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Motivations

Goal

State estimation of a nonlinear system subject to perturbations

Why?
◮ State estimation is often necessary in control and diagnosis
◮ State estimation of nonlinear systems remains unsolved in a general way
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(nonlinear models are needed)
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Goal

State estimation of a nonlinear system subject to perturbations

Why?
◮ State estimation is often necessary in control and diagnosis
◮ State estimation of nonlinear systems remains unsolved in a general way

Problems
◮ Take into consideration the complexity of the system in the whole operating range

(nonlinear models are needed)
◮ Observer design problem for generic nonlinear models is very delicate

Proposed solution
◮ Multiple model representation of the nonlinear system
◮ Conception of state estimators based on this representation
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Multiple model Approach
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Basis of Multiple model approach

◮ Decomposition of the operating space into operating zones
◮ Modelling each zone by a single submodel
◮ The contribution of each submodel is quantified by a weighting function

ξ1(t)

ξ2(t)

ξ1(t)

ξ2(t)

Operating

space

Operating

zone 1
Operating

zone 2

Operating

zone 3

Operating
zone 4

Multiple model representationNonlinear system

Multiple model = an association of a set of submodels blended by an interpolation
mechanism
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Multiple model approach

Why using a multiple model?
◮ Appropriate tool for modelling complex systems (i.e. black box modelling)
◮ Tools for linear systems can be extended to nonlinear systems
◮ Specific analysis of the system nonlinearity is avoided
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Multiple model approach

Why using a multiple model?
◮ Appropriate tool for modelling complex systems (i.e. black box modelling)
◮ Tools for linear systems can be extended to nonlinear systems
◮ Specific analysis of the system nonlinearity is avoided

How the submodels can be interconnected?

Classic structure
Takagi-Sugeno multiple model

◮ Common state vector for all
submodels

◮ Dimension of the submodels must
be identical

Proposed structure
Decoupled multiple model

◮ A different state vector for each
submodel

◮ Dimension of the submodels may be
different
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Decoupled multiple model

Decoupled multiple model : Multiple model with local state vectors

ẋi (t) = Aixi (t)+Biu(t)

yi (t) = Cixi (t) ,

y(t) =
L

∑
i=1

µi (ξ (t))yi (t)

L

∑
i=1

µi (ξ (t)) = 1 and 0 ≤ µi (ξ (t)) ≤ 1, ∀t , ∀i ∈ {1, ...,L}
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Decoupled multiple model

Decoupled multiple model : Multiple model with local state vectors

ẋi (t) = Aixi (t)+Biu(t)

yi (t) = Cixi (t) ,

y(t) =
L

∑
i=1

µi (ξ (t))yi (t)+Ww(t)

L

∑
i=1

µi (ξ (t)) = 1 and 0 ≤ µi (ξ (t)) ≤ 1, ∀t , ∀i ∈ {1, ...,L}

◮ The multiple model output is given by a weighted sum of the submodel outputs
(blending outputs)

◮ Dimension of the submodels can be different

Perturbation
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State estimation
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Preliminaries and notations

Augmented form of the multiple model

ẋ(t) = Ãx(t)+ B̃u(t) ,

y(t) = C̃(t)x(t)+Ww(t), x ∈ R
n, n =

L

∑
i=1

ni .

Notations

x(t) =
[

xT
1 (t) · · ·xT

i (t) · · ·xT
L (t)

]T
and µi (ξ (t)) = µi (t) ,

Ã =

















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL

















, B̃ =

















B1
...

Bi
...

BL

















,

C̃(t) =
[

µ1(t)C1 . . . µi (t)Ci 0 . . . µL(t)CL
]

,
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B1
...

Bi
...

BL

















,

C̃(t) =
[

µ1(t)C1 . . . µi (t)Ci 0 . . . µL(t)CL
]

,

=
L

∑
i=1

µi (t)C̃i , C̃i =
[

0 . . . Ci 0 . . . 0
]

.

Nonlinear form
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Proportional observer structure

Goal

State estimation of a system represented by a multiple model

Proportional Observer

˙̂x(t) = Ãx̂(t)+ B̃u(t)+ K̃ (y(t)− ŷ(t)) ,

ŷ(t) = C̃(t)x̂(t) .

