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Abstract— This paper gives sufficient conditions for pole- not a sufficient condition for the stability of the polytopic
clustering in LMI regions for a class of TS descriptor systens.  system, except if the Lyapunov matrix common for all
First, the class of TS descriptor systems under study is disssed vertices [1]. A popular solution to deal with this restrigii
and it is shown to be generic. A strict LMI characterization . . .
of pole-clustering is given. Using this new characterizatin, 'S to seek a Lyapunov_functlon to prove the stab_lllty Qf the
the design of state-feedback controllers is proposed, in der ~ System. Nevertheless in the case of systems with different
that the finite dynamics of the closed-loop system lie in a operating modes, remaining in a given mode or a given
specified LMI region. The design of observer such that the Jinear combination of modes for a sufficiently long time, the
state estimation error dynamics are in a specified LMI region  inaqr meaning of pole location is recovered. In this case,

is also studied. Finally, an observer-based controller wit pole e . o . .
clustering constraint on the closed-loop system is propode A the stability is not secured during the switching time. lizth

numerical example illustrates the note. paper sufficient LMI conditions for finite pole clustering of
TSDS are established. The results are expressed in terms of
|. INTRODUCTION strict LMI conditions, i.e. without equality constraintne

The Takagi-Sugeno (TS) model proposed by [7] is a wellthus are highly tractable and reliable because round-odf er
known method to represent nonlinear systems into sevenshile evaluating the equality constraint are avoided [13].
linear fuzzy models. In the last two decades, the contrdlhe design of state-feedback controllers is derived froen th
and observation of TS systems has become a challengipgle-clustering characterization. The case of uncert&bBS
problem that received a considerable amount of attentiofconstant but unknown activating functions) is envisaged
In [14], stability analysis and controller design is addexy for state feedback. Using a similar method, the design of
solutions are derived in the LMI formalism. Relaxed suffi-observer, with pole clustering constraint of the estinratio
cient conditions for fuzzy controllers and fuzzy obsenames error dynamics is proposed. Finally, estimation and state-
proposed in [9], and in [8] via a multiple Lyapunov functionfeedback control are combined to obtain an observer-based
approach. controller for TSDS. The note is written in the continuous

The descriptor formalism is also very attractive for systertime formalism, but the results can be applied to discrete
modeling, as pointed in [3], since it describes a wider ctdss time systems, by choosing different LMI regions.
systems than usual systems, including physical systents wit
non dynamic constraints (e.g. algebraic relations induced
in interconnected systems such as power transfer networkIn this section, we introduce the Takagi Sugeno descriptor
or water distribution network) or jump behavior. The ensystems. This class of systems is defined by the following
hancement of modeling ability is due to the structure of thalgebraic differential equations, wheré) € R™ is the state
dynamical equation which encompasses not only dynamigriable,u(t) € R™« is the control input, ang(t) € R™ is
equations, but also algebraic relations. Strict LMI coiodis the measured output.
for stabilization H,, and H» control of descriptor systems N
are established in [13]_ and [4] respectively._ _ i (2(2)) Eid:(t)dt = Z“i(z(t)) (A;z(t)+Biu(t)) (1)

The TS representation has been generalized to descriptdr; i—1
systems in [10], [11] and [12]. The stability and the design N
of state-feedback controllers for T-S descriptors systems y(t) = Z wi(2(t))Cix(t) (2)
(TSDS) are characterized via LMl in [10],[12], the partiaul i=1
problem of nonlinear model following is treate_d in [12].1he weighting functions denoted;((t)) are normalized
Robus'g output feedback, arffn_oo control are c_onS|dered fpr and verify the following properties
TSDS in [5] and [17] respectively. The descriptor formalism
is used by [16] forH, control of time delay TS systems. N

