
Robust Data Reconciliation to Determine
Basic Oxygen Furnace Set-points

———————
IFAC MMM 2009

Workshop on Automation in Mining, Mineral and Metal Industry

Julien Francken, Didier Maquin, José Ragot, Bertrand Bèle
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1. Batch process set-points determination

Industrial problem

Determination of the control system set-points of batch processes in order to reach
given product specifications thanks to a process model.

Process models are inaccurate.

Measurements are corrupted by different errors (noises, biases) or are lacking

Basic 
Oxygen
 Furnace

Operating conditions

Set-points Product quality

Sp = f−1(Pq, Oc)

Pq = f(Sp, Oc)
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Objectives and proposed method

Necessity to have consistent measurements → use of data reconciliation method
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Pq = f(Sp, Oc)

Objectives and proposed method

Necessity to have consistent measurements → use of data reconciliation method

Ensure the monitoring of system component deterioration along the time (due to
wear-out, clogging) → model parameter estimation

⇒ Use of method allowing simultaneously data reconciliation
and model parameter estimation
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1. Operation scheduling of a Basic Oxygen Furnace
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1. Application target - the Basic Oxygen Furnace (BOF)

Main objectives of a BOF

To refine the hot metal produced in a blast furnace into raw liquid steel

To decarburize and remove phosphorus from the hot metal

To optimize the steel temperature so that any further treatments prior to casting
can be performed with minimal reheating or cooling of the steel
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To optimize the steel temperature so that any further treatments prior to casting
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Control principles

To blow oxygen with high pressure on hot metal and to add scraps and iron ore
⇒ exothermic oxidation reactions generate heat energy which is used to melt scrap
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To decarburize and remove phosphorus from the hot metal

To optimize the steel temperature so that any further treatments prior to casting
can be performed with minimal reheating or cooling of the steel

Control principles

To blow oxygen with high pressure on hot metal and to add scraps and iron ore
⇒ exothermic oxidation reactions generate heat energy which is used to melt scrap
and/or iron ore additions

Setup problem and means

To determine the quantity of iron ore to add and the oxygen volume to blow to
reaching the target of Carbon rate in steel and the temperature defined for each
heat (batch) by the given product specification

Static load computation based on a model formed by comprehensive heat and mass
balances
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2. Theoretical formulation: data reconciliation with uncertain model

“Classical” data reconciliation

Model of the system : a set of measurements xi and a set of constraints f


xi = x∗

i
+ εxi

f (x∗

i
, a) = 0

, i = 1, ...,N ,

where x∗

i
are the state variables and a the known model parameters.

Hypothesis
H1 : εxi

∼ N (0,V )

or

H2 : εxi
∈ [−δ + δ]

Data reconciliation: estimate the state variables of the system. For example, with H1:

x̂i = argmin
x∗
i

Φ = ‖xi − x∗

i ‖
2
V−1

s.t. f (x∗

i , a) = 0
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xi = x∗
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f (x∗
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, a) = 0

, i = 1, ...,N ,

where x∗

i
are the state variables and a the known model parameters.

Hypothesis
H1 : εxi

∼ N (0,V )

or

H2 : εxi
∈ [−δ + δ]

Data reconciliation: estimate the state variables of the system. For example, with H1:

x̂i = argmin
x∗
i

Φ = ‖xi − x∗

i ‖
2
V−1

s.t. f (x∗

i , a) = 0

Interests

Provide coherent data (more likelihood data than raw measurements)

Allow to detect and isolate sensor faults

Estimate unmeasured state variables
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Model of the system : a set of measurements xi and a set of constraints f


xi = x∗

i + εxi

f (x∗

i , a) = 0
, i = 1, ...,N ,

where x∗

i
are the state variables and a the known model parameters.

Hypothesis
H1 : εxi

∼ N (0,V )

or

H2 : εxi
∈ [−δ + δ]

Data reconciliation: estimate the state variables of the system. For example, with H1:

x̂i = argmin
x∗
i

Φ = ‖xi − x∗

i ‖
2
V−1

s.t. f (x∗

i , a) = 0

Constraint: the model is assumed to be perfectly known
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2. Historical point of view

• Importance of covariance in mass balancing of
particle size distribution data

C. Bazin, D. Hodouin 1999

• Design and upgrade of process plant instru-
mentation

J. Romagnoli 2000

• Data reconciliation and gross error detection S. Narasimhan, C. Jordache 2000
• Fault detection and diagnosis in industrial sys-
tems

