
Unknown input estimation with a multiple model. Application to
secure communications

AKHENAK Abdelkader, MAQUIN Didier and RAGOT José

Abstract— This paper is dedicated to the synthesis of a
multiple observer. The considered system is represented by
a (nonlinear) multiple model with unknown inputs. Stability
conditions of such observer are expressed in terms of linear
matrix inequalities (LMI). A simulation example related to
secure communication is given to illustrate the proposed
method.

I. INTRODUCTION

A physical process is often subjected to disturbances
which have as origin the noises due to its environment,
uncertainty of measurements, fault of sensors and/or
actuators. These disturbances have harmful effects on the
normal behavior of the process and their estimation can be
used to conceive a control strategy able to minimize their
effects. The disturbances are called unknown inputs when
they affect the input of the process and their presence can
make difficult the state estimation.

In the linear system framework, observers can be designed
for singular systems, unknown input systems, delay systems
and also uncertain system with time-delay perturbations
[8]. Several works were also achieved concerning the
estimation of the state and the output in the presence
of unknown inputs. They can be gathered into two
categories. The first one supposes an a priori knowledge of
information on these nonmeasurable inputs; in particular,
Johnson [12] proposes a polynomial approach and Meditch
[16] suggests approximating the unknown inputs by the
response of a known dynamic system. The second category
proceeds either by estimation of the unknown inputs, or by
their complete elimination from the equations of the system.

Among the techniques that do not require the elimination
of the unknown inputs, Wang [17] proposes an observer
able to entirely reconstruct the state of a linear system in
the presence of unknown inputs and in [5], [13], [15], to
estimate the state, a model inversion method is used. Using
the Walcott and Zak structure observer [17], Edwards et
al. [6], [7] have also designed a convergent observer using
the Lyapunov approach. Other techniques are based on the
elimination of the unknown inputs [9], [14].
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However, the real physical systems are often nonlinear.
As it is delicate to synthesize an observer for a nonlinear
system, we preferred to represent these systems with a
multiple model. The idea of the multiple model approach
is to apprehend the total behavior of a system by a
set of local models (linear or affine), each local model
characterizing the behavior of the system in a particular
zone of operation. The local models are then aggregated
by means of an interpolation mechanism.

In the case of a nonlinear system affected by unknown
inputs and described by a multiple model, a technique
for multiple model state estimation by using a multiple
observer with sliding mode has already been proposed [1],
[4].

In this paper, we consider the state estimation of an
uncertain multiple model with unknown input. For that
purpose a multiple observer based on convex interpolation
of classical Luenberger observers [2] involving additive
terms used to overcome the uncertainties is designed.
Using a quadratic Lyapunov function, sufficient asymptotic
stability conditions are given in LMI formulation [3].

II. STATE AND INPUT ESTIMATION USING A MULTIPLE

MODEL

In this work, we consider the estimation of the state vector
and the unknown inputs of a nonlinear system represented
by a multiple model and subject to the influence of unknown
inputs, by using a multiple observer. This multiple observer
is based on local Luenberger observers.

A. Multiple model structure

Let us consider a nonlinear system represented by the
following discret multiple model (withM local models)
subject to unknown inputs:




x(t + 1) =
M∑

i=1

µi(ξ(t))
(
Aix(t) + Biu(t) + Riū(t) + Di

)

y(t) = Cx(t) + Fū(t)
(1)

with :




M∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀ i ∈ {1, ..,M}



where x(t) ∈ Rn is the state vector,u(t) ∈ Rm the
input vector,ū(t) ∈ Rq, q < n, the unknown input and
y(t) ∈ Rp gathers the measured outputs. Theith ”local
model” usesAi ∈ Rn×n as the state matrix,Bi ∈ Rn×m

for the input influence matrix,Ri ∈ Rn×q for the unknown
input influence matrix andDi ∈ Rn×1 is introduced to
take into account the functioning point of the system;
C ∈ Rp×n and F ∈ Rp×q. At last, ξ(t) is the so-called
decision vector which may depend on the known input
and/or the measured state variables.

At each time,µi(ξ(t)) quantifies the relative contribution
of each local model to the construct the global model.
Choosing the numberM of local models of that multiple
model may be intuitively achieved when taking into
account the number of operating regimes. However,
determining the matricesAi, Bi, Ri andDi needs the use
of specific technics [10]. For a practical point of view, the
matricesAi, Bi, Ri andDi are those used to describe the
local functioning around theith regime. Indeed, that is
exactly the case at theith regime, whereµi(ξ(t)) = 1 and
µj(ξ(t)) = 0, j 6= i. In fact, the values of the functionsµi

are not Boolean and the output of the multiple model is a
weighted sum of the output of each local model.

The problem to be solved here is those of the simultaneous
reconstruction of the state variablex(t) and the unknown
input u(t) when only using the information available in the
known inputu and in the measured outputy(t).

