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Abstract: Parameter estimation using the set-membership approach mainly con-
sists in characterising the minimal parameter set consistent with measurements,
the model and the equation error description. In this context, it is assumed that
the measurement error is bounded and must belong to a prior feasible set to be
admissible. The problem to be solved is that of finding the set of all admissible
parameter values corresponding to an admissible error. The uncertainties must
be treated by a global analysis of the problem: both the equation error and the
parameter set are considered unknown. Then, a solution is given as a domain of
time-variant parameters and a bounded set of the error. This procedure consists
in explaining the measurements performed at all time by optimising a precision
criterion based on the polytope theory.
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1. INTRODUCTION

1.1 Historical point of view

The parameter estimation using the set-membership
approach started in the eighties, where the strat-
egy initially consists in circumscribing the domain
describing model uncertainties by a simple form.
This approach was originally designed to deal
with a model linear in uncertain parameters and
characterised by a bounded error. The problem
of parameter estimation amounts to the deter-
mination of the set of constant parameter values
called the Feasible Parameter Set (F.P.S.). This
set explains all the available observations which
are consistent with the bounds of the error and the
model structure. For models linear in their param-

eters, the F.P.S. is a convex polytope which can
be approximated by ellipsoids Fogel and Huang
(1982), Pronzato et al. (1963), or orthotopes Mi-
lanese and Belforte (1982) containing it. The work
in Walter and Piet-Lahanier (1987),Walter and
Piet-Lahanier (1989) on the one hand, and Mo
and Norton (1990) on the other, used polytopic
domains. The main results are presented in the
book published by Milanese et al. (Milanese et al.
(1996)). For models nonlinear in their parameters,
various methods exist for determining an approx-
imation of the F.P.S., linear techniques have been
extended to the nonlinear case using multiple
linearisation of the model Belforte et al. (1990),
Jaulin (2001). In Reinelt et al. (2002) a robust
identification approach is proposed taking into
account unmodeled dynamics and noise affecting



data; as uncertainty is evaluated in terms of fre-
quency response, so that it can be handled by H∞

technics. In ElGhaoui and Calafiore (2000), the
authors explain that the set of possible models
is unfalsified by the observed data if that data
could actually have been produced by one member
of the model set; they formulate the arx mod-
els identification as a semidefinite programming
program. More recent results have been obtained
(Jaulin (1993)) in order to solve the problem of
nonlinear bounded-error estimation using set in-
version techniques and based on interval analysis,
there make it possible to characterise the F.P.S. by
enclosing it between internal and external unions
of boxes. The paper Jaulin (2001) deals with a
minimax parameter estimation of nonlinear para-
metric models from experimental data. For spe-
cific model structures, it is possible to obtain sets
of linear inequalities describing a domain approx-
imating the F.P.S. Norton (1987), Clement and
Gentil (1988). Despite the resemblance, the prob-
lem considered in Ploix et al. (1999) is noticeably
different in the sense that uncertain parameters
depend on time; more exactly, they are defined
by random variables with bounded realisations;
moreover, this paper only deals with MISO rep-
resentation. The proposed method is a no prob-
ability technique for determining the inaccuracy
with which each model parameter is known. Only
a class of structured and static models linear
in uncertain parameters is considered. The error
is bounded while parameters fluctuate inside a
time-invariant bounded domain represented by a
convex parallelotope. In Chisci et al. (1998), a
recursive approximation of the F.P.S. of a linear
model is proposed, the approximation being per-
formed though parallelotopes chosen according to
a maximum volume criteriion.
Thus, the paper deals with parameters estimation
in a bounded-error context for models which are
linear in the parameters; parameters could vary
with a limited range and measuremen errors are
bounded but both domains are not a priori known.
The objective of this method is to determine the
characteristics of this domain (centre, uncertainty
range). The idea is to determine the nominal value
of the parameter vector (in fact the centre of
the polytope) and some time-variant uncertain-
ties making it possible to be compatible with
the current observation. Maximal magnitudes of
these uncertainties make it possible to deduce
the characteristics of the considered domain. By
fluctuating inside this one, parameters can explain
all measurements. Moreover, in order to obtain
the most precise model, the estimation problem is
then to find the smallest domain.

1.2 Model structure

In order to present the principle of the pro-
posed method, let us consider the following MISO
model:

ym(k) = xT (k)θ(k) k = 1..N (1a)

y(k) = ym(k) + e(k) (1b)

where ym(k) is the model output, x(k) ∈ Rp is the
vector of known regressor at the instant k, y(k)
is the output measurement, whereas θ(k) ∈ Rp

defines the uncertain parameter vector. The error
e(k) is assumed to be bounded, the bounds being
supposed invariant along the time:

e(k) ∈ [−δ, δ] (2)

where the positive real δ is not necessary known.
Thus, taking (2) into account, (1b) leads to both
following inequalities:

y(k) − δ ≤ xT (k)θ(k) k = 1..N (3a)

xT (k)θ(k) ≤ y(k) + δ k = 1..N (3b)

Thus, at each instant k, the known measurement
y(k) belongs to a domain defined by (3) and the
shape of this domain depends both on the bound
δ and the particular value θ(k). In the following,
our objective is to characterise this domain at
each instant k, i.e. to estimate θ and δ. In fact,
we could find a lot of sets of parameter θ(k)
or errors δ satisfying (3) and we have to define
a selection criterion and a way to estimate the
model parameters.