L.H. Chiang, E.L. Russell, R.D. Braatz 2001

• Redescending estimators for data reconcilia-
tion and parameter estimation

N. Arora, L.T. Biegler 2001

• Robust data reconciliation based on a gener-
alized objective function

D. Wang, J.A. Romagnoli 2002

• Data reconciliation in gas pipeline systems M.J. Bagajewicz, E. Cabrera 2003
• Data reconciliation: a robust approach using
contaminated distribution. Application in min-
eral processing for multicomponent products

M. Alhaj-Dibo, D. Maquin, J. Ragot 2004

• Mass balance equilibration: a bilinear case
with a robust approach using contaminated dis-
tribution

J. Ragot, M. Chadli, D. Maquin 2005

• Using sub-models for dynamic data reconcili-
ation.

L. Lachance, A. Desbiens, D. Hodouin 2006

• In-Line monitoring of bulk polypropylene re-
actors based on data reconciliation procedures

D. Martinuez Prata, E.L. Lima,
J.C. Pinto

2008

• Adaptation and testing of data reconciliation
software for CAPE-OPEN compliance

E. Radermecker, M.N. Dumont,
G. Heyen

2009
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2. Theoretical formulation: data reconciliation with uncertain model

Proposed approach – Simultaneous data reconciliation and parameter estimation

The considered system is modeled using a set of measurements xi , a set of constraints f
and an a priori knowledge of the parameter values.



xi = x∗

i
+ εxi

f (x∗

i
, a∗) = 0

, i = 1, ...,N

Uncertainties on the knowledge of the parameters are expressed with a
“pseudo-measurement” equation:

a = a∗ + εa , εa ∼ N (0, W )

Simultaneous estimation problem (maximum likelihood approach)

pxi =
1

(2π)v/2 |V |1/2
exp

„

−
1

2
(x∗

i − xi )
T V−1(x∗

i − xi )

«

pa =
1

(2π)p/2 |W |1/2
exp

„

−
1

2
(a∗ − a)T W−1(a∗ − a)

«

(x̂i , â) = arg min
(xi ,a)

V =
N

Y

i=1

pxipa

s.t. f (x∗

i , a
∗) = 0
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2. Theoretical formulation: data reconciliation with uncertain model

Some difficulties and extensions

Unmeasured variables

Dynamic model

Convergence proof
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2. An academic example: basic formulation of data reconciliation

Data

0 50 100 150
0

1
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3
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0 50 100 150

−0.5

0

0.5 Input

0 50 100 150

0

1

2 Output

−0.5 0 0.5

0

0.5

1

1.5

2

Model

y∗ − ax∗ = 0

Measurement

xi = x∗

i + εxi

yi = y∗

i + εyi

Lagrange function

L =
k+N
X

i=k

„

xi − x∗

i

σx,i

«2

+

„

yi − y∗

i

σy,i

«2

+ λi (y
∗

i − ax∗

i )
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2. An academic example: proposed formulation of data reconciliation

Optimality equation

L =
k+N
X

i=k

„

xi − x∗

i

σx,i

«2

+

„

yi − y∗

i

σy,i

«2

+ λi (y
∗

i − ax∗

i )
8

>

>

<

>

>

:

V−1
x (x̂ − x) − λa = 0

V−1
y (ŷ − y) + λ = 0

ŷ − ax̂ = 0
λT x̂ = 0

Numerical solution may be obtained
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ŷ − ax̂ = 0
λT x̂ = 0

Numerical solution may be obtained

Implementation

Perform estimation on a time window of length N :

W1 = [1 N]

Then, perform estimation on a time window of length N

W2 = [2 N + 1]

. . .
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ŷ − ax̂ = 0
λT x̂ = 0

Numerical solution may be obtained

Implementation

Perform estimation on a time window of length N :

W1 = [1 N]

Then, perform estimation on a time window of length N

W2 = [2 N + 1]

. . .