B. Multiple observer Design

In this section, we explain how to design the observer.
The structure of that observer results of the aggregation
of local observers [4] and the obtained analytical form
is particularly adapted for studying the stability and the
convergence property of the state reconstruction error. The
numerical aspects related to the determination of the gains
of the observer will be also analyzed. The so-called multiple
observer (1) has the following structure:





z(t + 1) =
M∑

i=1

µi(ξ(t))
(
Niz(t) + Gi1u(t)+

Gi2 + Liy(t)
)

x̂(t) = z(t)− Ey(t)
(2)

whereNi ∈ Rn×n, Gi1 ∈ Rn×m, Li ∈ Rn×p is the gain
of the ith local observer,Gi2 ∈ Rn is a constant vector
andE is a transformation matrix. Indeed, the observer only
uses known variablesu andy, ū being non measured. This
whole set of matrices has to be properly defined, and mainly
on a numerical point of view, the objective is to ensure the
convergence of the estimated state towards the true state.
For that purpose, let us define the state estimation error:

e(t) = x(t)− x̂(t) (3)

From that definition and using the expression ofx̂(t) given
by equation (2), the previous error can be written:

e(t) = (I + EC)x(t)− z(t) + EFu(t) (4)

Then, one expresses the time evolution of the state estima-
tion error in order to analyse its convergence towards zero.
Thus, at timet + 1, the state estimation error is expressed:

e(t + 1) =
M∑

i=1

µi(ξ(t))
(
P

(
Aix(t) + Biu(t) + Riū(t) + Di

)−

Niz(t)−Gi1u(t)−Gi2 − Liy(t)
)

+ EFu(t + 1)
(5)

with :
P = I + EC (6)

Replacing y(t) and z(t) by their respective expressions
given by (1) and (2), the state error takes the form:

e(t + 1) =
M∑

i=1

µi(ξ(t))
(
Nie(t) +

(
PAi −NiP − LiC

)
x(t)+

(PBi −Gi1)u(t) + (PDi −Gi2)+(
PRi − LiF )ū(t)

)
+ EFū(t + 1)

(7)

If the following conditions are fulfilled:




P = I + EC

NiP = PAi − LiC

PRi = LiF

Gi1 = PBi

Gi2 = PDi

EF = 0

(8)

equation (7) reduces to :

e(t + 1) =
M∑

i=1

µi(ξ(t))Nie(t) (9)

A simplification that will be further used is proposed. It is
straightforward to verify that (8) may be writhen with the
help of the matrixKi:




P = I + EC

Ni = PAi −KiC

Ki = NiE + Li

PRi = KiF

Gi1 = PBi

Gi2 = PDi

EF = 0

(10)

The decay rate of the state estimation error is depending on
the matrixN =

∑M
i=1 µi(ξ(t))Ni and it is important to note

that the stability of matricesNi, ∀ i ∈ {1, ..., M} does not
prove the stability ofN . That point will be analyzed in the



next section. Thus, the constraints (10) allow to synthesis
an observer of a system with unknown inputs. However, for
some applications (for example in diagnosis), the estimation
of the unknown input̄u has to be performed. That point will
be addressed in the section II-D. Moreover, the stability of
the matrixN needs to be guaranteed while taking account
all the matrix constraints (8); that technical point is the aim
of the section II-E.

C. Global convergence of the multiple observer

In this part, sufficient conditions of the asymptotic global
convergence of the state estimation error are established.
As expressed by the model of the state error estimation,
(9), the convergence is strongly depending on the matrix
N =

∑M
i=1 µi (ξ(t)) Ni.

Theorem [2] : The state estimation error between the
multiple model (1) and the unknown input multiple observer
(2) converges towards zero, if all the pairs(Ai, C) are
observable, the matrixF is of full column rank and if the
following conditions hold∀ i ∈ {1, ..., M}:

NT
i XNi −X < 0 (11a)

Ni = PAi −KiC (11b)

P = I + EC (11c)

PRi = KiF (11d)

EF = 0 (11e)

Li = Ki −NiE (11f)

Gi1 = PBi (11g)

Gi2 = PDi (11h)

whereX ∈ Rn×n is a positive definite symmetric matrix.

The proof of that theorem may be found in [2]. Let us
just note that the stability condition ofN is expressed by
the matrix inequalities (11a). The conditions (11b) to (11h)
may be seen as an equivalent form of the constraints (10).
The system (10) involves bilinear matrix inequalities (11a),
that must be solved while taking into account some equality
constraints. Let us note that equations (11f), (11g) and (11h)
are only used to compute the gainsLi, Gi1 andGi2 since
matricesX, Ni, P , Ki andE will be known.