> wi2(1)
i=1

Il. PROBLEM FORMULATION

It is well known that the pole location cannot have the =1, 0<pi(2(t) <1 ®)

same meaning for TS systems than in linear system theory,
in particular the stability of the each of the system vertie Hereafter, it is assumed that the variablgs) are real time
available, and thus so are the weighting functipné:(t)).
Thg authors are with the Institut National Polytechnique de The matricess; are of the form~; :ELEZ-E}‘;,Where the
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E; implies that all the subsystem&;, A;) have the same which is obviously equivalent toankE; = n.

differential structure, but allows parameter variatioriathis (iv) < (v). The impulse controllability of E*, A}, BY)
usually the case in physical systems. Moreover this approac=1, ..., N is equivalent to [3]
avoid the state augmentation made in [5], [10], [12], [15] « X "
: ol 12ed, . A* E* B!
where the state vector(t) is augmented with its time 2n +rankE" = rank Eg 0 01

derivative, which can introduce impulsive mode (obviously
the continuity ofz(¢) does not implies the continuity of =2n+rank [E; Bl ©)
(1)) _ _ _ ]
Most of the previous works concering TS descriptojmpylsive terms in the time response of a descriptor system
systems [5], [10], [12], [15] are based on the transformmatiomay pe highly detrimental for its operation. The impulse-con
of (Ei, A, B;, () into (B}, A7, Bf, 7). The system (1-2) yrollability (resp. the impulse observability) is the atyilto
is then written under the pretended equivalent followingfo g cel (resp. reconstruct) these undesirable impulsiveste
N As a result of the above proposition, if rarfk; # n the
E*z*(t) = Zhi(z(t)) (A7z*(t) + Bfu(t)) (4) design methods based on the state augmentation introduce
i=1 impulsive terms which cannot be observed. Moreover the

N impulse controllability of the original system&;, A;, B;)
y(t) = > hi(2(t)Cia*(t) (5) do not imply the impulse controllability of the systems
i=1 (E*, Af, B}), since the conditioffv) is more restrictive than
wherex*, E*, A¥, B}, C; are given by A B B
rank | o ' 'l =n+rankE; (10)
” T N I, 0 . 0 I, E, 0 0
=1 F o o] T la —E
r v The previous considerations highlight that most of theltssu
«_ |0 x _ [, concerning T-S fuzzy descriptor systems are not efficient
B = c; =10 0 (6) Y : : .
B; for algebraic-differential systems but mainly dedicated t

Unfortunately, this augmentation causes major drawbackdescriptor systems with withankE; = n, which is very
Unless the matriceds; are full rank (in other words, the restrictive. In such a case all the different systems must be
pencils-matrices E;, 4;) are not differential-algebraic, but of the same order, despite one of the main interest in T-S
usual dynamic systems), the pencils-matri¢&s, A*) are fqzzy singular system_s is the ability to model systems with
necessary impulsive. Moreover the systefis*, A*,Cy) different orders behavior. _
are not impulse observable, and the condition for impulse The aim of this paper is to give some results concern-
controllability of (E*, A*, B) is more restrictive than the NG the analysis, the control and the observation of TSDS

one concerning the original systerfs;, A;, B;). with differe_nt matricesF; without using the discussed state
Proposition 1: The following statement are equivalent, foraugmentation.
i=L...,N: [1l. LMl CHARACTERIZATION POLE CLUSTERING OFTS
(i) rankE; =n o DESCRIPTOR SYSTEMS
(.Z.Z.) the systen’(E:, Az) 'S* '”_‘pP'SG free In this section, the concept @-admissibility is extended
(it5) the system(E*, A7, C7) is impulse observable to the TSDS. First, the definition of LMI region arB-
The following statements are equivalent, for 1,..., N agmissibility are recalled [2].
(iv) the system(E*, A7, B) is impulse controllable Definition 1: A subsetD of the complex plane is called an
(v) rank [E; Bi] =n LMI region if there exists a real symmetric matiixe R?*?
Proof: (i) < (ii). It is known [3] that(E*, AY) i = and a matrix3 € RP*P verifying
1,..., N is impulse free if and only if
_ a+pPz+pz2<0, VYVzeD (12)
on — rank | £ Aii — rankE* Definition 2: A descriptor system is calle®-admissible
L0 E if it is impulse free, and if its finite poles lie in the LMI
(1, 0 0 I, regionD.
0 0 A, -—E; The aim of this section is to give an LMI condition
= rank 0 0 I, 0| " (7) characterizing thé® admissibility of a TSDS. The input free
|0 0 0 0 system (12) is governed by a polytopic matrix pencil with

which is obviously equivalent toankE; = n. vertices defined by the matricef; and £;.

