saturated control

Transform a saturation function into multi-model form

u(t)

usat(t)

umin

umax











ẋ(t) = Ax(t)+Busat(t)

usat(t) =
3

∑
i=1

µi (t)(aiu(t)+bi)



















ẋ(t) = Ax(t)+B
3

∑
i=1

µi (t)(aiu(t)+bi)

ẋ(t) =
3

∑
i=1

µi(t)(Ax(t)+Biu(t)+Ei)
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8. Multi-model : time varying parameters

System

ẋ(t) = (A0+θ (t)A1)x(t)

θ (t) ∈ [θ1 θ2]

Transform varying parameter into multi-model

θ (t) =
θ2−θ (t)
θ2−θ1

θ1+
θ (t)−θ1

θ2−θ1
θ2

= µ1(θ (t))θ1+ µ2(θ (t))θ2

=
2

∑
i=1

µi (t)θi

System into multi-model form

ẋ(t) = (A0+θ (t)A1)x(t)

= (A0+
2

∑
i=1

µi(t)θiA1)x(t)

=
2

∑
i=1

µi (t)(A0+θiAi )x(t)

=
2

∑
i=1

µi (t)Aix(t)
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9. Stability analysis of a multi-model

An important concept for state
estimation and control systems

Theorem

The multimodel

ẋ(t) =
r

∑
i=1

µi (ξ )Aix(t)

is globally asymptotically stable if
there exists P = PT > 0 such that :

AT
1 P+PA1 < 0

AT
2 P+PA2 < 0

...

AT
r P+PAr < 0

Usefulness

- not only for stability test
- but also for control design
- and also for observer design
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3. Process diagnosis
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10. Observer / Diagnosis / Control

The link between Observer / Diagnosis / Control

Unacceptable

Degraded

Out of control

performance
Specified

ξ1

ξ2

• Estimate the state of the system
• Estimate the performance of the system
• Decide to take an action
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10. Observer

◮ State and output observer

System

Observer
x̂(t)

u(t)
y(t)

C

ŷ(t)
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10. Observer

◮ State and output observer

◮ State and output observer, with unknown input

System

Observer

u(t)

û(t)

x̂(t)

u(t)
y(t)

C

ŷ(t)
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10. The observer design

System

Observer
x̂(t)

u(t)
y(t)

C

ŷ(t)

Model of the system

S







ẋ(t) =
r

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t))

y(t) = Cx(t)

State observateur

O







˙̂x(t) =
r

∑
i=1

µi(ξ (t))(Ai x̂(t)+Biu(t)+Li(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
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10. State estimation. First situation : ξ is known

◮ System














ẋ(t) =
r

∑
i=1

µi(ξ )(Aix(t)+Biu(t))

y(t) =
r

∑
i=1

µi (ξ )Cix(t)

◮ Observer : state estimation










˙̂x(t) =
r

∑
i=1

µi (ξ )(Ai x̂(t)+Biu(t)+Li (y(t)− ŷ(t)))

ŷ(t) =
r

∑
i=1

µi(ξ )Ci x̂(t)

◮ State error






x̃(t) = x(t)− x̂(t)

˙̃x(t) =
r

∑
i=1

µi(ξ )(Ai −LiC )x̃(t) → Li to compute

◮ Conditions for stability → LMI Toolbox MATLAB

(Ai −LiC )TP+P(Ai −LiC )< 0, i = 1, . . . , r
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11. Principles of process diagnosis

u(t)
y(t)

System

Detection

filter
-

+

Perturbation

Observer

p(t)

Faultf(t)

f̂(t)

ŷ(t)L W

Goal estimate the state of a system
detect the occurrence of faults f (t)

Difficulty influence of some perturbations p(t)
Residual signal indicating the occurrence of a fault f (t)

r(t) =W (y(t)− ŷ(t)) , r ∈R
h,W (.) ∈R

h×p

where W (.) is a filter that must be properly designed
Fault detection analyze residuals in order to detect a fault f (t) :
Fault isolation locate where the fault occurred

Fault characterization try to estimate f̂ (t) from r(t).
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11. Process diagnosis in the multiple-model framework

u(t)
y(t)

System

Detection

filter
-

+

Perturbation

Observer

p(t)

Faultf(t)

f̂(t)

ŷ(t)L W

A faulty disturbed system










ẋ(t) =
r

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t)+Eip(t)+Fi f (t))

y(t) =
r

∑
i=1

µi(ξ (t))(Cix(t)+ +Gip(t)+Ri f (t))

• f (t) : fault vector

• p(t) : perturbation or disturbance vector.

