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ABSTRACT: In this paper, a Fault Tolerant Control (FTC) problemdiscrete time nonlinear systems rep-
resented by Takagi-Sugeno (T-S) models is investigatee gbal is to design a fault tolerant controller taking
into account the faults affecting the overall system betrawiorder to ensure the system stability. The principal
idea is to introduce a Proportional Integral (Pl) obsereetdtect and to estimate an eventual fault occuring in
the system. Based on Lyapunov theory, two new approachesaresed in term of Linear Matrix Inequalities
(LMI) leading to synthesize an FTC laws ensuring the tragkiatween the reference model states and the faulty
system ones. These results concern the case of time vautg modeled by exponential function and first
order plynomial. To illustate the effectiveness of the ®gx approaches, an academic example is considered

1 INTRODUCTION In the case of linear descriptor systems described by
differential and algebraic equations, an approach has
Generally speaking, there exists two strategies fobeen proposed by (Marx & Georges 2004).
faulty systems control: the passive strategy and thén the last decades, Takagi-Sugeno nonlinear systems
active one. In the case of the passive strategy, als@akagi & Sugeno 1985) have attracted a great
called robust control, the controller design problemdeal attention, since they allow extending the linear
has been widely studied in the literature and many apsystems theory to nonlinear ones (Tanaka & Wang
proaches have been proposed for linear and nonline®001, Feng 2006). Thus, many problems dealing with
systems. The objective is to ensure simultaneousligtability, stabilization, observer design and diagnosis
the stability of the system and the insensitivity to cer-have been widely studied. Nevertheless, the FTC
tain faults. Nevertheless, robust control methodologyproblem based on this kind of model is not largely
concerns a specific class of faults characterized by tieated. Some works have been introduced in recent
bounded norm. The active control or Fault Tolerantyears, for instance, trajectory tracking FTC design
Control (FTC) has been introduced to overcome theipproach for Takagi-Sugeno systems subject to
passive control drawbacks. Indeed, the FTC methoactuator faults has been developed by (Ichalal 2009).
allows improving the system performances for a largeNevertheless, this approach may be conservative and
class of faults. The principal idea of this strategy issome results should be improved by obtaining more
to reconfigure the control law according to the faultrelaxed conditions. More recently, new less conser-
detection and estimation performed by an observer tgative approach has been developed by (Bouarar
allow the faulty system to accomplish its mission. et al. 2011). Note that these approaches concern the
Since the introduction of FTC techniques, severallakagi-Sugeno systems with measurable premise
works have been developed. In linear system framevariables (i.e. premise variables depending on the
works, a FTC approach based on pseudo-inverste input or the output). In the other hand, when the
technique has been proposed by (Gao & Antsaklipremise variables are unmeasurable (depend on the
1992). The main idea of this technique is to minimisestates of the system), the FTC design problem has
a Frobenius norm leading to determine the controllebeen studied by (Ichalal et al. 2010a, Ichalal et al.
gains. Thereafter, an extension of this approach had010b).
been proposed by (Staroswiecki 2005). In (Liu & In the above studies, the considered faults affecting
Patton 1998), the FTC gains have been determinethe system behavior are modeled by a constant
such that the eigenvalues of the controlled faultyfunction. However, in practice, the faults are often
system and those of a reference model are identicalime variant.



Based on Lyapunov theory, two approaches dealingvherer represent the number of local linear submod-
with FTC design for nonlinear systems representeels, & (k) = ( é1(k) --- & (k) ) represent the vec-
by discrete Takagi-Sugeno systems with measurabl®r of premise variables which can be measurable (in-
premise variables are proposed. The objective iputu(t) or/and output of the systegit) ) or unmea-

to ensure the tracking between a healthy referenceurable (the system stat@)). A € R™", B; ¢ R™™M,
nonlinear model and the eventually faulty nonlinearC; ¢ RP*" and D; € RP*™ are the matrices of thi!
system. The proposed approaches are formulated imear submodel representing the plant behavior in the
terms of Linear Matrix Inequalities (LMI) and they |ocal region.