(1) & (i%4). The impulse observability of E*, Af, C) N N
i=1,...,N is is equivalent to [3] > iz Eii(t) =Y pi(z(t) Aiz(t) (12)
A>3=T E*T kaT =1 =1

2n + rankE* = rank |t

BT 0 To establish the characterization of tieeadmissibility of a

- TSDS, the characterization of tlie-admissibility of an LTI
=2n+ rankk; (8) descriptor system is needed.



Lemma 1:[6] The input free LTI descriptor system in order that the closed-loop system (17)isadmissible.
Ei(t) = Az(t), whereE and A € R"*", is D-admissible if

N N N
and only if there exists a symmetric positive definite matrix wi(z(t) Eid(t)dt = (2 () (2()) ((A;
P € R™™ and a matrixS € R("="*(=7) yerifying ; (OB lE) ;; (Do) ((

B;Kp)x(t 17
a® EPET + 3@ APET + 37 @ EPAT TBikG)a(t)) a7
+1,, ® (AUSVT + VSTUTATY <0 (13) The cpntrollt_ar is designgd by solving a set of strict LMI as
established in the following theorem.

where1,, € RP*? denotes the matrix with all entries equal _Theorem 2:For a given LMI regionD, defined bya =
to 1, and wherd/ andV € R**("=7) are full column rank aT andp, there exist a control law (16) such that the closed-

matrices composed of the base of the right null spacg;of 100p system (17) i>-admissible if there exist a symmetric
and ET respectively. positive definite matrice® € R™*™, a non singular matrix

A sufficient LMI condition for theD-admissibility of (12) S € RO*~7*(*=7), matricesLy. € R™*(*=") and H}, €
is now given. R™=*(n=7) "verifying the following LMI fori = 1,..., N,
Theorem 1:The input free TSDS (12) i®-admissible if J = L---- NV andk =1,.... N.
there exists.a symmetric positive defi_nit.e matriee R".X" 2 (E;PET + E;PET) + 8 ® (A;PET + B;LyET)
and a matriceS € R(»=7)x(=7) yerifying the following 2 . - o
LMl for i=1,...,Nandj=1,...,N +8" ® (E;PA] + E;Ly B})
o @ (AUSVIHVSTUT AT+ B, i, VI+VTHIBT) < 0
3 ® (E;PE] + E;PE]) + 8 ® A;PE] + 3" @ E;PA] (18)

+1,p @ (AUSVT +VSTUT AT <0 (14) wherel,, € RP*? denotes the matrix with all entries equal
to 1, and wherel/ andV € R**("=") are full column rank

wherel,, € RP*? denotes the matrix with all entries equalmatrices composed of the base of the right null spacg,of

matrices composed of the base of the right null spacg;of

and ET respectively. Ky = (LyEf + H,V") (PE; + USVT)_1 (19)
Proof: It is highlighted that common solution8 and =H,S~'(UTU)"'U" (I, — PER(ELPER) 'EF)
S are looked after for all the LMI conditions. Assume there 4 LkER(E}%PER)flEg (20)

exist P and S verifying (14) fori = 1,...,N andj =
1,..., N. Premultiplying each LMI by, (2(t))p;(=2(t)), and
summing theN?2 obtained LMI, we have

Proof: Assume there exist matriceB, S, L; and
Hy, verifying the N3 LMI (18). Firstly, it is shown that
PEl-T + USVT is invertible. MatricesE; are invertible,