Problem to solve

• Estimate the state of the system
• How to detect and localize the fault f ?
• Adjust the control u in order to minimize the influence of the fault f ?
• Try to be insensitive to the perturbation p
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11. Process diagnosis in the multiple-model framework

◮ Generally, a fault detection system consists of two main parts :
- a residual generator
- a residual evaluator.

◮ Observer based residual generator :



















˙̂x(t) =
q

∑
i=1

µi(ξ (t))(Ai x̂(t)+Biu(t)+Li(y(t)− ŷ(t)))

ŷ (t) = Cx̂(t)

r(t) =M(y(t)− ŷ(t))

where r(t) is the residual signal which will be designed in order to indicate
the presence of the fault f (t).

◮ Objective of the design : adjust the gain Li and M in order to :
- minimise the transfer from the perturbations p(t) to the residual signal r(t)
- maximisethe transfer of the faults f (t) to the residual signal r(t).
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11. Process diagnosis in the multiple-model framework

◮ State reconstruction error :

x̃(t) = x(t)− x̂(t)

◮ Residual :
r(t) =M(y(t)− ŷ(t))

◮ After straightforward calculation, we deduce :

{

˙̃x(t) = Aξ x̃(t)+Eξp(t)+Fξ f (t)

r(t) = Cξ x̃(t)+Gξp(t)+Rξdf (t)

where the matrices Aξ , Eξ , Fξ , Cξ , Gξ and Rξ depend on the
observer-detecteur parameters Li et M .
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11. Process diagnosis in the multi-model framework

◮ Expression of the residuals :

r(t) = Grdp(t)+Grf f (t)

Grp =

[

Aξ Eξ
Cξ Gξ

]

Grf =

[

Aξ Fξ
Cξ Rξ

]

◮ Detection : adjust the gains of the
observer in order to maximize the
gain of Grf .

◮ Robustness : adjust the gains of
the observer in order to reduce the
gain of Grp .

◮ In order to avoid a mixt problem
max min, let us consider an ideal
residue :

r̃ (t) = Grpp(t)+ (Grf −Wf )f (t)

◮ To ensure a compromise between the
goals of detection and rejection, the
design consists in obtaining Li and M

which minimize the quantity
aγf +(1− a)γd where a ∈ [0 1] subjected
to the following constraints :











‖ Grf −Wf ‖∞< γf
‖ Grp ‖∞< γd
Residual generator is stable
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11. Diagnosis approach using multi-model

◮ System perturbed by faults






ẋ(t) =
r

∑
i=1

µi(ξ )(Ai x(t)+Bi u(t)+Ei p(t)+Fi f (t))

y(t) = Cx(t)+ +G p(t)+R f (t)

◮ Let consider a 3rd order MM with two faults and one perturbation

E1 =





0.5
1
1



 ,E2 =





1
0.3
0.5



 ,G =

[

0.5
1

]

C =

[

1 1 1
1 0 1

]

,F1 =





0 1
0 0
0 1



 ,F2 =





0 1
0 1
0 0



 ,R =

[

1 0
0 0

]

◮ Fault f1(t) acts on the 1st sensor. Fault f2(t) affects the 3 states.
The disturbance d(t) acts on the 3 states and the 2 sensors.

◮ The weighting functions µi :






µ1(u(t)) =
1− tanh((u(t)− 1)/10)

2
µ2(u(t)) = 1− µ1(u(t))
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11. Diagnosis using multi-model representation

f(t)

r̃(t)

u(t) y(t)
System

Residual
generator

Robust

filter
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p(t)
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Figure: Faults and residuals

u(t) y(t)
System

Residual
generator

generator
Residual

f1(t)

f2(t)

r̃1(t)

r̃2(t)Robust

filter
M2,Wd2

Robust

filter
M1,Wd1

p(t)

Figure: Dedicated filter for detection
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11. Diagnosis using multi-model representation

A second simulation is performed for fault estimation.
Wf is then an identity matrix.