1.3 The parameters characterization problem

Let us now formulate the preceding remark for any
linear system with bounded time-varying parame-
ters. The system (1) with constraint (2) generates,
at each instant k, a pair of half-spaces H(k) and
H(k) in Rp which frontiers define two parallel
hyperplanes in the parameter space:

H(k) = {θ′ ∈ D0/y(k) − δ ≤ xT (k)θ′} (4a)

H(k) = {θ′′ ∈ D0/xT (k)θ′′ ≤ y(k) + δ} (4b)

where D0 is the domain of investigation chosen
by the user (for simplicity, it is taken as an
orthotope). More generally, let us now consider
observations of the system at the time k = 1..N .
The intersection of half-spaces being convex, both
following domains are convex too:

DN = D0

N
⋂

k=1

H(k) (5a)

DN = D0

N
⋂

k=1

H(k) (5b)



and both domains can be computed using the
recurrence:

Dk = Dk−1 ∩ H(k), D0 = D0, k = 1..N

Dk = Dk−1 ∩ H(k), D0 = D0, k = 1..N

The polytope DN defines the set of values θ′ sat-
isfying all inequalities (3a). Among these values,
let us define θ′0 which leads to an upper bound
y(k) of the measurement y(k) at each time k:
y(k) = xT (k)θ′0 + δ. In the same manner, DN de-
fines the set of values θ′′ satisfying all inequalities
(3b). Thus, θ′′0 is the particular value which leads
to a lower bound y(k) of the measurement y(k) at

each instant k: y(k) = xT (k)θ′′0 − δ. Thus [θ
′

0 θ
′′

0 ]
is the set of all values of θ(k) that are compatible
with the model structure and the whole set of
measurements y(k) for k = 1..N :

y(k) − xT (k)θ0(k) ∈ [−δ, δ], θ0(k) ∈ [θ
′

0 θ
′′

0 ] (6)

In this context, the method proposed by in (Ploix
et al. (1999)) consists in finding a convex paral-
lelotope (its mathematical description is explained
thereafter) DN centred on θc and defined by:

DN = {θ(k) ∈ Rp/θ(k) = θc + M(λ)ν(k) (7)

M(0) = 0, ‖ ν(k) ‖∞≤ 1

such that it contains, at each instant k, a value
of the time-variant parameter vector θ(k) which
are fully compatible with the measurement y(k).
The matrix M(λ) characterises the shape of the
domain DN , λ being parameters for adjusting
the dimension of that domain. In this way, θ(k)
fluctuates around its central value θc inside DN for
satisfying all constraints (2), θc being considered
as the nominal value of the parameter θ(k). In
order to increase the model precision, DN must be
the smaller domain centred on θc and containing
at least one point of DN and another one of DN

(or vice versa) with respect to the form imposed
by (7).

The problem treated herein is the computation
of the central parameter value θc, the parameter
uncertainties and an appropriate characterisation
of the error domain for MIMO systems. Thus, the
characterisation procedure consists in determin-
ing the bounds of model uncertainties (λ, δ) and
the center θc which are totally compatible with
the set of available measurements. Since this step
leads to a set of possible solutions, the choice of
one of them is obtained by optimising a precision
criterion, which is related to the dimensions of the
domain described by uncertain parameters thus
estimated.

The next sections contain our contribution. This
paper is organised as follows. In the next section,
a formalisation of the problem is detailed: uncer-
tainties affecting the model are well described in

order to be familiarised with the methods treating
them; the way to construct a feasible system set
(FPS) is presented. In section 3, a precision crite-
rion is defined and computed in order to identify,
among the FPS the most precise model, i.e. those
having the minimum uncertainty. The principle of
parameter estimation while optimising the given
criterion is presented in section 4. In section 5, an
example illustrates the proposed method.

2. PROBLEM FORMULATION

We describe in subsections 2.1 and 2.2 the struc-
ture of an uncertain system and the uncertain-
ties; subsection 2.3 provides an academic example
of that description. In subsection 2.4, we define
a time-invarianty parallelotope in the parameter
space such that, at each instant k, it contains
at least one value of the time-varying parameter
θ(k) consistent with the observations. Then in
subsection 2.5, it is shown that the measurement
equation maps the parallelotope Pθ in a new
parallelotope PY in the measurement space. The
shape of PY will be completely defined in respect
to the model parameters. Further (sections 3 and
4), we aim to define the smallest parallelotope
PY guaranteed to contain all the available mea-
surements. An academic example is presented in
section 5 1 .

2.1 Modelling of an uncertain system

In order to generalise the representation given
by (1), let us consider an uncertain model of a
system with several outputs, linear in parameters
and observations, and represented by the following
structure:

Y (k) = X(k)θ(k) + E(k) k = 1..N (8)

where Y (k) ∈ Rn, X(k) ∈ Rn.p are the known
variables at the time k and θ(k) ∈ Rp defines
model parameters. The bounded vector E(k) ∈
Rn defines the error taking into account the un-
certainties due to the measuring process and to
modelling errors at the same time. This type of
model includes the particular case of MISO sys-
tems and that of MIMO systems. In the MIMO
case, according to the presence of uncertain pa-
rameters in θ(k) (see definition 7), the outputs
Y (k) can be coupled by some of the uncertain
parameters ν(k) and that can lead to some dif-
ficulties in the estimation problem.
Let us consider the variables, X(k) and Y (k) of
which the measurements are noted respectively

1 The authors are very grateful to Hicham Janati Idrissi

for his help concerning simulation of some parts of the

proposed approach.