N N T and matricesE'r and Er, are of full column rank. As a
‘ ‘ . } consequenceéZ;U = 0 and Ef'V = 0 imply ELU = 0
a® <Zl “l(z(t))El> P 2“3 (=()E; and ETV = 0 respectively. Thus, we obtain
1= J=
(ELEL) 'EY
(VTyv)y-tyT
The two matrices of the left side of (21) are Ri**", and
are of full rank. Thus, each is the inverse of the other, and

T
N N
t6® (Z ”i(z(t))Ai> P> ui(2()E; we have
i=1 j=1
EL(EYE)'EY vvvTVYy"WT =1, (22

N N T
+67 ® (Z uj(z(t))Ej) P (Z m(z(t))/h—) <0 which implies
j=1 =1 -~ _ - _
’ (15) (EL(ELEL) " (E]) "(ELPER) 'Ef
L _ o _ +vwvtvy=ts—Y\wru)-vt(i,
\(/\gl;:?olrn;%htes the pole clustering of the finite dynamlis of —PER(E}%PER)*E};)) (PEf N USVT) _I, (23

N J—
@ Y pi(2(1) (AUSVT + VSTUTAT) } [EL V] =1, (21)
=1

in other words

IV. D-STABILIZING STATE FEEDBACK (PET+USVT)_1 =B, (EYE) YET) " {ELPER)'EL
In this section, the goal is to determine the gaiis €  +V(V'V) 'S~ (UTU)'U"(I,— PER(ELPER) ' EFL)
R™=*" of the following control law (24)

N The gainsK, (20), are obtained by substituting (24) in (19).
u(t) = Zuk(Z(t))KkI(t) (16) ©One can verify that (20) |mpI|esfF{kPEiT = LyET arlfd
1 KiUS = Hj. SubstitutingK, PE; and K US to LiE;



and H,, respectively, in (18), multiplying by (z(t)), and Proof: The state estimation error, defined bft) =
summing fork = 1,..., N the N obtained LMI, the LMl z(¢) — Z(t), is governed by the following algebraic differen-
condition (14) is obtained fofE;, A; + B; Z]kvzl urKy)  tial relation

which achieves the proof. ] N

In the framework of uncertain systems, i.e. when the Z“i(z (t)E dt—ZZMw )(Ai+GiCj)e(t)
activating functions are constant but unknown, the state i=1 i=1 j=1
feedback controller can be designed with a unique feedback (32)

gain K, then the control law isu(t) = Ka(t). In this Whereu;(z(t)) = pi(z (f))MJ( (t)). The matriceds; andU
case, common variable& and L are looked after when Satisfy E;U = ELE;ELU =0, and EL E; is of full column

solving the LMI (20) which becomes, far=1,..., N and fank, whichimplies ETU = 0. Similarly, Ef'V = 0 implies
j=1,...,N, ETV = 0. Simple calculus leads to
T T 7T AT T, T T T (ELER)"'E}
1,y ® (AUSVT+VSTUT AT+B, HVT+VT HT BT) i | [Br U] =1, (33)
A,PET+B,LEN+p e (E;PAT +E, LB}
+ie( it §)+Bl @ (B PAT+E; 0 In other words, we have

% © (E;PET + E;PET)<0 (25) (ELER)-1ET i N .
(B U s F | -Bn( B B R +U(@T0) 0
=1, (34)

From which one can derive
I:(EiTP—FUSTVT)(EL(EfPEL)_1(ET)_1(ETER)_1E;§
+(I-EL(Ef PEL) ' EL PW(VTV){(sT)"(UuTU)~'UT)
In this section, the design of observers for TSDS is (35)

addressed. The proposed observers are in TSDS form, apfich can be written as
are defined by

And the gainK is given by

K =HS '(UTU)"'U" (I, — PER(E}L,PER) 'E},)
+ LER(ELPER)'EL (26)

