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Abstract— This paper deals with the design of observers
for a class of nonlinear systems. Nonlinear multimodels are
designed from two (or more) chaotic systems, and an observer-
based synchronization scheme is designed. Sufficient conditions
of synchronization are established and expressed in terms
of Linear Matrix Inequalities (LMIs). This synchronization
process is integrated into a complete communication scheme.
An illustration of the efficiency of the proposed method is done
through the encryption/decryption of a picture.

I. INTRODUCTION

The use of chaos in the field of synchronization and, more
generally, in the field of secure communications, is quite
recent. For a long time, researches about chaotic phenomena
have been strongly related to the studies on nonlinear dyna-
mic systems. Among the scientists who dedicated an impor-
tant part of their work to chaos, we can cite Poincaré, Van der
Pol, Lorenz, Rössler . . . They have discovered a large variety
of chaotic behaviors (they have left their names to some
famous attractors), and some properties characterizing these
systems [1], among which: they exhibit a great sensibility
to the initial conditions (well-known as the butterfly effect),
there exist UPOs (Unstable Periodic Orbits) dense in the
attractor, they are deterministic systems. Before 1990, the
extreme sensibility of chaotic systems to their initial condi-
tions remained a major drawback. But the pioneering work of
Pecora and Carroll [2] has opened the researches on chaotic
synchronization, and their applications into the field of secure
communications. They have shown that two identical chaotic
systems are able to synchronize, provided that they are
coupled according to the drive-response principle, even if
the receiver has no information about the initial conditions
of the transmitter. More recently, [3] and [4] related the
phenomenon of synchronization to a standard (non)linear
state estimation problem, so observer-based techniques are
generally used to design synchronization schemes [5], [6],
[7], [8] . . . to mention just a few. Detailed descriptions of the
existing methods are surveyed in [9].

In this paper, we propose an observer-based synchroniza-
tion scheme for a class of nonlinear systems, for communi-
cations purposes. The transmitter is designed as a nonlinear
multimodel made up of chaotic systems, and we develop
a systematic method to design observers for this class of

systems, through the resolution of Linear Matrix Inequalities
(LMIs).

The theory of multimodels is quite recent. [10] contains
an overview on this topic, and some stability problems are
discussed in [11], [12]. Multimodels are related to nonlinear
systems, whose behavior is represented by a set of local
linear models. Then the multimodel describes an approxi-
mation of the initial process, and is obtained as a weighted
sum of all the local models:{

ẋ(t) =
∑p

i=1 µi(ξ(t)) (Aix(t))
y(t) = Cx(t) (1)

with { ∑p
i=1 µi(ξ) = 1

0 ≤ µi(ξ) ≤ 1 ∀i = 1, p
(2)

where x ∈ Rn is the state vector, and y ∈ Rm represents the
measured outputs, the matrices Ai, i = 1, p and C being of
convenient dimensions.
µ is an interpolation function, in the sense that, at each
moment, its value determines how each local is model acts in
the dynamics of the global multimodel. Indeed, if µi(ξ) = 1,
for i ∈ {1, . . . p}, according to (1) and (2), only the ith

model is active, whereas if 0 < µi(ξ) < 1, then there exists
j ∈ {1, . . . p}, j 6= i such that µj(ξ) > 0, so at least two
local models are active.
The variable ξ generally depends on the state x, or the
measures y.

Here we do not have a classical point of view on multimo-
dels: using the same process of weighted sum, a nonlinear
multimodel is created from p chaotic systems:

{
ẋ =

∑p
i=1 µi(y) (Aix + fi(x))

y = Cx
(3)

The functions fi : Rn → Rn are nonlinear functions chosen
to ensure that each local model: ẋ = Aix + fi(x), for i =
1, p exhibits a chaotic behavior. Generally, these functions
are characterized by the Lipschitz property, which will be
specified later.

The function µ(.) enables a kind of mixing between the
dynamics of the p local chaotic systems, which may protect
the synchronization process from an attack based on the
delay-reconstruction techniques [13]. Indeed, the signal y(t)



transmitted to the receiver is a variable (in time) interpolation
of each local model, and does not correspond to an entire
time series of a particular chaotic attractor.