X̃(k) and Ỹ (k). The problem involved with pa-
rameter estimation is to characterise the unknown
parameters of a model using experimental data. In
other words, the aim is to determine the param-
eter domain containing all possible values consis-
tent with data for bounds Emin and Emax, such
that:

Θ = {θ(k) ∈ Rp/Ỹ (k) ∈ X̃(k)θ(k)+[Emin Emax]}
(9)

In the case of time-invariant parameters, Milanese
and Belforte (1982) suggest approximating Θ with
an orthotope aligned with the parameter coordi-
nate axes and finding the minimal and maximal
values of θi, i = 1..p, by using linear programming.
Fogel and Huang (1982) propose an ellipsoidal
outer-bounding recursive algorithm : the ellipsoid
centre and symmetric positive-defined matrix are
considered, respectively, as the parameter central
value and its measure of uncertainty. In the case
of time varying parameters, an outer-bounding of
Θ noted Pθ is given in this paper, such that Pθ

is a parallelotope which some properties will be
described in the following paragraph.

2.2 Description of the uncertainties

Uncertainties affecting a system are classified into
two categories. On the one hand, those acting
directly on the output are additive uncertainties
E(k), and on the other hand, the uncertainties
describing the parameter θ(k) occur in a multi-
plicative way. Let us describe these two sets of
uncertainty.

Additive uncertainties are represented by the vec-
tor E(k) ∈ Rn assumed to belong to the domain
noted PE(δ):

PE(δ) = {Z(δ)u, ‖ u ‖∞≤ 1} (10)

with δ = (δ1 . . . δn)T , u = (u1 . . . un)T and Z(δ) ∈
Rn.n. When these uncertainties affect indepen-
dently each output, Z(δ) has the following struc-
ture:

Z(δ) =







δ1 . . . 0
...

. . .
...

0 . . . δn







The vector δ defines the magnitude of additive
uncertainties which are considered bounded.

Multiplicative uncertainties are represented by the
parameter vector θ(k) ∈ Rp which fluctuates in an
invariant domain denoted Pθ(λ, θc), defined by:

Pθ(λ, θc) = {θ(k) = θc+M(λ)ν(k), ‖ ν(k) ‖∞≤ 1}
(11)

The vector ν(k) is varying inside an unit hyper-
cube noted Hq (Hq = {ν ∈ Rq/ ‖ ν ‖∞≤ 1}). It
allows to represent the uncertain nature of model

parameters. These uncertainties are distributed
on the various components of the vector θ via
a full row rank matrix M(λ) ∈ Rp.q (in general
q ≥ p) depending on the vector λ = (λ1 . . . λq)

T .
In fact, the matrix M(λ) defines the volume and
the shape of Pθ(λ, θc). The vector θc indicates
both the geometrical centre of Pθ(λ, θc) and the
nominal value of the parameter vector. Equation
(11), also shows that Pθ(λ, θc) is the image of
the hypercube Hq under an affine map µθc,M(λ)

defined as:

µθc,M(λ) : Rq → Rp (12)

ν(k) 7→ θ(k) = θc + M(λ)ν(k)

The domain Pθ(λ, θc) = µθc,M(λ)(Hq) is a paral-
lelotope (called also a zonotope). It is the projec-
tion of Hq on the affine space corresponding to
the linear subspace spanned by the rows of M(λ)
shifted by θc; since Hq is an hypercube in Rq,
then Pθ(λ, θc) is a parallelotope described by some
linear inequalities which can be obtained by using
the algorithm of Fourier-Motzkin elimination ap-
pearing in the book of Ziegler Gunter (1995). In
the rest of the paper, the matrix M(λ) is supposed
having the following structure:

M(λ) = MDiag(λ) (13)

2.3 Example of bounded time-varying parameters

Let us build, at a particular instant k which is not
indicated, the parameter domain Pθ(λ, θc) for the
following system:

θ = θc + M(λ)ν (14)

M =

(

−0.1 0.3 −0.1
0.1 0.2 0.0

)

θc =

(

4
4

)

Thus p = 2 and q = 3. Since λj ≥ 0 and | νj |≤ 1
for j = 1, 2, 3, the parameters θ1 and θ2 have
to satisfy the following inequalities deduced from
(12):

θc,1 − 0.1λ1 − 0.3λ2 − 0.1λ3 ≤ θ1 ≤

θc,1 + 0.1λ1 + 0.3λ2 + 0.1λ3

θc,2 − 0.1λ1 − 0.2λ2 ≤ θ2 ≤

θc,2 + 0.1λ1 + 0.2λ2 (15)

These inequalities define an aligned orthotope cir-
cumscribed to Pθ(λ, θc) which, however, do not
take into account the dependencies between θ1

and θ2 introduced by the bounded variables ν1

and ν2 (called common variables as appearing
in (12)). In fact, it is possible to express these
dependencies by eliminating the variable ν1 (re-
spectively ν2) and thus we obtain:

θ1 + θ2 = θc,1 + θc,2 + 0.5λ2ν2 − 0.1λ3ν3 (16)

2θ1 − 3θ2 = 2θc,1 − 3θc,2 − 0.5λ1ν1 − 0.2λ3ν3



In other words, in order to eliminate the variable
ν1 (respectively ν2) in (14), the vector (θ1 θ2)

T

must be multiplied by a row vector orthogo-
nal to m1 = (−0.1 0.1)T (respectively m2 =
(0.3 0.2)T ) which is hT

1 = (1 1) (respectively
hT

2 = (2 − 3)).