V. OBSERVERS DESIGN

(ETP+USTVT) " '= By (ELPEL) " NEN) NELER)'EL

N
3 wil=(t) B Zm () + Buu(ty  FU=EL(BLPEL)TELP)V(VTV) (ST (U"D) (g;
Assume that there exist matricés S, L; and H; verify-
+Gi ZM; )=y(t))) ing (29), and set
(27) (Ef'L; + UH;) = (EP+US"VT)G;  (37)

X Since the matriXE! P+USTVT) is invertible, determining
= Z“i(z(t))cix(t) (28)  the matrices; and H; definesG;, and we have

T T ~T T
The objective is to determine the gai@$s such that the state (A +Cp G )(PE; +VSU)
estimation error is impulse free and that its finite poles lie +HE]P+USTVT)(A; +G;Cy) <0 (38)
in the left half complex plane. Premultlplylng (38) byu(z(t)) and summing fork =
Theorem 3:The system (27-28) is an observer for (1- 2)1 . N, the following LMI are obtained
if there exist a symmetric positive definifeé € R"*™, a non _
singular matrixS € R(=")*("=") matricesL; € R"*™ AJT(PEi +VSUT) + (E] P+USTVT)A; <0 (39)

) (n—r)xm i P - B
flmd HJNejIR{: : A\Zlearlrl:)(;lzg:tqe foll?vwmg LMI for q where 4, — Zivzlﬂk(z(t))(Ai + GiCy). The LMI (39)
ey Y R corresponds to (14) withy = 0 and 3 = 1, in other words,
A;*-F(PEZ- +VSUTY + (EFP+USTVT) A, (E;, A;) is D admissible, wher@® is the left half complex

T(rT TyrT Ty _ plane.
+C (L Bi+ Hy UT) + (B Lj + UH;)Cr < 0 (29) The equivalence between (30) and (31), established with

WhereU andV ¢ R™*("—7) are full column rank matrices (36), proves that the gainS; do not depend on the indice

composed of the base of the right null spacefpfand EX' - , , . u
respectively. The result of the previous section can be applied to place

the finite poles of the equation governing the state estonati
error in a specified LMI region, by appropriately choosing
G =(Ef P+US"VT)"Y(ElL; + UH;) (30) the gainsGy. . _ _
— (I, — EL(ETPE) 'ETPYV(VTV) 1 (ST) ' H, Th_eorem 4:for a given LMI regionD, defined by_the
( LT( L _IL) oo b )V )T, matricesa = o and 8 € CP*?, the system (27-28) is an
+ EL(EL PEL) ELL; (1)  observer for (1-2), with the state estimation error dynamic

The observer gain&/; are given by



located inD if there exist a symmetric positive definite with

matrix P € R™*", a non singular matri¥ € R(=7)*(n=r), E 0
matricesL; € R™*™ and H; € R(™")*™ verifying the = La; = {01 Ei:|
following LMI for ¢ = 1,...,N, 7 =1,...,N andk =

=ai —GiCj A; + GiCj + B, F}
(47

L...,N. Pre-multiplying (45) byTi, and defining the new augmented
Lp® (ATVSUT +CTHIUT +USTVT 4, +UH,C,)  Stateva(t) defined
+6® (ATP+CFLT) B+ 57 © ET (PA;j+L;Cy) 71— [In 0} rolt) = [ x(t) ] (48)
+2@(ETPE; + E;PET) < 0 i Il I@_x(t)
2 the well-known separation principle is recovered, and the

(40)

WhereU andV € R**(»=7) gre full column rank matrices

N N N
composed of the base of the right null spacefpfand EF Zui(z(t))ﬂaiffa(t):z:z:m(Z(f))uj(z(t))Aaﬂa(t)
respectively. =1

closed-loop system becomes

i=1j=1
The observer gain&/; are given by (49)
G, =(E'P+UsTVvTy"Y(EFL; + UH; (41) a
A YOS mO) [C: 0)aalt)  (50)
=EL(E] PEL)'E{L; + (I, — EL(E] PEL)"'E[ P) P
V(VIV)i(sT) T H, (42)  with
Proof: By duality, the proof is similar to the proof of A A, B; I (51)
theorem 2, and thus omitted. [ “1-G,C; A;+GiCj+ B;F;