This paper presents an observer-based synchronization
scheme for the class of systems (3). The layout is as follows.
Using the Lyapunov theory, a sufficient condition to guaran-
tee synchronization is derived under a LMI form in section
II, first in the case of a multimodel based on two systems,
and then the obtained results are extended to a more general
case. The efficiency of the proposed approach is tested
on a multimodel based on two Chua’s circuits in section
III. Then section IV illustrates how this synchronization
scheme can be applied to secure communications, through
the encryption/decryption of a picture.

II. SYNCHRONIZATION OF MULTIMODELS

This section first details the definition of the multimodel
based on two chaotic systems, and the design of an observer
for this multimodel. Then a sufficient condition for the
synchronization of the observer is established in a systematic
procedure, through the resolution of a LMI. This scheme is
finally extended to the general case, for a multimodel based
on p chaotic systems, p > 0.

A. Multimodel based on two systems

Consider two chaotic systems, whose dynamic models are
respectively given by:

ẋ = A1x + f1(x) (4)

and:
ẋ = A2x + f2(x) (5)

We define then the following system, as a multimodel based
on (4) and (5):





ẋ = µ(y)(A1x + f1(x))
+(1− µ(y))(A2x + f2(x))

y = Cx ∈ R
(6)

The function µ must verify (2). We have chosen ξ(t) = y(t)
in (2), since y is the only available signal at the receiver.

We intend to establish the conditions guaranteeing the
observer-based synchronization of the multimodel. The ob-
server designed to ensure synchronization with (6) is given
by:

˙̂x = µ(y) (A1x̂ + f1(x̂)−K1(y − Cx̂))
+(1− µ(y)) (A2x̂ + f2(x̂)−K2(y − Cx̂))

(7)

The synchronization error vector is defined by e = x− x̂,
so by derivation it comes:

ė = µ(y) ((A1 −K1C)e + f1(x)− f1(x̂))
+ (1− µ(y)) ((A2 −K2C)e + f2(x)− f2(x̂))

(8)
To simplify the notations, we set:

M = µ(y)(A1 −K1C) + (1− µ(y))(A2 −K2C) (9)

and
f̃i = fi(x)− fi(x̂), i = 1, 2 (10)

The following theorem provides a sufficient condition for
the synchronization of the observer (7) with the multimodel
(6):

Theorem 1: :
If the following conditions are verified

1) The functions f1 et f2 verify the Lipschitz property,
with respective constants k1 and k2 :

‖fi(x)− fi(y)‖ ≤ ki‖x− y‖, ∀x, y, i = 1, 2 (11)

2) There exist a symmetric, positive-definite matrix P and
two matrices K1, K2 solution of the following LMIs
(for i = 1, 2):
„

(Ai−KiC)T P +P (Ai −KiC)+kiI P
P − 1

ki
I

«
< 0

(12)

then (7) is an observer for (6): x̂(t) → x(t) when t →∞.
Proof: To guarantee that the synchronization error

vector e converges towards 0, we introduce the following
Lyapunov function:

V (t) = eT (t)Pe(t) (13)

where P is a symmetric, positive-definite matrix.
The synchronization error converge asymptotically towards
zero if:
• V (t) > 0
• V̇ (t) < 0

for all e(t) 6= 0.
Since P > 0, the first condition is easily satisfied.
Equations (8), (9), (10) yield to:

V̇ = eT
`MT P + PM´

e + 2eT P
“
µf̃1 + (1− µ)f̃2

”

(14)
By applying successively the Cauchy-Schwarz and the

Young inequalities, we obtain:

2µ(y)eT P f̃1 ≤ µ(y)(k1e
T PPe + k1e

T e) (15)

and

2(1− µ(y))eT P f̃2 ≤ (1− µ(y))(k2e
T PPe + k2e

T e) (16)

which leads to:

V̇ ≤ eT
`MT P + PM+ (µ(y)k1 + (1− µ(y))k2)P

2

+(µ(y)k1 + (1− µ(y))k2)I) e
(17)

Consequently, using (9), if the Riccati-like equations are
checked:

(Ai −KiC)T P + P (Ai −KiC) + kiP
2 + kiI < 0,

i = 1, 2
(18)

by using (2) and (9), it yields

V̇ ≤ 0 (19)

and V̇ (t) < 0 if e(t) 6= 0.
By making use of the Schur complement, (18) can be rewrit-
ten in a LMI form, and we get (12), which completes the
proof: the synchronization error vector e converges towards
0, and the observer (7) is asymptotically convergent.