In the general case where M(λ) ∈ Rp.q, the
elimination procedure of the common variables
consists in finding p− 1 vectors in Rp, orthogonal
to one column of M which contains the common
variables νi to eliminate (note that this procedure
is an equivalent version of the Fourier-Motzkin
elimination algorithm adapted to parallelotopes).
This version also makes it possible to highlight
the dependencies between the various components
of θ. Then, using h1 and h2 and taking into ac-
count the fluctuations of the uncertainties νj(j =
1, 2, 3), the equations (16) leads to the following
additional inequalities:

θc,1 + θc,2 − 0.5λ2 − 0.1λ3 ≤ hT
1 θ (17)

≤ θc,1 + θc,2 + 0.5λ2 + 0.1λ3

2θc,1 − 3θc,2 − 0.5λ1 − 0.2λ3 ≤ hT
2 θ

≤ 2θc,1 − 3θc,2 + 0.5λ1 + 0.2λ3

Let us remark that the inequalities (16), with
hT

3 = (1 0) and hT
4 = (0 1), can also be

expressed using the parameter vector θ:

θc,1 − 0.1λ1 − 0.3λ2 − 0.1λ3 ≤ hT
3 θ (18)

≤ θc,1 + 0.1λ1 + 0.3λ2 + 0.1λ3

θc,2 − 0.1λ1 − 0.2λ2 ≤ hT
4 θ ≤

θc,2 + 0.1λ1 + 0.2λ2

Thus, with (17) and (18), it is easy to construct
the domain Pθ(λ, θc) defining the possible values
for the parameter θ. The figure 1 shows a geomet-
rical interpretation of these relations for λ1 = 1,
λ2 = 1.5, λ3 = 2 and θc = (4 4)T . The strip-
band Di has been constructed using definition
(17) and (18). The rectangle with large border in-
dicates the orthotope circumscribing the domain
Pθ(λ, θc) obtained only with (18) while the grey
hexagone shows the true domain Pθ obtained with
(17) and (18).
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Fig. 1. Parallelotope defined by the intersection of
strip-bands

The shape of Pθ(λ, θc) depends on the vector
λ because the width di of the strip-band Di

is sensitive to λ. On the other hand, it is also
possible to change some di without influencing
the other distances by acting on some particular
components of λ. Hence, this leads to a change of
the shape of Pθ(λ, θc).

2.4 General description of bounded linear time-

varying system

Then, according to the previous example (see
equations 17 and 18), the general structure of the
inequality defining the domain Pθ(λ, θc) is:

hT
i θc − (| hT

i m1 | ... | hT
i mq |)λ ≤ hT

i θ(k) (19)

≤ hT
i θc + (| hT

i m1 | ... | hT
i mq |)λ

where hi is either a vector of the identity matrix
(equations (11) are directly used) or a vector
orthogonal to a row mj of M(λ) (in that case,
a combination of equations (11) is used). For
each subscript i, the preceding formula defines an
unbounded strip-band Di ⊂ Rp limited by two
parallel hyperplanes:

B+
i = {θ/hT

i θ = hT
i θc + (| hT

i m1 | ... | hT
i mq |)λ}

B−

i = {θ/hT
i θ = hT

i θc − (| hT
i m1 | ... | hT

i mq |)λ}

The distance between these two hyperplanes is
defined by (with an extended definition of the
absolute value operator | | which is applied to each
component of a vector):

di =
2

√

hT
i hi

(| hT
i m1 ... hT

i mq |)λ (20)

This distance may represent an indicator of the
shape of the domain P(λ, θc). Thus, the strip-
band Di is defined by:

Di = {θ ∈ Rp/ | hT
i (θ − θc) |≤

d

2

√

hT
i hi} (21)

and the domain Pθ(λ, θc) (18) is defined by the
intersection of all Di: Pθ(λ, θc) = ∩r

i=1Di, where
r is the number of strip-bands.

2.5 Principle of parameter estimation

The parameter estimation problem consists in
finding the values of the vectors θc, λ and δ which
define the parameters domain Pθ(λ, θc) (11) and
the measurement errors domain PE(δ) (10) (see
the section 2.2), so that the characterised model
explains all the available measurements in the
most precise way:

Ỹ (k) ∈ PY (λ, δ, θc) k = 1..N (22)

with:



PY (λ, δ, θc) = {Y (k) ∈ /Y (k) = X̃(k)θc +

X̃(k)M(λ)ν(k) + Z(δ)u(k),

‖ u(k) ‖∞≤ 1, ‖ ν(k) ‖∞≤ 1}(23)

PY (λ, δ, θc) defines all possible values of the vari-
ables Y (k) consistent with variables X(k) and the
model uncertainties description given by the vec-
tors λ and δ. So, PY (λ, δ, θc) is an interval estima-
tion of measurements Ỹ (k). Note that PY (λ, δ, θc)
is a parallelotope. Indeed, considering (23), if
Ỹ (k) ∈ PY (λ, δ, θc) then

∃w(k) ∈ Hq+n/Ỹ (k) = Ỹc(θc, k) + T (k, λ, δ)w(k)
(24)

with:

T (k, λ, δ) = (X̃(k)M(λ) Z(δ))

Ỹc(θc, k) = X̃(k)θc w(k) =

(

ν(k)
u(k)

)

(25)

