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1. A short presentation about our lab

The � Centre de Recherche en
Automatique de
Nancy � (Automatic Control) is a
Research Centre funded by the
”Centre National de la Recherche
Scientifique (CNRS)” and two
universities in Nancy : UHP
(Université Henri Poincaré) and
INPL (Institut National
Polytechnique de Lorraine).

The CRAN was set up in Nancy (France) in
1980. It totals 180 persons. The research
activities concentrate on 5 principal themes :
- Systems Observation and Control
- System Identification and Signal Processing
- Dependability and System Diagnosis
- Health Engineering
- Ambient Manufacturing Systems.
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2. A short presentation of process diagnosis

ẋ(t) = f (x(t), u(t))
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2. A short presentation of process diagnosis

For the elaboration of a global approach for the design and the
operation (supervision, maintenance, reconfiguration) of complex
automated industrial systems, it is necessary :

I to guarantee the system safety, i.e. to guarantee that the
system will operate according to the given specifications

I to forecast alternate modes allowing the system to continue
to operate even if some parts of it are out of order

I to detect any fault, i.e. to decide that the system does not
operate normally, using the overall available information on
the actual behavior (obtained through the measurements)
and on the expected behavior (forecast by a system model)

I to isolate the faults, i.e. to decide which function (or, at
least, which component) is faulty based on data redundancy

I to identify the faults, i.e. to estimate the magnitude of the
fault and to estimate its time evolution

I to compensate for the faults, i.e. to implement a fault
tolerant control (that leads eventually to a degraded system
performance) or reconfigure either the control architecture
or the process architecture itself.



3. System under investigation. Flowsheet
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Figure: Cement mill process



3. System under investigation. Mathematical model

yr (t)
u(t) ϕ(w ,d)

v(t)yf (t)

B.M.
w(t)

Sep.

Figure: Cement mill process

Control u feeding rate
v separator speed

State yr recycled flow
qe ball mill input

ϕ(w ,d) ball mill output
α(v) separation function
yf finished product flow
w load inside the mill

Perturbation d clinker hardness
Parameters Tf time constant

Tr time constant

Separator Tf ẏf (t) = −yf (t) + (1−α(v))ϕ(w(t),d(t))

Ball −mill Tr ẏr (t) = −yr (t) + α(v)ϕ(w(t),d(t))

Load ẇ(t) = −ϕ(w(t),d(t)) +yr (t) +u(t)

where

ϕ(w(t),d(t)) = p1w(t)exp(−p2d(t)w(t))

α(v(t)) = p3v
3(t) +p4v

4(t) +p5v
5(t)



3. System under investigation. Mathematical model

Then, the system is described by the following state equations{
ẋ(t) = f (x(t),d(t)) +Bu(t)

y(t) = Cx(t)

where

x(t) =

yf (t)
yr (t)
w(t)

 B =

0
0
1

 C =

[
1 0 0
0 1 0

]

f (x(t),d(t)) =

 1
Tf

(−x1(t) + (1−α(v))ϕ(x3(t),d(t)))
1
Tr

(−x2(t) + α(v)ϕ(x3(t),d(t)))

x2(t)−ϕ(x3(t),d(t))


in which the hardness d(t) is unknown.

ẏf (t)
ẏr (t)
ẇ(t)

=

−1/Tf 0 0
0 −1/Tr 0
0 1 0

yf (t)
yr (t)
w(t)

+

0
0
1

u(t) +

 (1−α(v)
α(v)ϕ(x3,d)
−ϕ(x3,d)





3. System under investigation. Objectives

u(t)

v(t)

d(t)

d̂(t)

yf (t)

yr(t)

w(t)

Process

Observer

I Estimate the hardness d(t)

I Difficulty : the system is non linear

I Proposed approach : multi-model representation of the system



4. What is a multi-model ? Definition

M1 M2µ(t)

S

{
M1 : ẏ(t) = a1.y(t) +b1.u(t), if y(t) > 2.5

M2 : ẏ(t) = a2.y(t) +b2.u(t), if y(t) < 2.5

S



ẏ(t) = a(t).y(t) +b(t).u(t)

a(t) = µ(t).a1 + (1−µ(t)).a2

b(t) = µ(t).b1 + (1−µ(t)).b2

µ(t) = 1
2 (1 + sign(y(t)−2.5))

S


ẏ(t) =

2

∑
i=1

µi (t)(ai .y(t) +bi .u(t))

µ1(t) = 1
2 (1 + sign(y(t)−2.5))

µ2(t) = 1−µ1(t)

Summarizing, a multi-model, or a multiple-model, is a weighting sum of local models.
These local models are chosen linear in respect to the state and control variable



4. What is a multi-model ? Definition

Two kinds of weighting functions

I Switching

M1

M2

I Smooth transition

M1

M2



4. How to transform a non-linear model into a multi-model ?

ẋ(t) =


− 1

Tf
0

z1(t)

Tf

0 − 1

Tr
0

0 1 −z1(t)

Tf

x(t) +


0

0

1

u(t) +


−z2(t)

Tf

z2(t)