◮ This observer uses a proportional action

Assumption 1

The perturbation is a bounded energy signal, i.e. ‖w(t)‖2
2 < ∞.
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Estimation error

Estimation error

e(t) = x(t)− x̂(t) ,
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Estimation error

Estimation error
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L

∑
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Estimation error

Estimation error

e(t) = x(t)− x̂(t) ,

ė(t) =
L

∑
i=1

µi (t)(Ã− K̃ C̃i )e(t)− K̃ Ww(t) ,

= Aobs(t)e(t)− K̃ Ww(t) .

Comments

◮ The impact of w(t) on e(t) is directly modified by K̃ .
◮ Goal: finding the gain matrix K̃ such that the influence of w(t) on e(t) is

attenuated.
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Estimation error

e(t) = x(t)− x̂(t) ,

ė(t) =
L

∑
i=1

µi (t)(Ã− K̃ C̃i )e(t)− K̃ Ww(t) ,

= Aobs(t)e(t)− K̃ Ww(t) .

Comments

◮ The impact of w(t) on e(t) is directly modified by K̃ .
◮ Goal: finding the gain matrix K̃ such that the influence of w(t) on e(t) is

attenuated.

Difficulties
◮ The matrix Aobs(t) is time-varying (µi (t) are used !)
◮ Blending between submodels must be taken into account
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Observer design

Performance constraints

We introduce the following H∞ performance constraints:

lim
t→∞

e(t) = 0 for w(t) = 0 ,

‖e(t)‖2
2 ≤ γ2 ‖w(t)‖2

2 for w(t) 6= 0 and e(0) = 0 ,

where γ is the L2 gain from w(t) to e(t) to be minimised.

Theorem

The optimal PO for the decoupled multiple model is obtained if there exists a matrix
P = PT > 0 and a matrix G minimizing γ̄ > 0 under the following LMIs

[

PÃ−GC̃i +(PÃ−GC̃i )
T + I −GW

−(GW )T −γ̄I

]

< 0, i = 1...L

The observer gain is given by K̃ = P−1G and the L2 gain from w(t) to e(t) is given by
γ =

√
γ̄.
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Convergence conditions

Idea

(i) Robust performances are guaranteed if there exists a Lyapunov function V (t)
satisfying

V̇ (t) < −eT (t)e(t)+ γ2wT (t)w(t)

(ii) Using the following Lyapunov function

V (t) = eT (t)Pe(t), P = PT > 0

(iii) Using the estimation error equation

ė(t) =
L

∑
i=1

µi (t)(Ã− K̃ C̃i )e(t)− K̃ Ww(t)

and some algebraic manipulations, the result follows
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Proportional Integral observer structure

Comments on the P observer
◮ Only one degree of freedom is available for observer design
◮ Perturbation attenuation versus dynamics performances
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Proportional Integral observer structure

Comments on the P observer
◮ Only one degree of freedom is available for observer design
◮ Perturbation attenuation versus dynamics performances

Goal of the Proportional Integral observer
◮ Introduce robustness in the state estimation
◮ Two degrees of freedom for the observer design can be used
◮ Attenuation level can be accomplished with good dynamics performances
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ẋ(t) = Ãx(t)+ B̃u(t) ,
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◮ Two degrees of freedom for the observer design can be used
◮ Attenuation level can be accomplished with good dynamics performances

Multiple model structure

ẋ(t) = Ãx(t)+ B̃u(t) ,

ż(t) = C̃(t)x(t)+W ω(t) ,

y(t) = C̃(t)x(t)+W ω(t) ,

where z(t) =

t
∫

0

y(ξ )dξ .

Supplementary variable
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Proportional Integral observer structure

Compact multiple model structure

ẋa(t) = Ã1(t)xa(t)+ C̄1B̃u(t)+ C̄2W ω(t) ,

y(t) = C̃(t)C̄T
1 xa(t)+W ω(t) ,

z(t) = C̄T
2 xa(t) .
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Proportional Integral observer structure

Compact multiple model structure

ẋa(t) = Ã1(t)xa(t)+ C̄1B̃u(t)+ C̄2W ω(t) ,

y(t) = C̃(t)C̄T
1 xa(t)+W ω(t) ,

z(t) = C̄T
2 xa(t) .

Proportional Integral Observer

˙̂xa(t) = Ã1(t)x̂a(t)+ C̄1B̃u(t)+KP(y(t)− ŷ(t))+KI(z(t)− ẑ(t)) ,

ŷ(t) = C̃(t)C̄T
1 x̂a(t) ,

ẑ(t) = C̄T
2 x̂a(t) .