Moreover, Ỹc(θc, k) is the centre of PY (λ, δ, θc)
which depends both on θc and the measure X̃(k).
Therefore, all properties studied in the previous
section for the parameter domain Pθ(λ, θc) are
also valid for the domain PY (λ, δ, θc) and thus
the way to construct Pθ(λ, θc) may be applied
to construct PY (λ, δ, θc). During the parameter
estimation step, it is assumed that measurements
are not contaminated by systematic skews or ac-
cidental errors of great magnitude. Otherwise, the
parameters θc, λ and δ are unfortunately adjusted
for explaining these anomalies, which is not the
desired effect. In this paper, the shape of the
domain (dtermined by the matrix M) is fixed
a priori; whatever the choice of this shape, all
parameters parameters that are compatible with
measurements, error bounds and model structure
will be enclosed in the domain.
If we take λi = 0, the scalars δi can be chosen as
large as we want for a given value of θc, since that
consists in increasing the volume of the domain of
uncertainties occurring in the model, until being
compatible with all measurements.
If the measurements are not affected by errors (δi

and equal to 0), then the model may be com-
patible with the measurements by increasing the
magnitude of λi.
In the other cases, it will be possible to define
a criterion representative of the precision, the
latter being related to the domain extent: indeed
increasing ”arbitrarily” the values of λi and δi in
order to explain measurements is not satisfactory.
Therefore, it is necessary to find a quantity which
is sensitive to the difference between real measure-
ments and their estimates generated by the given
characteristics of the model. Ploix et al. (1999),
defined a criterion based on interval arithmetic
(Moore (1979), Neumaier (1990)) for a model with
only one output. In this paper, a MIMO model

is studied and the aim is to characterise uncer-
tainties while minimising a criterion of precision
related to the dimension of the domain of output
estimates (this domain is PY (λ, δ, θc)). An obvious
and intuitive choice that one can make, is to con-
sider the volume of the domain. It is easy to show
that its volume is proportional to the components
of λ. Then, the solution is the smallest λ which
explains all measurements.
The application of this procedure, when PY (λ, δ, θc)
has an complicated form, leads to some calcula-
tion problems. Indeed the evaluation of the vol-
ume of a polytope leads to an expression con-
taining symbolic functions Lasserre (1983) (max,
min), which are unusable to find a solution and
make the calculation more delicate; one needs to
find a criterion which is at once representative of
the model precision and which does not lead to
computation difficulties.

3. CHOICE OF THE CRITERION

The aim of this section is to define a mathematical
criterion which provides a solution (λs, δs, θc,s)
in such a way that the domain PY (λs, δs, θc,s),
corresponding to the estimation of Y (k), contains
all the measurements Ỹ (k) while having a minimal
size. In the following, the general case where the
parameter domain Pθ(λ, θc) (18) has an undeter-
mined shape (and consequently PY (λ, δ, θc) too) is
considered. To start with, let us give the definition
of a vertex S of PY (λ, δ, θc), vertex being a good
way for caracterizing the shape and further the
volume of PY (λ, δ, θc). This section gives the some
usefull defintion of a vertex, the way to character-
ize the data parallelotope, the construction of the
precision criterion,

3.1 Definition

Let us consider a bounded polytope ∆ ⊂ Rn

defined by r linear inequalities (r > n) which can
be written as: Ay ≤ b , ∀y ∈ ∆, with A ∈ Rr.n

and b ∈ Rr. S is a vertex of ∆ if the two following
conditions hold:

AS − b contains at least n nul elements. (26a)

AS ≤ b. (26b)

Since the rows of A and the elements of b define
all the hyperplanes which constitute the faces of
∆ 2 , the first condition (26a) means that a vertex
S is the intersection of at least n hyperplanes
limiting the hull of ∆. Hence, there are n indexes
ij , 1 ≤ i1 . . . in ≤ r such that ΓS = t with
Γ = (aT

i1
. . . aT

in
)T , t = (bi1 . . . bin

)T , aT
j is the jth

2 if aT

i
is the ith row of A and bi the ith element of b, then

the ith face of ∆ is Fi = {y ∈ Rn/aT

i
y = bi and Ay ≤ b}.



row of A and bj the jth element of b. The second
condition (26b) is that the vertex S belongs to ∆:
AΓ−1t ≤ b. If this does not hold, S is called a
pseudo-vertex. Figure 2 illustrates an example of
a parallelotope, its vertices and pseudo-vertices,
centred on θc = (4 2)T and generated by the
following equation:

z(k) =

(

4
2

)

+

(

−1 2 1
1 1 0

)





ν1(k)
ν2(k)
ν3(k)



 (27)

with | νi |≤ 1, for i = 1, 2, 3. The reader will verify
that:

A =

























−1 0
1 0
0 −1
0 1
−1 −1
1 1
−1 2
1 −2

























b =

























0
8
0
4
−2
10
4
4

























(28)

For example vertices S1 and S2 obtained with
respective indexes (1, 6) and (6, 8) are respectively
defined by:

Γ1 =

(

−1 0
1 1

)

b1 =

(

0
10

)

⇒ S1 =

(

0
10

)

Γ2 =

(

1 1
1 −2

)

b2 =

(

10
4

)

⇒ S2 =

(

8
2

)

Then, it is easy to verify that: AS1 ≤ b is not
always true and AS2 ≤ b, from which its follows
that S1 is a pseudo-vertex and S2 is a vertex.
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3.2 Data parallelotope characterisation

In the previous section, the definition of a poly-
tope has been recalled; this definition may be
directly applied for representing either the param-
eter domain of an uncertain system or the domain
of the measurements of the system. Moreover, due
to the definition of the uncertainties (that are
centered), the set of the vertices and the pseudo-
vertices of the parallelotope PY (λ, δ, θc), are sym-
metrically distributed around its centre Ỹc(θc, k).

Since its structure depends on λ and δ, the shape
of this set is directly related to model uncertainties
λ and δ. Then, the distances between the centre of
PY (λ, δ, θc) and its vertices (which can be easily
computed) can also describe this shape. So, it
is then possible to consider these distances as a
criterion of the model precision.