Tr

0

d(t)

where the variables z1(x(t),d(t)) and z2(t), later selected as premise variables, are
defined by

z1(t) = p1 exp(−p2d(t)x3(t))

z2(t) = α(v(t))p1x3(t)
exp(−p2d(t)x3(t))

d(t)

zmin
1 ≤ z1(t) ≤ zmax

1
zmin

2 ≤ z2(t) ≤ zmax
2



4. How to transform a non-linear model into a multi-model ?

Since they are bounded, the premise variables can be written as a weighting sum of their
bounds. For the first one :

z1(t) = µ
0
1 (z1(t))zmin

1 + µ
1
1 (z1(t))zmax

1

=
1

∑
i=0

µ
i
1(z1(t))z i1

where the functions µ0
1 and µ1

1 are defined by

µ0
1 (z1(t)) =

z1
1 − z1(t)

z1
1 − z0

1

, µ
1
1 (z1(t)) =

z1(t)− z0
1

z1
1 − z0

1

and satisfy the following property :

0 ≤ µ0
1 (zi (t)) ≤ 1

0 ≤ µ1
1 (zi (t)) ≤ 1

µ0
1 (zi (t)) + µ1

1 (zi (t)) = 1



4. How to transform a non-linear model into a multi-model ?

ẋ(t) =


− 1

Tf
0

z1(t)

Tf

0 − 1

Tr
0

0 1 −z1(t)

Tf

x(t) +


0

0

1

u(t) +


−z2(t)

Tf

z2(t)

Tr

0

d(t) z1(t) =
1

∑
i=0

µ
i
1(z1(t))z i1

ẋ(t) =


− 1

Tf
0

∑
1
i=0 µ i

1(z1(t))z i1
Tf

0 − 1

Tr
0

0 1 −∑
1
i=0 µ i

1(z1(t))z i1
Tf

x(t) +


0

0

1

u(t) +


−z2(t)

Tf

z2(t)

Tr

0

d(t)

ẋ(t) = ∑
1
i=0 µ i

1(z1(t))




− 1

Tf
0

z i1
Tf

0 − 1

Tr
0

0 1 −
z i1
Tf

x(t) +


0

0

1

u(t) +


−z2(t)

Tf

z2(t)

Tr

0

d(t)


The same transformation is made for the variable z2(t).



4. How to transform a non-linear model into a multi-model ?

ẋ(t) =
4

∑
i=1

µi (z(t))(Aix(t) +Bu(t) +Eid(t)) 0 ≤ µi ≤ 1, ∑µi = 1

A1 =


− 1

Tf
0 −

z1
1

Tf

0 − 1

Tr
0

0 1 −z1
1

 , A3 =


− 1

Tf
0 −

z0
1

Tf

0 − 1

Tr
0

0 1 −z0
1

 ,

E1 =


−

z1
2

Tf

z1
2

Tr

0

 , E2 =


−

z0
2

Tf

z0
2

Tr

0

 , B =


0

0

1

 , A2 = A1, A4 = A3, E3 = E1, E4 = E2

Advantage of this formulation :

• a systematic representation into a weighting sum of simple local models
• the possibility use results established for linear systems (stability, observer, control)



5. State estimation : joint state and perturbation reconstruction

. Model of the observer
˙̂x(t) =

4
∑
i=1

µi (ẑ(t))(Aix(t)+Bu(t)+Ei d̂(t)+Li (y(t)−ŷ(t)))

˙̂d(t) =
4
∑
i=1

µi (ẑ(t))Ki (y(t)−ŷ(t))

ŷ(t) = Cx̂(t)


xa(t) = [xT (t) dT (t)]T

ea(t) = xa(t)− x̂a(t)

ėa(t) =
4
∑
i=1

µi (ẑ(t))(Ai −MiC )ea(t) + ∆(t)

where

Ai =

(
Ai Ei

0 0

)
, Mi =

(
Li
Ki

)
, C =

(
C 0

)
,

∆(t) =
4

∑
i=1

(µi (z(t))−µi (ẑ(t)))Aixa(t)

. Design of the observer : adjust Ei , Li and Ki such that ea is bounded.



5. Numerical results
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Figure: System states and their estimates



6. Numerical results
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Figure: State estimation errors (top) and clinker hardness and its estimate with noised
measurements



7. Extension : particle size distribution reconstruction

qr (t),gr ,i (t)

qu(t),gu,i (t) qb(t),gb,i (t)

v(t)qf (t),gf ,i (t)

Ball mill

Separator

Figure: Cement mill process



7. Extension : particle size distribution reconstruction

Process equation

Tf q̇f (t) = −qf (t) + (1−α(v)).qb(t)

Tr q̇r (t) = −qr (t) + α(v).qb(t)

ẇ(t) = −ϕ(t) +qr (t) +u(t)

qb(t) = p1.w(t).exp(−p2.d .w(t))

d(gb,i (t))

dt
=

1

w(t)

(
qu(t)(gu,i (t)−gb,i (t)) +qr (t)(gr ,i (t)−gb,i (t))

)
−sigb,i (t) + ∑

N
j=i gb,j (t)sjbij , i = 1, . . . ,N

Control loop equation {
u(t) = −qr (t) +k1(w∗(t)−w(t))

v(t) = k2(qf (t)−q∗f (t))



Conclusions and perspectives

. The goal of this paper is to design an observer for mill
load and clinker hardness estimation in cement mill process
with only the knowledge of the feeding u, the tailings yr
and the finished product rate yf .

. Work is underway to extend the proposed state recons-
truction when one takes into account, in addition to flow
rates, the whole particle size distributions of the product
throughout the separation-grinding loop.



Ladies and Gentleman, thank you very much for your attention !
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