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1. A short presentation of our laboratory

Founded in 1980, in Nancy, the
Research Center for Automatic
Control (CRAN) is a joint research
unit between the University of
Lorraine and the French National
Scientific Research Center (CNRS).
The unit is also supported by the
Lorraine Institute of Oncology (ICL
- Alexis Vautrin) and hosts hospital
practitioners from the University
Hospital Center (CHU).

The CRAN totals 200 persons. The main research
activity domains are dynamical control and
observation of complex systems, system
identification and signal processing, manufacturing
plant control, networked control systems, fault
detection and fault tolerant control, safety and
reliability, health engineering for oncology and
neurology. These activities are developed in three
research departments.
- Control, Identification and Diagnosis
- Sustainable System Engineering
- Health, Biology, Signal
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1. A short presentation of process diagnosis

Some types of anomalies

◮ Abnormal values in data

◮ Jumps, peaks and shifts in signal

◮ Anomalies in process components

◮ Abnormal operations in a process

Methods and tools

◮ State observers

◮ PCA, GPCA, KPCA

◮ Parametric estimation (identification)

◮ Redundancy degree analysis

◮ Residual generation for anomalies detection
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1. A short presentation of process diagnosis

ẋ(t) = f (x(t), u(t))

Design of the process
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1. A short presentation of process diagnosis

For the elaboration of a global approach for the design
and the operation (supervision, maintenance,
reconfiguration) of complex automated industrial
systems, to guarantee the system safety it is
necessary :

◮ to detect any fault

◮ to isolate each fault

◮ to identify each fault

◮ to compensate the fault influence

More difficult !

◮ evaluate the severity of the fault

◮ predict the evolution of the fault
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2.1. Change of functioning

◮ A toy example

u y

K1

K2K2

σ

Knowing u(t),y(t), is
it possible to detect
changes in K ?

Is it possible to de-
tect the mode switching
time ?
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Input u
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−0.05

0
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Output y = K. u

◮ Here, a simple solution : analyze the ration y(t)/u(t).
But this approach can not be generalized
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2.2. Change of functioning : a simple example, however a general approach !

y
x1

x2

System

◮ The system behaviour is described at a particular time instant k by one of
the two models Ma or Mb

Ma : y(k) = a1x1(k)+a2x2(k)
Mb : y(k) = b1x1(k)+b2x2(k)

◮ The parameters of the two local models are unknown.

◮ At each time instant, from the measurement triple y(k),x1(k),x2(k), it is
desirable to identify the operating mode of the system.

◮ As the parameters ai and bi of the models are unknow, a matching test of
the measurement triple to Ma or Mb is not possible.

◮ In fact the measurement triple checks either Ma or Mb and thus verifies the
global model defined by the following multiplicative form :

r(k) = (y(k)−a1x1(k)−a2x2(k))× (y(k)−b1x1(k)−b2x2(k))
= 0
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2.3. Change of functioning : a simple example, however a general approach !

r(k) = (y(k)−a1x1(k)−a2x2(k))× (y(k)−b1x1(k)−b2x2(k))
= 0

◮ So the general idea is to use the global model of the system, which is
completely independent of the operating mode changes

r(k) = ϕT (k)p

{

ϕ =
(

y2 y x1 y x2 x21 x1 x2 x22
)T

p =
(

p0 p1 p2 p3 p4 p5
)T

p0 y(k)
2+p1 y(k) x1(k)+p2 x1(k)

2+p3 y(k) x2(k) +p4 x1(k)x2(k)+p5 x2(k)
2 = 0

(1)
◮ Relation between pi ,ai ,bi ?

◮ Estimating of parameters easy to achieve for the global model.
We assume now that we have a set of measurements collected on the system
during a period where it operates according the two modes Ma or Mb.
As the global model (1) is linear in pi , a classical least squares method can be
used for the parameter identification.

◮ More generally, for system with more than one output variable, the
parameters can be easily obtained using a Principal Component Analysis.
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2.4. Change of functioning : a simple example, however a general approach !

r(k) = p0 y
2(k)+p1 y(k) x1(k)+p2 x

2
1 (k)+p3 y(k) x2(k) +p4 x1(k)x2(k)+p5 x

2
2 (k)

r(k) = (y(k)−a1x1(k)−a2x2(k))× (y(k)−b1x1(k)−b2x2(k))

◮ The gradient σ(k) of r(k) with regard the variables y(k), x1(k) et x2(k) is :

σ(k) =





2p0 p1 p3
p1 2p2 p4
p3 p4 2p5









y(k)
x1(k)
x2(k)



 (2)