Principle for the polytope generation

The expression which generates the domain PY (λ, δ, θc),
parametrized by λ, δ and θc, given in (23), can also
be expressed as:

Ỹ (k) ∈ PY (λ, δ, θc) ⇔ Ỹ (k) = Ỹc(θc, k) +

T (k, λ, δ)w(k)/w(k) ∈ Hq+n (29)

where the matrix T (k, λ, δ), defined in (25), has
the form:

T (k, λ, δ) = (λ1t1(k)...λqtq(k) δ1e1...δnen) (30)

with ti(k) = X̃(k)mi, for i = 1..n, and In =
(e1 . . . en) being the identity matrix in Rn×n. As
shown in the section 2.2, for a such form of the
matrix T (k, λ, δ) (which is similar to the form of
the matrix M(λ) = (λ1m1 . . . λqmq) studied in
2.2), it is possible to generate, by combination,
systematically all linear inequalities describing
PY (λ, δ, θc) as:

Ỹ (k) ∈ PY (λ, δ, θc) ⇔ R(k)Ỹ (k) ≤ d(k, λ, δ, θc)
(31)

with R(k) ∈ Rr×n (notice that r is the number
of inequalities defining the domain PY ). This is
justified by the fact that in (29), Ỹ (k) is linear in
respect to w(k) which is itself bounded; therefore
Ỹ (k) is also bounded and d(k, λ, δ, θc) is linear in
λ, θc and δ.

The determination of d(k, λ, δ, θc) and R(k) is
presented in the remainder of this section. As
mentionned before, they can be deduced from (29)
using the fact that w(k) is bounded.

Polytope generation

Now, we are interested in the computation of all
vertices of PY (λ, δ, θc) (see figure 2); according
to (31), these vertices are defined by a set of in-
equalities R(k)Ỹ (k) ≤ d(k, λ, δ, θc). As illustrated
with example of section 3.1, this procedure is
performed by the following two steps.

The first one concerns the condition (26a) and
consists in finding all matrices Γi(k) = (aT

i1
(k)..aT

in
(k))T

(i = 1..nk, nk ≤ Cn
r , 1 ≤ ij ≤ r) con-

taining n linearly independent rows of R(k)
and the corresponding vector γi(k, λ, δ, θc) =
(di1(k, λ, δ, θc) . . . din

(k, λ, δ, θc))
T . Then we have

to determine the points Si(k) which are the in-
tersections of the n considered hyperplanes. This
leads to the expression of Si(k) :



Si(k) = Γ−1
i (k)γi(k, λ, δ, θc) (32)

The second step concerns condition (26b) and
checks whether the point Si(k) is a vertex or
a pseudo-vertex of PY (λ, δ, θc); in other word,
this consists in testing whether Si(k) belongs
PY (λ, δ, θc). Using (31) and (32) :

Si(k) ∈ PY (λ, δ, θc) ⇔ (33)

R(k)Γ−1
i (k)γi(k, λ, δ, θc) ≤ d(k, λ, δ, θc)

Unfortunately, the last inequality cannot be easily
tested because it is parameterised by λ, δ and θc

which are unknown. Consequently, in the follow-
ing, all the points Si(k) checking only the first
condition (26a) are considered (thus without any
distinction between vertices and pseudo-vertices).

Vertices generation

The determination of each point Si(k) requires
initially the knowledge of its associated matrix
Γi(k) and vector di(k, λ, δ, θc) which are based
on the knowledge of R(k) and d(k, λ, δ, θc) cor-
responding to the linear inequalities describing
PY (λ, δ, θc). Then, the problem is to find R(k)
and d(k, λ, δ, θc) such that:

Ỹ (k) ∈ PY (λ, δ, θc) ⇔ R(k)Ỹ (k) ≤ d(k, λ, δ, θc)

⇔ ∃w ∈ Hq+n/Ỹ (k) = Ỹc(θc, k) + T (k, λ, δ)w(k)(34)

In the section 2.4, a method to determine R(k)
and d(k, λ, δ) has been presented for the Pθ do-
main; herein, the general case is treated for the
PY domain. Considering the relation (34), the
idea is to analyse the influence of the bounded
variable w(k) on each component of Ỹ (k). In fact,
two steps are considered, the first for analysing
separately the components of Ỹ (k), the second to
take into account the coupling of the component
of Ỹ (k) according the variable w(k).
For the first step, knowing that w(k) varies in
Hq+n (‖ w(k) ‖∞≤ 1), it is possible to calculate
the lower and upper bounds of each component of
Ỹ . Indeed, from (34), one obtains:

Ỹ (k) ≤ Ỹc(θc, k)+ | T (k, λ, δ) | Iq+n (35a)

Ỹ (k) ≥ Ỹc(θc, k)− | T (k, λ, δ) | Iq+n (35b)

where | . | denotes the absolute value operator and
Iq+n is a unity vector in Rq+n (all its elements are
equal to 1). In order to point out the role played
by the parameters δ and λ in (35), let us define:

α =

(

λ
δ

)

(36a)

D = diag(λ1 . . . λq, δ1, . . . , δn) (36b)

T̃ (k) = [X̃(k)m1 . . . X̃(k)mq In] (36c)

Then PY (λ, δ, θc) and d(k, λ, δ, θc) become respec-
tively PY (α, θc) and d(k, α, θc). Using definitions
(36), relations (35) become:

Ỹ (k) ≤ Ỹc(θc, k)+ | T̃ (k) | α (37a)

Ỹ (k) ≤ Ỹc(θc, k)− | T̃ (k) | α (37b)

which may be gathered:
(

In

−In

)

(Ỹ (k)− Ỹc(θc, k)) ≤

(

| T̃ (k) |

| T̃ (k) |

)

α (38)

The relations (38) define an aligned orthotope
in Rn centred on Ỹc(θc, k), as explained in the
example of section 2.2. However, these relations do
not take into account the dependencies between
the components of Ỹ (k) generated by the elements
of w(k) (38). Indeed, the jth component of w(k)
generally appears in the expression of several
components of the vector Ỹ (29), thus it creates a
dependency between the components of Ỹ where
it occurs.

