Détection et isolation de défauts par analyse en composantes principales robuste

Y. Tharrault, G. Mourot, J. Ragot

Centre de Recherche en Automatique de Nancy Nancy-université, CNRS 2, Avenue de la forêt de Haye 54516 Vandœuvre-lès-Nancy Cedex

Conférence Internationale Francophone d'Automatique 3-5 septembre 2008, Bucarest, Roumanie

- Principe de l'Analyse en Composantes Principales (ACP)
- 2 Limites de l'Analyse en Composantes Principales
- 3 Analyse en Composantes Principales Robuste (ACPR)
- Détection et localisation de défauts multiples de capteurs
- 5 Exemple numérique : cas de défauts multiples

Principe de l'Analyse en Composantes Principales

• Matrice de données $X \in \Re^{N \times n}$ en fonctionnement normal

ACP

Maximisation de la variance des projections T = X P

- $T \in \Re^{N \times n}$: Matrice des composantes principales
- $P \in \Re^{n \times n}$: Matrice de projection

Décomposition en valeurs/vecteurs propres de la matrice de covariance

$$\Sigma = \frac{1}{N-1} X^{T} X = P \Lambda P^{T} \quad \text{avec} \quad P P^{T} = P^{T} P = I_{n}$$
$$\Sigma = \begin{bmatrix} P_{\ell} & P_{n-\ell} \end{bmatrix} \begin{bmatrix} \Lambda_{\ell} & 0 \\ 0 & \Lambda_{n-\ell} \end{bmatrix} \begin{bmatrix} P_{\ell}^{T} \\ P_{n-\ell}^{T} \end{bmatrix}$$

Decomposition

Partie principale : $\hat{X} = X P_{\ell} P_{\ell}^{T} = X C_{\ell}$ Partie résiduelle : $E = X - \hat{X} = X (I - C_{\ell})$

Limites de l'Analyse en Composantes Principales

• Sensible aux valeurs aberrantes

Modèle ACP robuste aux valeurs aberrantes

ightarrow détection, localisation et suppression des valeurs aberrantes, puis modèle ACP

ightarrow estimation robuste du modèle ACP sans élimination a priori des valeurs aberrantes

Analyse en Composantes Principales Robuste (ACPR)

Approche robuste

Un MM-estimateur initialisé par une matrice de variance-covariance robuste

MM-estimateur

Les résidus r(k)

$$r(i) = ||\boldsymbol{P}_{n-\ell}^{\mathsf{T}}(\boldsymbol{x}(i) - \boldsymbol{\mu})||^2$$

avec :

- x(i) une observation
- µ la moyenne robuste du jeu de données X

- $P_{n-\ell}$ la matrice des vecteurs propres de la matrice de variance-covariance robuste associés aux $n-\ell$ plus petites valeurs propres

Approche robuste

Un MM-estimateur avec pour l'initialisé une matrice de variance-covariance robuste

MM-estimateur

Les résidus r(k)

$$r(i) = ||P_{n-\ell}^T(x(i) - \mu)||^2$$

Le MM-estimateur minimise le critère suivant (sous contrainte $P^T P = I$) :

$$\Phi = \frac{1}{N} \sum_{i=1}^{N} \rho\left(\frac{r(i)}{\hat{\sigma}}\right)$$

avec :

- σ̂ la dispersion robuste des résidus r
- ρ est choisie comme la fonction "Bisquare" ($\rho(r) = \min\{1, 1 (1 r)^2\}$).

Approche robuste

Un MM-estimateur avec initialisé par une matrice de variance-covariance robuste

Matrice de variance-covariance robuste

$$V = \frac{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} w(i,j) (x(i) - x(j)) (x(i) - x(j))^{T}}{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} w(i,j)}$$

où les poids w(i,j) sont définis par :

$$w(i,j) = \exp\left(-\frac{\beta}{2}(x(i) - x(j))^{T}\Sigma^{-1}(x(i) - x(j))\right)$$

avec β un paramètre de réglage

Détection et localisation de défauts multiples de capteurs

Indicateurs de détection généralement utilisés

SPE pour détecter un défaut dans l'espace résiduel

$$SPE(k) = ||(I - P_{\ell}P_{\ell}^{\mathsf{T}})x(k)||^2 \Longrightarrow SPE(k) \le \delta^2$$
?