σ(k) =





2 −(a1+b1) −(a2+b2)
−(a1+b1) 2a1b1 a1b2+a2b1
−(a2+b2) a2b1+a1b2 2a2b2









y(k)
x1(k)
x2(k)



 (3)

◮ At time k :
If system ∈ Ma → y(k) = a1x1(k)+a2x2(k)
If system ∈ Mb → y(k) = b1x1(k)+b2x2(k).
Substituting these two expressions in (3) leads to :

σa(k) //





1
−a1
−a2



 σb(k) //





1
−b1
−b2



 ∀k (4)

◮ Equations (3,4) are used to explain the direction of the gradient.
Equation (2) is used for computing the gradient and finding the active mode.
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3.1. Application. Simplified model of a mill process

g1

g2ge,2

ge,1 W

S,B

◮ Two sizes interval model











ġ2(t) =
1

τ
(ge,2(t)−g2(t))−g2(t)s2+g1(t)s1b1

ġ1(t) =
1

τ
(ge,1(t)−g1(t))−g1(t)s1

j ◮ At steady state, the expression of the output granularity can be deduced :
{

g1 = γ ge,1

g2 = α ge,1+βbge,2
α,β ,γ = f (s1,s2,b1) (5)

◮ Besides, it’s possible to consider an interrelated output model eliminating
the ge,1 variable between the two equations (4) :

g2 = δ g1+β ge,2

with :
δ =

α
γ
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3.2. Application. Simplified model of a mill process

◮ Local models with two modes of functioning















g1− γ ge,1 = 0 γ = {γa, γb}

g2−α ge,1−βbge,2 = 0 α = {αa, αb}, β = {βa, βb}

g2−δ g1−β ge,2 = 0 δ = {δa, δb}

◮ Global model as a product of local models



















r1 = (g1− γa ge,1)(g1− γb ge,1)

r2 = (g2−αa ge,1−βage,2)(g2−αb ge,1−βbge,2)

r3 = (g2−δa g1−βa ge,2)(g2−δb g1−βb ge,2)

◮ Gradient of r1, r2, r3
. . .
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3.3. Application. Simplified model of a mill process

◮ Global model as a product of local models



















r1 = (g1− γa ge,1)(g1− γb ge,1)

r2 = (g2−αa ge,1−βage,2)(g2−αb ge,1−βbge,2)

r3 = (g2−δa g1−βa ge,2)(g2−δb g1−βb ge,2)

◮ Occurrences table

s1 s2 b1
α × × ×
β . × .
γ × . .
δ × × ×

r1 × . .
r2 × × ×
r3 × × ×

Table: Occurrences of variables
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3.3. Simplified model of a mill process
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(with variation of s1)

Some components of the gra-
dients (of the global models)
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4.1 Generalization : system with any number of explicative variables

◮ The generalization to a linear system with n input variables xi is immediate :

v(k) =
[

x1(k) x2(k) . . . xn(k)
]

◮ The two local modes are then described by :

{

Mode a : y(k)−aT v(k) = 0

Mode b : y(k)−bT v(k) = 0

◮ Global model :

r(k) = (y(k)−aT v(k)) (y(k)−bT v(k))

◮ Gradient of r(k)
. . .

Whatever time k , the gradient can take only two directions : σa and σb.
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4.2 Generalization : dynamic system

◮ The generalization to a dynamic linear system is straightforward :

v(k) =
[

x(k) x(k−1) . . . x(k −p)
]

◮ The two modes are then described by :

{

Mode a : y(k)−aT v(k) = 0

Mode b : y(k)−bT v(k) = 0

◮ Global model :

r(k) = (y(k)−aT v(k)) (y(k)−bT v(k))

◮ Gradient of r(k)
. . .
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4.3 Generalization : more than two operating modes

◮ Generalization to a linear system with p operating modes is straightforward :

v(k) =
[

x1(k) x2(k) . . . xn(k)
]

◮ The modes a, . . . ,p are then described by :


















Mode a : y(k)−aT v(k) = 0

...

Mode p : y(k)−pT v(k) = 0

◮ Global model

r(k) = (y(k)−aT v(k)) . . . (y(k)−pT v(k))

◮ Gradient of r(k)
. . .
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5. Conclusion

Highlights

◮ Original approach for operating mode recognition

◮ Knowledge of the models of the modes is not necessary

Upcoming interesting problems

◮ Robustness with respect to outliers

◮ Measurement noise influence

◮ Distance between operating modes

◮ A more realistic example

◮ A true application

0 1 2
0

1

2

Mode Ma

Mode Mb
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