{

r(t) = Grp p(t)+Grf f (t)
r̃ (t) = Grp p(t)+ (Grf − I ) f (t)

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

Figure: Comparison of the faults (dashed lines) and residual signals (solid lines)
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12. Some definitions

The link between Observer / Diagnosis / Control

Unacceptable

Degraded

Out of control

performance
Specified

ξ1

ξ2
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12. The different steps of Fault Tolerant Control

Events

detection

classification
Events

Fault

detection

isolation

Fault

Pronostic

Controllability of the faulty system ?

Controllability without the faulty actuator ?

Re-design the controller 

Change the objectives

Estimation of the faulty measurement

Compensation of the sensor fault

Fault Tolerant Control

ProcessStop process urgently
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12. Fault Tolerant Control (FTC)

In the presence of faults, FTC possess the ability to :
• detect and accommodate the faults
• maintain overall system stability
• maintain ≪ acceptable ≫ performances

Residual

generator

Plant

Reference
generator

Residual

analysis

Controller

Reference

Controller

Objective

Output

Faults

re− design

re− design

Figure: Reconfiguration structure
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12. Fault Tolerant Control (FTC)

◮ System







ẋ(t) =
q

∑
i=1

µi (x(t))(Aix(t)+Bi (u(t)+ f (t))

y(t) = Cx(t)+Rf (t)

◮ Reference model






ẋr (t) =
q

∑
i=1

µi (xr (t))(Aixr (t)+Biur (t))

yr (t) = Cxr (t)

◮ Control law











































u =
q

∑
i=1

(−d̂+K1i (xr − x̂)+ur )

˙̂x =
q

∑
i=1

µi (x̂)(Ai x̂+Bi (u+ d̂)+H1i (y − ŷ)

˙̂
f =

q

∑
i=1

µi (x̂)H2i (y − ŷ)

ŷ = Cx̂+Rf̂
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12. Fault Tolerant Control (FTC)

A1 =





−1 1 1
1 −3 0
2 1 −8



A2 =





−3 2 2
0 −3 0
5 2 −4



B1 =





0
1
1



B2 =





1
1
0
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Figure: Reference state, faulty state
without FTC
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Figure: Fault
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Figure: Nominal control
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12. Fault Tolerant Control
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Figure: Reference state, faulty states
with FTC
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Figure: Fault and estimated fault
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Figure: Nominal control and FTC
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13. To conclude

What is possible to do with multiple models ?

◮ Complexity reduction without loss of information

◮ State observer of a non linear system

◮ Unknown input observer

◮ Fault detection, isolation and estimation

◮ Fault tolerant control

Perspectives

◮ Reducing the effect of measurement noise

◮ Dealing with large scale systems
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13. A difficult problem : detection of regime changes

◮ Model of the system

x(t) y(t)

σ(t)

y(t) = f
σ(t)(x(t))

M1 or M2

◮ Problem : knowing only the input
x(t) and the output y(t) of the
system, is it possible to find the
switching between the two modes
M1 and M2 ?

◮ Hypothesis
{

M1 y(t) = a1.x(t)+b1
M2 y(t) = a2.x(t)+b2

0 20 40 60 80 100 120
0

2

4

6

8

Input x

0 20 40 60 80 100 120
0

2

4

6

8

Output y

◮ Where is the switching time
instant ?

◮ What are the values of the models
parameters ?

Idea ?
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Thank you for your attention

Vitrail de J. Grüber, Ecole de Nancy, 1904
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Additionnal Informations

José RAGOT Professor in Automatic Control
http://perso.ensem.inpl-nancy.fr/Jose.Ragot/

jose.ragot@ensem.inpl-nancy.fr

National Centre for Scientific Research
http://www.cnrs.fr/

Université de Lorraine
http://www.univ-lorraine.fr//

Research Center for Automatic Control
http://www.cran.uhp-nancy.fr/
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