 T^2 pour détecter un défaut dans l'espace principal

$$T^2(k) = \mathbf{x}(k)^T \mathcal{P}_{\ell} \Lambda_{\ell}^{-1} \mathcal{P}_{\ell}^T \mathbf{x}(k) \Longrightarrow T_2(k) \leq \chi_I^2 ?$$

Afin d'assurer la détection de l'ensemble des défauts

Utilisation d'un indicateur combiné

$$\eta(k) = \frac{T^2(k)}{\chi_l^2} + \frac{SPE(k)}{\delta^2} = x(k)^T \Phi x(k)$$

$$\text{avec } \Phi = \frac{P_{\ell} \Lambda_{\ell}^{-1} P_{\ell}^{\mathsf{T}}}{\chi_{l}^{2}} + \frac{I - P_{\ell} P_{\ell}^{\mathsf{T}}}{\delta^{2}}$$

Reconstruction \hat{x}_R de l'état du système

Minimisant l'influence des défauts à l'indicateur de détection

$$\hat{x}_R(k) = x(k) - \Xi_R f_R$$

avec f_R : amplitude (inconnue) du défaut

 Ξ_R : matrice des directions de reconstruction

Par exemple, pour reconstruire 2 variables (R = 2, 4) parmi 5 variables

$$\Xi_{R} = \left[\begin{array}{rrrr} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]^{T}$$

Estimation de l'amplitude du défaut \hat{f}_R

$$\hat{f}_{R} = \operatorname*{arg\,min}_{f_{R}} \{\eta_{R}(k)\} = \operatorname*{arg\,min}_{f_{R}} \{\hat{x}_{R}(k)^{T} \Phi \hat{x}_{R}(k)\}$$

Y. Tharrault, G. Mourot, J. Ragot (CRAN)

Le vecteur de reconstruction $\hat{x}_R(k)$ du vecteur x(k) est donné par :

$$\hat{x}_{R}(k) = \left(I - \Xi_{R}(\Xi_{R}^{T}\Phi\Xi_{R})^{-1}\Xi_{R}^{T}\Phi\right) x(k)$$

avec
$$\Phi = rac{P_\ell \Lambda_\ell^{-1} P_\ell^T}{\chi_l^2} + rac{I - P_\ell P_\ell^T}{\delta^2}$$

Condition de reconstruction : $(\Xi_R^T \Phi \Xi_R)^{-1}$

Pour qu'un défaut soit reconstructible, il faut qu'il soit au minimum projeté dans l'espace principal ($r \le \ell$) ou dans l'espace résiduel ($r \le n - \ell$). Cette condition implique que le nombre de variables reconstruites *r* doit respecter l'inégalité :

$$r \leq \max(n-\ell,\ell)$$

Indice de détection η et de localisation η_R

$$\eta(k) = x(k)^T \Phi x(k) \qquad \eta_R(k) = x_R(k)^T \Phi x_R(k)$$

$$= \frac{P_{\ell}\Lambda_{\ell}^{-1}P_{\ell}^{T}}{\chi_{l}^{2}} + \frac{I - P_{\ell}P_{\ell}^{T}}{\delta^{2}}$$

Φ

Détection de défauts

Un défaut est détecté, si :

$$\eta(k) > \gamma_{\alpha}^2$$

 γ_{α}^2 le seuil de détection de l'indicateur η ,

Localisation de défauts

Les jeux de variables défaillantes \hat{R} sont déterminés par :

$$\hat{R} = \underset{R \in \mathfrak{I}}{\operatorname{arg}} \eta_R(k) < \gamma_{\alpha}^2$$

où $\ensuremath{\mathfrak{I}}$ est l'ensemble des combinaisons des directions de reconstructions possibles.

Y. Tharrault, G. Mourot, J. Ragot (CRAN)

Diagnostic par ACP robuste

Condition de reconstruction : $r \leq \max(n - \ell, \ell)$

Le nombre maximum de reconstructions est le suivant :

$$\sum_{r=1}^{\max(n-\ell,\ell)} \mathbb{C}'_r$$

où \mathbb{C}_n^r est le nombre de combinaisons possibles de choisir r variables parmi n.

Réduction du nombre de reconstruction

Détermination des directions de projections colinéaires.