0 50 100 150
0

1

2

3

Gain

0 50 100 150
−0.5

0

0.5 Input

0 50 100 150

0

1
Output

0 50 100 150 200
0

1

2

3

Estimated gain

José Ragot (Engineering School of Geology) Viña del Mar, Chile 14-16 Oct. 2009 11 / 21



2. Theoretical formulation: data reconciliation with uncertain model

Practical implementation

1

1©

N

2

2©

N + 1

3

3©

N + 2

X1, . . .XN , a(0) −→ X̂1, . . . X̂N , â(1)

X2, . . .XN+1 , a(1) −→ X̂2, . . . X̂N+1 , â(2)

X3, . . .XN+2 , a(2) −→ X̂3, . . . X̂N+2 , â(3)
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2. Theoretical formulation: data reconciliation with uncertain model

Practical implementation

1

1©

N

2

2©

N + 1

3

3©

N + 2

X1, . . .XN , a(0) −→ X̂1, . . . X̂N , â(1)

X2, . . .XN+1 , a(1) −→ X̂2, . . . X̂N+1 , â(2)

X3, . . .XN+2 , a(2) −→ X̂3, . . . X̂N+2 , â(3)

Interests of simultaneous data reconciliation and parameter estimation

Provide coherent data (state variables + model parameter)

Allow the monitoring of model parameter (drifts, component deterioration)

Feed model adaptation algorithms for the next batch
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3. Application to a simplified BOF process

Mass and heat balances
(−0.99 + x∗

3 )x∗

2 + (0.95 − x∗

6 )x∗

5 + a∗1 = 0

0.001x∗

1 − (0.007 + 3x∗

3 )x∗

2 − (0.024 + a∗2x∗

6 )x∗

5 + 1.19 = 0

(−4e-3x∗

3 x∗

4 + a∗3x∗

3 − 2e-6x∗

4 + 3e-3)x∗

2

−(1e-4x∗

6 x∗

7 + 0.12x∗

6 + 2e-6x∗

7 + 2e-3)x∗

5 − 0.256 = 0
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−(1e-4x∗

6 x∗

7 + 0.12x∗

6 + 2e-6x∗

7 + 2e-3)x∗

5 − 0.256 = 0

Data

Table: Measurement ranges and accuracies

Variable x1 x2 x3 x4 x5 x6 x7

Min value 63593 3.76 4.7 4000 3.71 7.27 1.04
Max value 96750 4.79 5.74 5232 4.68 12.96 2, 02
Standard deviation 3339 0.19 0.24 202 0.19 0.48 0.052

Table: “A priori” parameter knowledge

Parameter a1 a2 a3

Nominal value 17.85 0.4 16
Standard deviation 0.893 0.02 0.8

Generation of 200 sets of measurements – length of the sliding window N = 10José Ragot (Engineering School of Geology) Viña del Mar, Chile 14-16 Oct. 2009 13 / 21



3. Application to a simplified BOF process
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Figure: x1 state estimation and measurement
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3. Application to a simplified BOF process
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Figure: a1 parameter estimation
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Figure: a2 parameter estimation
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3. Impact of the observation data window length
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Estimation with Observation data window N=10
Estimation with Observation data window N=20
Estimation with Observation data window N=30

Figure: Impact of the observation data window length on parameter estimation

Compromise between : estimation delay ! measurement noise filtering
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4. Data reconciliation may be dangerous !!!

Problem : reconciliate raw data is sensitive to outliers
estimated model’s parameters may be inapropriated!
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Figure: Removing outliers influence

Blue color : raw data and theoretical model
Red color : estimated variables and obtained model
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4. Gross error rejection

Gross error

Due to instrument malfunction, miscalibration or drift, leakage/poor sampling

Precautions: to avoid biased measurement adjustments or estimates
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4. Gross error rejection

Gross error

Due to instrument malfunction, miscalibration or drift, leakage/poor sampling

Precautions: to avoid biased measurement adjustments or estimates

Rejection

Use of statistical test to detect and identify the gross errors

Modify dynamically the variance of the measurement suspected to contain gross
error (increase this variance to minimize the influence of abnormal data)

Method

Let us define the coefficient ratio rj . Each component (rj)k is defined by:

(rj)k =
(|xj − x̂j |)k
p

V (k , k)
, k = 1, ..., v

If one or several components (rj)k > T , let us denote (rj)m = maxk(rj)k

The variance of (xj)m is increased to simulate the lack of that measurement for the next
sliding windows.
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4. Gross error rejection
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Figure: x1 state estimation in the presence of a gross error
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Conclusion and future prospects

Conclusion

Development of a general method for simultaneous data reconciliation and
parameter estimation for non-linear models.

Use of a sliding observation window → to reduce the model parameter estimate
sensitivities to measurement errors

Provide coherent data (state variables + model parameter)

Robustness to measurement gross errors occurence
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Perspectives

Application to a complete BOF model with real data to observe the impact of
control set-points adjustement on the next heat

Using of a bounded error formulation
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Thanks for your attention
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