A minimal decay rate of the observer can be imposed by finjte spectrum of the closed-loop system is the reunion
choosing the appropriate LMI region. The left half plangy ynq finite spectrum of E;, A; + B;F;) and (E;, A; +
defined by{z € C[R(z) < —A} is the LMI region defined o) The determination of the gains of the obsergar

by o =2 and§ = 1. and of the control lawF; have been discussed in section

Corollary 1: The system (27-28) is an observer for (1-2), 54 v respectively. Solving the LMI (40) and (18) the
with a minimal decay rate ol if there exist a symmetric observer-based controller is designed

positive definite matrix? € R™*", a non singular matrix

S e Rm=r)x(n-r) matrices L; € R"™ ™ and H; € VIlI. NUMERICAL EXAMPLE
R("_T)X’” verifying the following LMI for i = 1,..., N, Due to the space limitation, only the observer design is
j=1...,N,k=1,...,Nandl=1,...,N. illustrated. Consider the TSDS (1-2) defined by
(AT +AE[\PE;+VSU")+(E] P+UST VY A;+\E)) 110 10 0
+Cy (LT Ei+H]UT)+(E] L;+UH;)C,, <0 (43) Ey=10 1 0] Ex=(0 10
0 00 0 00
WhereU andV e R™*("=7") are full column rank matrices 1 9 0 1 9 0
composed of the base of the right null spacefpfand ET
. i Ar=2 =3 4| A,=|2 -2 2
respectively. 0 0 1 0 3 1
The observer gain&/; are given by (31). ) 0
1 1
VI. OBSERVERBASED CONTROL Bi=[(1 0 Bo=[1 0
In this section, a control law is derived from the state 0 0 0 0
estimation given by the observer (27-28). The control input O = (1 1 O) Cy = (1 1 O)
is defined by
1+ tanh(u1(t)/15
v m((0) = WO a1 = 1 - matr)
u(t) = ;Mj(z(t))ij(t) 44 The observer is designed to f2 admissible witha = 10
J:

o . o and 8 = 1, in other words, with a minimum decay rate of
Substituting (44) in (1), and defining and augmented statg_ 5
vector by z”(t) = [¢7(t) 27 (t)], the closed-loop system
can be r}évzvrit(tezn as[xan(a)USm(ea]ted system givenpbyy 4.961 11.91° —30.08

P=| 1191 3779 —124.8 S = —49.34

N N N —30.08 —124.8 666.8
Zm (2(t))Eg;i(t) ZZZMU (2(t)) s (2(t) Agiz(t) ~32.33 —128.8
i=1 i=1j5=1 (45) Gl = ( 7.758 ) G2 = ( 38.49 )
N 0.3228 —1.689
y(t) zzm(z(t)) [Ci 0] z(t) (46)  The initial state of the observer(0) = [-2 — 2 4], while

[—
i=1 the initial state of the systemig0) = [2 2 — 2]. Simulation



results are displayed on the figures 1, 2, 3. Each figure
displays the comparison of the state variable and its etdima

In this note, pole clustering in LMI regions for a class
of Takagi-Sugeno descriptor systems is characterized by .

VIII. CONCLUSION

strict LMI. State feedback controller, full order obseraerd

observer-based controller designs are derived. The determ
nations of the parameters of the controllers and obsereer ar
given in the terms of strict LMI. The results established in
this note are valid only for systems with slow variation of

the weighting functions.
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Fig. 1.

Comparison of:; (¢) (dotted line) andi1 (¢) (solid line)
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Fig. 2.

Comparison of2(t) (dotted line) andi2(¢) (solid line)

Fig. 3.

Comparison of3(t) (dotted line) ands(¢) (solid line)