Thus, for the second step, in order to take
into account these dependancies, the method
consists in considering (n − 1) elements sj =
{wj1(k) . . . wjn−1

(k)} of w(k) among (q +n), then
looking for a linear combination of the compo-
nents of Ỹ (Ỹi, i = 1 . . . n), noted Cj = gT

j Ỹ
which is independent of wj1 (k) . . . wjn−1

(k). Then,
gj is the vector orthogonal to the (n− 1) columns

t̃j1(k) . . . t̃jn−1
of the matrix T̃ (k) (t̃i is the ith

column of T̃ (k)). Therefore, Cj depends only on
the (q + 1) components of w(k) which do not
belong to the set sj. As these components vary
in Hq+1, then it is possible to determine a lower
and an upper bounds of Cj as :

gT
j Ỹ (k) ≤ gT

j Ỹc(θc, k)+ | gT
j T̃ (k) | α (39a)

gT
j Ỹ (k) ≥ gT

j Ỹc(θc, k)− | gT
j T̃ (k) | α (39b)

By iterating this procedure for of all sets sj =
{wj1(k) . . . wjn−1

(k)} of bounded variables to elim-

inate (j = 1..ny, ny = Cn−1
q+n ) and aggregating the

pairs of inequalities (39), one obtains:

















gT
1

...

gT
ny

−gT
1

...

−gT
ny

















(Ỹ (k) − Ỹc(θc, k)) ≤

























| gT
1 T̃ (k) |

...

| gT
ny

T̃ (k) |

| gT
1 T̃ (k) |

...

| gT
ny

T̃ (k) |

























α

(40)

Gathering inequalities (38) and (40) allows to
describe the parallelotope PY (α, θc) by:

R(k)(Ỹ (k) − Ỹc(θc, k)) ≤| R(k)T̃ (k) | α (41)

R(k) = (g1 ... gny
− g1 ...− gny

...In ...− In) (42)

Finally, the parallelotope PY (α, θc) is defined as:

Ỹ (k) ∈ PY (α, θc) ⇔ R(k)Ỹ (k) ≤ d(k, α, θc)

(43)

d(k, α, θc) = R(k)Ỹc(θc, k)+ | R(k)T̃ (k) | α



where R(k) ∈ R2(ny+n).n and d(k, α, θ) ∈
R2(ny+n).

3.3 Precision criterion

The main result of section 3.2 provides the bounds
of a domain to which the measurements Ỹ (k)
belong. This domain is characterized by several
parameters, i.e. the center θc of the parameter
domain, the shape of the domain described by
the λ parameter and the bound δ of the error.
Adjusting these parameters refers to a problem
of identification, for which we have to define a
criterion to be optimised. It is clear that the
”best” parameter vector is that which can ex-
plain all the measurements with the smaller fluc-
tuations of its parameters, these fluctuations de-
pending on λ and δ. For that purpose, we have
to compute the distances between the centre of
PY (α, θc) and its vertices without any distinc-
tions between vertices and pseudo-vertices (see
section 3.2). For that, the following consists in
finding all matrices Γi(k) = (aT

i1
(k) . . . aT

in
(k))T

(i = 1..nk, nk ≤ Cn
r ) containing n linearly inde-

pendent rows of R(k) and the corresponding vec-
tor di(k, α, θc) = (di1(k, α, θc) . . . din

(k, α, θc))
T ,

and then determine, using (41), the points Si(k)
such that:

Γi(k)(Si(k) − Ỹc(θc, k)) =| Γi(k)T̃ (k) | α

We have Si(k) = Ỹc(θc, k) + Γ−1
i (k) | Γi(k)T̃ (k) |

α and then, the distance between the point
Si(k) and the centre Ỹc(θc, k) of the parallelotope
PY (α, θc) is:

δi(k) =‖ Si(k) − Ỹc(θc, k) ‖=
√

αT Qi(k)α

with

Qi(k) =| Γi(k)T̃ (k) |T Γ−T
i (k)Γ−1

i (k) | Γi(k)T̃ (k) |
(44)

The number of the points Si(k) being equal to nk,
the quadratic mean of δi(k) at a time k is:

δ(k) = αT

(

1

nk

nk
∑

i=1

Qi(k)

)

α. (45)

Then, taking into account (45) and all the avail-
able data (k = 1..N), the final expression of the
criterion of precision may be written:

J(α) = αT

N
∑

k=1

(

1

nk

nk
∑

i=1

Qi(k)

)

α (46)

4. PROBLEM SOLVING

To summarise, the characterization leads to two
complementary points of view: firstly, the param-
eter domain must be designed in order to explain

all the available data, secondly, the parameter do-
main must be as precise as possible. The inequal-
ity R(k)Ỹ (k) ≤ d(k, α, θc) describes the domain
PY (α, θc) which contains all the estimations of
the variable Y (k) consistent with measurements
X̃(k) and Ỹ (k), the model and uncertainties de-
scription.