D. Unknown input estimation

We have previously shown that the convergence of the
multiple observer (2) is guaranteed if the conditions (10)
hold and the pairs(Ai, C) are observable. Under steady
state condition, the state estimation error tends towards
zero; then substituting the true statex by its estimatex̂
in equation (1), the input̄u is replaced by its estimation̄̂u:




x̂(t + 1) =
M∑

i=1

µi(ξ(t))
(
Aix̂(t) + Biu(t) + Ri ˆ̄u(t) + Di

)

y(t) = Cx̂(t) + F ˆ̄u(t)
(12)

The unknow input̄u is then estimated by using the whole
set of equations (11):

ˆ̄u(t) = (WT W )−1WT×
 x̂(t + 1)−

M∑
i=1

µi(ξ(t)) (Aix̂(t) + Biu(t) + Di)

y(t)− Cx̂(t)




(13)

assuming that the matrix

W =




M∑
i=1

µi (ξ(t)) Ri

F


 (14)

is of full column rank. Summarizing the estimation proce-
dure, two steps are needed: the first one is dedicated to the
state estimation using the observer (2), the second is devoted
to the unknown input estimation using the estimated state
(12). The condition allowing the expression of the matrices
of the observer are linked to the rank ofW . However,
for the secure communication application (section III), the
constraint may be easily fulfilled since we have to design
both the observer and the process itself.

E. Resolution method for determining the observer matrices

When analyzing the different constraints, (11e) completely
determine the matrixE of the observer. NotingF (−) a
generalized inverse ofF , E may be deduced:

E = I − FF (−) (15)

As a consequence, the matrixP may be deduced from (11c).
Then, the matrix inequalities (11a) have to be solved after
substituting the matrixNi by its value derived from (11b).

NT
i XNi −X = (PAi −KiC)T X(PAi −KiC)−X < 0

(16)
which is equivalent, using the Schur complement to:

(
X (PAi −KiC)T X

X(PAi −KiC) X

)
> 0 (17)

With the following change of variables:

Wi = XKi (18)

the constraint (11d) is rewritten:

XPRi = XKiF = WiF (19)

It is then necessary to solve the LMI (17) subject to the
constraint (19)

(
X AT

i PX − CT WT
i

XPAi −WiC X

)
> 0 (20a)

XPRi = WiF (20b)

The system being linear in respect to the unknown matrices
X andWi, conventional LMI tools (LMIMATLAB Toolbox
for example) may be extensively used for that resolution.



The other matrices defining the observer are then deduced
knowing E, P , X andWi:

Gi1 = PBi (21a)

Gi2 = PDi (21b)

Ki = X−1Wi (21c)

Ni = PAi −KiC (21d)

Li = Ki −NiE (21e)

III. A PPLICATION TO COMMUNICATION

Let us consider a discrete SISO multiple model resulting of
the aggregation of two local models:





x(t + 1) =
2∑

i=1

µi(ξ(t))
(
Aix(t) + Riū(t)

)

y(t) = Cx(t) + Fū(t)

(22)

The system (22) has the particularity to be controlled by
the unique inputū(t) and its outputy(t) is the input of
the observer. The activation functions are expressed with
exponential fonctions and only depend on the multiple
model output (ξ(t) = y(t)):





ξ(t) = y(t)

µ1(ξ(t)) = 1
2 (1− tanh(ξ(t)))

µ2(ξ(t)) = 1− µ1(ξ(t))

(23)

Applying results given in section II-C, the observer is
defined by:

x̂(t + 1) =
M∑

i=1

µi(ξ(t))
(
Nix̂(t) + Kiy(t)

)
(24)

with the definitions:

E = 0 (25a)

P = I (25b)

Ri = KiF (25c)

Ni = Ai −KiC (25d)

Li = Ki (25e)

The numerical values of matrices are as follows:

A1 =




0 0.4 1
−1.12 0.4 0
−0.8 0 0.9


 , A2 =




0 0.4 1
1 0.4 0

−0.8 0 0.9


 ,

C =
[

0.15 0 0
]
, F = 50

The figure 1 shows the signaly transmitted to the observer
and the message contained iny. The figure 2 compares
the true and the estimated states of the system. The figure
3 depicts the trajectory of the system; as there are 3
states, the trajectory is drawn in the plans{x1(t), x2(t)},
{x2(t), x3(t)} and {x3(t), x1(t)}; thus it is possible to

appreciate the ”chaotic” behavior of the system. The figure
4 presents the estimated message, the true message and the
activation functionµ. Excepted around the time origine (due
to unappropriate initial conditions), the estimated message
fully agree with the true one.
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Fig. 1. Outputy(t) and messagēu(t)
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IV. CONCLUSION

In this communication, we propose a method for estimating
the state of a non linear discrete system; this system is
modelized by a multiple model in which some input
are unknown. The calculation of the gain of the global
observer reduces to the calculation of the gains of the
local observers; the stability of the whole requires taking
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into account the coupling constraints between the local
observers, which leads to the resolution of a LMI (Linear
Matrix Inequality) problem.

A particular application of the proposed method deals with
decryption communication; the objective is to recover a
message imbedded in a signal generated by a dynamical
nonlinear system. As future works, we aim to construct
multiple model and associated multiple observer to ensure
a chaotic time evolution of the system in such a way that
the decryption of the transmitted signal will be impossible
without knowing the model.
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