Indicateur de similarité de directions de défauts

$$D(R_1, R_2) = \max\{(d(R_1, R_2), \tilde{d}(R_1, R_2)\}$$

où d(R1, R2) distance entre deux sous espaces dans l'espace principal et $\tilde{d}(R1, R2)$ distance entre deux sous espaces dans l'espace résiduel :

$$d(R_1, R_2) = || \hat{\Xi}_{R_1} (\hat{\Xi}_{R_1}^T \hat{\Xi}_{R_1})^{-1} \hat{\Xi}_{R_1}^T - \hat{\Xi}_{R_2} (\hat{\Xi}_{R_2}^T \hat{\Xi}_{R_2})^{-1} \hat{\Xi}_{R_2}^T ||_2$$

$$\tilde{d}(R_1, R_2) = || \tilde{\Xi}_{R_1} (\tilde{\Xi}_{R_1}^T \tilde{\Xi}_{R_1})^{-1} \tilde{\Xi}_{R_1}^T - \tilde{\Xi}_{R_2} (\tilde{\Xi}_{R_2}^T \tilde{\Xi}_{R_2})^{-1} \tilde{\Xi}_{R_2}^T ||_2$$

avec $\hat{\Xi}_{R_1} = \Lambda_{\ell}^{-1/2} P_{\ell}^T \Xi_{R_1}$, $\tilde{\Xi}_{R_1} = P_{n-\ell}^T \Xi_{R_1}$ et R_1 et R_2 correspondent aux ensembles des variables de reconstruction.

Algorithme pour la détermination des défauts détectables et localisables

I = 1

- Scalculer pour l'ensemble des directions possibles l'indicateur $D(R_1, R_2)$.
 - Si *D*(*R*₁, *R*₂) est nul :

seul l'ensemble des variables potentiellement en défaut peut être déterminé, c'est-à-dire les variables avec les indices R_1 , R_2 ou R_1 et R_2 . Il est donc nécessaire de considérer une seule direction, par exemple R_1 .

- Si D(R₁, R₂) est proche de zéro :
 l'amplitude du défaut doit être importante pour assurer la localisation du défaut
- Si D(R₁, R₂) est proche de 1 : le défaut est facilement localisable

 $\bigcirc r = r + 1$

Solution Tant que $r \leq \max(\ell, n - \ell)$ aller à l'étape 2

Exemple numérique : cas de défauts multiples

On considère :

•
$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \end{bmatrix}$$

• N = 128 observations

$\max(\ell, n-\ell) = \max(5, 4) = 5$

Le nombre maximum de reconstructions est donc de 381 ($\mathbb{C}_9^1 + \mathbb{C}_9^2 + \cdots + \mathbb{C}_9^5$).

r = 1

		-											
k	k		R_1										
		1	2	3	4	5	6	7	8	9			
	1	0	1	0.99	1.00	0.92	0.92	1.00	1.00	0.99			
	2		0	1.00	0.96	0.73	0.97	1.00	1.00	1.00			
	3			0	1.00	0.96	1.00	0.40	1.00	1.00			
R_2	4				0	0.97	0.73	1.00	0.99	1.00			
	5					0	0.97	0.99	1.00	1.00			
	6						0	1.00	0.99	1.00			
	7							0	1.00	0.99			
	8								0	1.00			

r = 2

Les directions $\{1,3\}$ et $\{1,7\}$ sont colinéaires

Le nombre de reconstructions nécessaires est de 150 au lieu de 381

Y. Tharrault, G. Mourot, J. Ragot (CRAN)

Diagnostic par ACP robuste

Défaut x_1 sur l_1 et l_2 Défaut x_2 sur l_2 Défaut x_3 sur l_1 Défaut x_4 sur l_3 Défaut x_8 sur l_3 et l_4

Sur I_1 , défauts x_1 et x_3 Sur I_2 , défauts x_1 et x_2 Sur I_3 , défauts x_4 et x_8 Sur I_4 , défauts x_8

Y. Tharrault, G. Mourot, J. Ragot (CRAN)

	I_1	I_2	l ₃	<i>I</i> 4				
$\eta_{1,3}$	0	×	×	×				
$\eta_{1,2}$	×	0	×	×				
$\eta_{4,8}$	\times	\times	0	0				
η_8	\times	\times	\times	0				
Circulations de la défension								

Signature des défauts

- dans l'intervalle I_1 , x_1 et x_3 ou / x_1 et x_7 sont en défaut
- dans l'intervalle l₂, x₁ et x₂ sont en défaut
- dans l'intervalle l₃, x₄ et x₈ sont en défaut
- dans l'intervalle I₄, x₈ est en défaut

Conclusion et perspectives

Conclusion et perspectives

- ACP robuste aux valeurs aberrantes
- Utilisation d'un indice combiné pour détecter des défauts sur l'ensemble des variables
- Utilisation du principe de reconstruction afin de localiser les défauts
- Détermination des défauts isolables
 - -> évite l'explosion combinatoire des scénarios de défauts

Perspectives

- Systèmes dynamiques
- Prise en compte de la persistance des défauts