Remark 2: The LMIs (12) for i = 1, 2 can be solved
numerically. If we note Li = PKi (which is equivalent to
Ki = P−1Li since P is invertible), we obtain:

(Ai −KiC)T
P + P (Ai −KiC) + kiI

= AT
i P + PAi − CT LT

i − LiC + kiI
(20)

The right-hand side of this equality is linear in P and Li,
thus the LMIs (12) for i = 1, 2 can easily be solved by a
standard convex optimization algorithm.

B. Extension to the general case

The previous results can be generalized to the case of a
multimodel based on p > 0 chaotic systems, defined in the
following manner:

{
ẋ =

∑p
i=1 µi(y) (Aix + fi(x))

y = Cx
(21)

with
p∑

i=1

µi(y) = 1, 0 ≤ µi ≤ 1 (22)

Then the observer of (21) is designed similarly to (7):

˙̂x =
p∑

i=1

µi(y) (Aix̂ + fi(x̂)−Ki(y − Cx̂)) (23)

The Theorem 1 can be generalized:
Theorem 3: : If the following conditions are fulfilled
1) The functions fi(.), i = 1, p verify the Lipschitz

property (11), with respective constants ki;
2) There exist a symmetric, positive-definite matrix P and

p matrices Ki, i = 1, p which verify the p LMIs:
„

(Ai−KiC)T P +P (Ai −KiC)+kiI P
P − 1

ki
I

«
< 0

(24)
for i = 1, p.

then (23) is an observer for (21): x̂(t) → x(t) when t →∞.
Proof: The demonstration is analogous to that of

Theorem 1. With the notation

M =
p∑

i=1

µi(y) (Ai −KiC) (25)

the following Riccati-like equation has to be solved, genera-
lizing (18):

MT P + PM+
p∑

i=1

µi(y)kiP
2 +

p∑

i=1

µi(y)kiI < 0 (26)

III. APPLICATION TO CHUA’S CIRCUITS

The synchronization scheme proposed in the previous
section will be tested on a multimodel based on two different
Chua’s circuits. Indeed, Chua’s circuit is well known to
exhibit a large variety of chaotic behaviors, and consequently
it gives rise to a large variety of chaotic attractors (see [14]
for a detailed description).

A. Description of the multimodel
The general dimensionless dynamic model of Chua’s cir-

cuit is of the form:



ẋ1 = −αx1 + αx2 − αf(x1)
ẋ2 = x1 − x2 + x3

ẋ3 = −βx2 − γx3

(27)

where the nonlinearity f(.) is given by:

f(x1) = bx1 +
1
2
(a− b) (|x1 + 1| − |x1 − 1|) (28)

So the nonlinear part of Chua’s circuit verifies the Lipschitz
property, with a constant equal to max(|a|, |b|).

We have chosen two sets of parameters corresponding to
two different chaotic behaviors of (27). The set 1:

α1 = 9, β1 = 14, γ1 = 0, a1 = −1.14,
b1 = −0.7 (29)

and the set 2:
α2 = 9.5, β2 = 15, γ2 = 0, a2 = −1.1,
b2 = −0.7 (30)

The attractors corresponding to set 1 and set 2 are quite
different, as shown respectively in Fig. 1 and Fig. 2. Now we
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−2
−1.5

−1
−0.5

0
0.5 −0.3

−0.2
−0.1

0
0.1

0.2
0.3

0.4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

y

x

z
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build the multimodel (6) from these systems. The function
µ(.) is chosen of the form:

µ(y) =
1 + tanh(σy)

2
(31)



where the parameter σ ensures that µ(.) enables real transi-
tions between both Chua’s circuits, and not only switchings
between them. The proofs of Theorem 1 and Theorem 3 are
independent of the choice of the function µ(.), it only matters
that conditions (2) are checked.

Remark 4: To reduce the Lipschitz constant of (27), we
choose the following matrix in the multimodel:

C =
(

1 ζ 0
)

(32)

with ζ quite small (for example, here we take ζ = 0.1), since
the Lipschitz property (11) becomes:

‖f(x1)− f(x̂1)‖ = ‖f(y − ζx2)− f(y − ζx̂2)‖
≤ k|ζ|‖x2 − x̂2‖ (33)

The presence of the parameter ζ in the matrix C changes the
value of the Lipschitz constant of f(.): k is multiplied by ζ,
with 0 < ζ < 1. Here we choose ζ = 0.1, so the Lipschitz
constants corresponding to (29) and (30) are respectively
k1 = 0.114 and k2 = 0.11.
The simulation of the resulting multimodel leads to the
attractor shown in Fig. 3.
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Fig. 3. Multimodel based on two Chua’s circuits