Notations

xa(t) =

[

x(t)
z(t)

]

, C̄1 =

[

I
0

]

, C̄2 =

[

0
I

]

, Ã1(t) =
L

∑
i=1

µi (t)Āi , Āi =

[

Ã 0
C̃i 0

]

Proportional action Integral action

Orjuela, Marx, Ragot, Maquin (CRAN) Decoupled multiple model IFAC 2008 15 / 23



Estimation error

Estimation error

ea(t) = xa(t)− x̂a(t) ,
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Estimation error

Estimation error

ea(t) = xa(t)− x̂a(t) ,

ėa(t) =
L

∑
i=1

µi (t)(Āi −KP C̃i C̄
T
1 −KIC̄

T
2 )ea(t)− (C̄2W −KPW )w(t) ,
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Estimation error

Estimation error

ea(t) = xa(t)− x̂a(t) ,

ėa(t) =
L

∑
i=1

µi (t)(Āi −KP C̃i C̄
T
1 −KIC̄

T
2 )ea(t)− (C̄2W −KPW )w(t) ,

= Aobs(t)ea(t)− (C̄2W −KPW )w̃(t) .

Comments
◮ The impact of w(t) on ea(t) is directly modified by KP

◮ Dynamics performances may be adjusted via KI

◮ Goal: finding the gain matrices KP and KI such that the influence of w(t) on ea(t)
is attenuated.
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Observer design

Theorem

The optimal PIO for the decoupled multiple model is obtained if there exist a matrix
P = PT > 0 and matrices LP and LI minimizing γ̄ > 0 under the following LMIs

[

S(PĀi −LP C̃i C̄T
1 −LIC̄T

2 )+ I PC̄2W −LPW
(PC̄2W −LPW )T −γ̄I

]

< 0, i = 1...L

where S(M) = M +MT .
The observer gains are given by

KP = P−1LP and KI = P−1LI

the L2 gain from ω(t) to ea(t) is given by

γ =
√

γ̄

.

Orjuela, Marx, Ragot, Maquin (CRAN) Decoupled multiple model IFAC 2008 17 / 23



Example

Orjuela, Marx, Ragot, Maquin (CRAN) Decoupled multiple model IFAC 2008 18 / 23



Simulation example

Example

Consider the following decoupled multiple model with L = 2 submodels, the
parameters are given by:

A1 =





−2.0 0.5 0.6
−0.3 −0.9 −0.5
−1.0 0.6 −0.8



 , A2 =

[

−0.8 −0.4
0.1 −1.0

]

,

B1 =
[

1.0 0.8 0.5
]T

, B2 =
[

−0.5 0.8
]

,

C1 =

[

0.9 −0.8 −0.5
−0.4 0.6 0.7

]

, C2 =

[

−0.8 0.6
0.4 −0.7

]

,

W =

[

0.4 0
0 −0.3

]

.

The weighting functions are normalised Gaussian functions

µi (ξ (t)) = ωi (ξ (t))/
L

∑
j=1

ωj (ξ (t)) with ωi (ξ (t)) = exp
(

−(ξ (t)−ci )
2/σ2

)

,

with σ = 0.5, c1 = 0.25 et c2 = 0.75. The decision variable is ξ (t) = u(t).
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Simulation example

Proportional observer

K̃ =

[

0.193 −0.030 0.092 −0.032 −0.014
0.224 0.113 0.220 −0.016 −0.027

]T

,

with an attenuation index γ2 = 2.

Proportional Integral observer

KP =

[

0.004 −0.035 −0.007 −0.017 −0.003 0.934 −0.032
0.017 0.027 0.030 0.007 −0.005 0.002 0.941

]T

,

KI =

[

0.142 0.568 0.131 0.050 0.008 2.626 0.017
0.139 0.519 0.156 −0.010 0.008 0.017 2.496

]T

,

with an attenuation index γ2 = 0.1.
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Simulation example
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Figure: State estimation errors
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Figure: State estimation errors with an output perturbation
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Conclusions

Conclusions
◮ State estimation based on a multiple model representation of a nonlinear system

is investigated
◮ In the proposed multiple model, the dimension of each submodel may be

different (flexibility in a black box modelling stage can be provided)
◮ Conception of a Proportional and a Proportional-Integral observer is proposed

using the Lyapunov theory
◮ The Proportional-Integral observer offers more degrees of freedom consequently

state estimation robustness is introduced
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Thank you!
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