The principle of set-membership parameter esti-
mation is to compute parameter characteristics
while explaining all measurements. Thus, the vec-
tor α must be calculated in such a way that
Ỹ (k) ∈ PY (α, θc). So R(k)Ỹ (k) ≤ d(k, α, θc)
describes all the values of α and θc which are
consistent with the measurements at the instant
k. Then, taking into account the definition (34) of
Ỹc(θc, k), we have:

R(k)X̃(k)θc+ | R(k)T̃ (k) | α ≥ R(k)Ỹ (k) (47)

Thus, all the measurements Ỹ (k), k = 1..N ,
belong to PY (α, θc) if the values of θc and α are
such that the following inequality holds:

AN

(

α
θc

)

≥ bN (48)

where the two columns of AN respectively contain
the values of | R(k)T̃ (k) | and R(k)X̃(k), and bN

contains the values of R(k)Ỹ (k).

Then the procedure of parameter estimation is
reduced to a convex optimisation problem that
consists to minimize the criterion (46) under linear
inequality constraints (48) which define a domain
in Rp+q+n imposed by the measurements. In other
words, we have to mimimise:

J(α) = αT Qα (49a)

Q =
N
∑

k=1

1

nk

nk
∑

i=1

Qi(k) (49b)

under the constraint (48). The search for the so-
lution is based on algorithms solving convex opti-
misation problems in particular on the quadratic
programming theory widely evoked in the litera-
ture (Gill et al. (1981)).

5. EXAMPLE

In order to illustrate this procedure, let us con-
sider an example of characterisation of a system
linear in parameters and measurements, described
by the following model:

Y (k) = X(k)θ(k) (50)

with Y (k) ∈ R2, X(k) ∈ R2×2 and θ(k) ∈ R2. For
sake of simplicity, X(k), k = 1..500 are constant
and equal to :

X =

(

−1.5 0.5
−1.0 3.0

)



and only the values of Ỹ (k) change du to the
measurement noise. The domain described by the
uncertain parameters is generated by the following
equation:

θ(k) = θc + M(λ)ν(k) (51)

θc =

(

5
5

)

M = 0.1

(

−3 1 −3
−2 5 1

)

λ =
(

1 1.25 2
)T

The measurement noise hes been generated by
using an uniform pdf taking values between −1
and +1. In this example, the centre θc of the pa-
rameter domain and the matrix M are considered
known and only the size of uncertainties remains
unknown in order to observe the efficiency of the
chosen criterion for uncertainty characterization.
That allow to check more easily the membership
of measurements in its estimated domain and to
further give a more readable figure. The matrix
T̃ (k) = X̃(k)M is then constant (equal to T̃ ) and
therefore all the matrices Q(k) take the common
value:

Q =
1

nk

nk
∑

i=1

(Γ−1
i | ΓiT̃ |)T (Γ−1

i | ΓiT̃ |) (52)

corresponding to the set of the points Si(k) at the
time k. For this particular example where θc is
given (β = α) and the measurement are noise free
(α = λ), the precision criterion only depends on
the λ parameter:

J(λ) =

N
∑

k=1

λT Qλ (53)

and the problem is thus reduced to the minimisa-
tion of J(β) = βT Qβ. In this example the matrix
Q has the value:

Q =





640.2 32.4 1043
32.4 59.94 62.6
1043 62.6 1745.9



 (54)

and the corresponding constraints imposed by
measurements ANλ ≥ bN are such that:

AN =





1.48 1.02 0 1.15 .22
0.98 0.08 0.63 0 .54
3.12 1.64 0.42 1.91 0



 (55)

and bN =
(

8.9 4.10 2.67 4.80 1.79
)

.
The vector λopt which minimises J1(λ) = λT Qλ
while checking ANλ ≥ bN , is

λopt = (0.987 1.246 1.988)T

knowing that simulation was made by taking λ =
(1.00 1.25 2.00)T . When increasing the number
of measurements, a better estimation (in regard
to the true values) may be obtained. For, exam-
ple with N = 1000 observations, we get λopt =
(0.989 1.249 1.998)T . Figure 3 shows a projec-
tion on the space (Y1, Y2) of all measurements
(k = 1..N ) which belong to the considered field

representing different possible values that can take
measurements. The same data are presented on
figure 4 on which the identified domain has been
drawn. Let us remark that three measurements
belong to one of the frontiers of the three strip-
bands, i.e. each strip-band is determined in such
a way to contain all measurements and this rep-
resents the advantage in using the pre-determined
form. On Figure 5, the true and the identified
data domains have been displayed and can be
compared. Figure 6 presents the domain Pθ. At
last, when identifying together λ and θc, we obtain
:

λopt = (0.966 1.152 1.943)T θc = 4.998 5.002

6. CONCLUSION

Parameter estimation of a MIMO model has been
studied. This is a well known problem, however
when the bounds of the equation error are not
admissible, i.e. for the given measurements and
an equation-error description, the existence of
a solution (parameter set) is not guaranteed if
the parameters are supposed time invariant. A
method, consisting in explaining all the mea-
surements while optimising a criterion of preci-
sion is proposed in the most general case where
the parameters are time-varying without consid-
ering the notion of parameter variation speed.
Moreover, the uncertainties characterisation of a
MIMO model highlights dependencies between
the outputs of the model, these dependencies be-
ing created by the parameters to be estimated. A
technique taking into account these dependencies,
combined with the calculation of a criterion of pre-
cision is proposed. It provides an optimal solution
(via the precision criterion) as a parameter set,
its central value and the bounds of the equation
error. Further, it would be also interesting to
use polytopes instead of parallelotopes in order
to improve parameter estimation procedure. The
idea is to find some linear inequalities defining the
parameter set as a polytope in which the time-
varying parameter vector varying in time, explain
all measurements for a given model structure.
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Fig. 3. Data
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