B. Experimental simulations

We illustrate the efficiency of the proposed synchroniza-
tion scheme.
The LMI-based procedure to design the observer gives the
following gains:

K1 =




7.51567564153629
49.46538889431523
92.00114168207854


 (34)

K2 =




7.78184598227631
52.22562659668749
97.38268818155270


 (35)

and the matrix P is given in (36). The initial conditions
chosen for the multimodel are

(
0.1 0.1 0.1

)T
(37)

and for the observer
(

0 0.01 −0.1
)T (38)

The function µ(y(t)) is plotted on Fig. 4, where we have
chosen σ = 0.5 in (31). Fig. 5 is a zoom in Fig. 4 and
shows that the multimodel based on two Chua’s circuits is
a real mix between both systems.
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The synchronization error of each state component is
plotted on Fig. 6.
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IV. APPLICATION TO COMMUNICATIONS

In this section, we propose to apply the previous synchro-
nization scheme in a complete communication process. For
this purpose, we choose the encryption method detailed in
[8].



P =

0
@

1.79292389921732 −0.91927526256889 0.20871307510323
−0.91927526256889 1.76061305823448 −0.61189909748961
0.20871307510323 −0.61189909748961 0.28073032195374

1
A (36)

A. Description of the encryption method

A second chaotic signal y2 is sent to the receiver (we
underline that y2 is generated independently of y). y2 is
created from the third state of the multimodel-transmitter
(27), with a delay depending on the message u:

y2(t) = x3(t− Tuu(t)) (39)

In practice, to enable the recovery of u, u(t) ∈ [0, 1], and
0 < Tu < Te, where Te will be the discretization step of the
numerical integration of the differential equations.
After applying the Taylor-Lagrange formula to expression
(39), and a first-order approximation, we obtain (see [8] for
the details):

x3(t)− y2(t) = ẋ3(t)Tuu(t) (40)

So, by inversion (under the condition ẋ3(t) 6= 0, otherwise
expression (40) is replaced by a second-order approximation
of the Taylor-Lagrange formula):

u(t) =
x3(t)− y2(t)

Tuẋ3(t)
(41)

The decryption formula is easily deduced from (41):

û(t) =
x̂3(t)− y2(t)

Tu
˙̂x3(t)

(42)

By replacing the expression of ˙̂x3 deduced from (27) and
(7), (42) yields to formula (43), with the notations Ki =(

κi,1 κi,2 κi,3

)T , for i = 1, 2.

B. Simulations

We propose here to send the famous ”Lenna picture”,
shown in Fig. 7. A discrete signal u is generated, by
concatenation of the pixels representing the picture, and u is
scaled so that u ∈ [0, 1]. The integration step Te is chosen
equal to 0.01 second. Fig. 8 shows the encrypted message
sent to the receiver, and Fig. 9 the recovered picture. The
first points of Fig. 9 present some mistakes, since formula
(43) is only efficient when synchronization is established,
which needs some instants, see Fig. 6. Preamble duration
devoted to synchronization depends in particular on the
model parameters values. From a practical point of view, the
user may easily estimate the preamble duration for a given
set of parameters by experiments, a priori. In our examples,
the synchronization time is about two seconds, after that the
information signal may be injected.

V. CONCLUSION

In this paper we proposed an observer-based synchro-
nization scheme for a class of nonlinear systems, and its
application to communications. The transmitter is a mul-
timodel composed of two (or more) chaotic systems. The

Fig. 7. Original Lenna picture

Fig. 8. Encrypted Lenna picture

Fig. 9. Decrypted Lenna picture

receiver is designed as an observer of this multimodel, and
sufficient conditions for the synchronization of the receiver
with the transmitter are established, and expressed in terms of
LMIs. Once synchronization is achieved, this can be applied
to a communication scheme, and is illustrated through the
encryption/decryption of a picture. A future work will consist
in a study of the security of the proposed synchronization
scheme.



û(t) = − 1

Tu

x̂3(t)− y2(t)

µ (β1x̂2 + γ1x̂3 + κ1,3(y − x̂1 − ζx̂2)) + (1− µ) (β2x̂2 + γ2x̂3 + κ2,3(y − x̂1 − ζx̂2))
(43)
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