respectively concern the cases when fault dynamic¥he weighting functions satisfy the convex sum prop-
is modelled by exponential function and first ordererty, i.e:

polynomial. Moreover, the developed approaches
does not require knowledge of the considered fault( 0 < (E(k) <1

varying functions coefficients. To illustrate the r (5)
applicability and the effectiveness of the proposed izlm (€(k)=1

approaches, an academic example is considered. B

To simplify the mathematical expressions and to im-The T-S model defined in (4) is a nonlinear system

notations: linear submodels are nonlinear.
M= Hi(&(K)ri, The Takagi-Sugeno model shown its interest both in
i=1 Cor theoretical and practice fields. Indeed, the T-S model
gy = 3 5 Mi(EK) Y (E(K)Mj, in a bloc canrepresent exactly a nonlinear system in operating
i=1j=1 region of the state space. In other hand, thanks to con-

matrix, an asterisk« denotes the transposed ele-vex sum property of the weighting functions (5), it is

ment in the symetric position, in the mathematicalpossible to extend the linear control theory to the non-
expressionsy (k) is equivalent tox (k+1) and linear case.

diag( A1 --- /A\r ) represent a block diagonal

matrix. The following lemmas are needed to provide

LMI conditions. 3 PROBLEM STATEMENT

) Let us consider (4) as a reference model correspond-
Lemma 1 (Zhou & Khargonekar 1988): Con- ing to the healthy system. Let us also consider the
sider two real matricesp and = with appropriate faulty T-S model given by:

_dimens!ons, for any positive scalarthe following r
inequality holds: Xt (Ky) = _zlui (& (k) (At (k) + Biug (k) + Gi f (k)

r (6)
=T +=To< oo+ 7 1=T=T (1) yr (k) = 3 i (& (k) (Cixr () +Diur (k) + Wi (K))

#eTnT@ 2 (Booyd ef( aI'T:rL199f4?I: Consider the matrices | pqre G, ¢ R4 and W € RP* describe the dis-
i =T;,i€1{0,....k}. The following expressions are tribution matrices of the faults acting on the system.

equivalent: xi (k) € R", y¢(k) € RP, us(k) e R™Mand f(k) € RY
T T— : represent respectively the faulty state, the faulty out-
¥, (' To{ 20and (' Ti{ 20 € {1,....k}  (2) put, the FTC law and the faults affecting the T-S
K model.

Jp1>0,...,p>0such that’, To— ZpiTi >0 (3) To ensure the tracking between the faulty T-S model
i= (6) and the healthy one (4), consider the following

FTC law:

ur (k) = u (k) + uc (k) (7)

A Takagi-Sugeno (T-S) model allow the representa- . X

tion of a nonlinear system behavior by the interpola-where  uc(k) = _zlui (& (K) (Ki (x(K) =% (k) = f(K)) ,
tion of a set of linear submodels (Takagi and Sugeng . _ mxn - , .
1985), (Tanaka and Wang 2001). Each submodel cor%é'tge Ié.eteeIrRmineg-re the state feedback gain matrices
tributes to the global behavior of the nonlinear system

through a weighting functiog (k). The T-S structure Note that this control law is an extension of a
is given by: classical linear state feedback law. It is obtained by

an interpolation using the same weighting functions
as the model, and use an estimate of the fault.

2 TAKAGI-SUGENO MODEL

r
X(ki)=3S i (& (K) (AX(K)+Bju(k
(k) igl (& (k) (Ax (i +Biu (k) (4) The considered FTC law, me_thodolog1Y is based
! on the scheme described in Figure 1. The conce

y(k) = 3 ki (& (k) (Gx(k)+Diu(k)) tion of the FTC controller needs the knowledge of



F(K) Let us consider that; = ag; + Aaj, with agj andAa;
representing respectively the nominal and the uncer-

uk) 4 ur(k) Svst ye(k) tain parts of the parametet. This structure leads
Ty ystem - defining a set of exponential functions describing the
faults affecting the T-S model behavior.
Let us also define:
Observer a=diag( €4 --- €a) (11)
R Rt (K)
v f ag=diag( €01 ... €%a) (12)
™ Controller Na=diag( e* ... &%) (13)
+ The uncertain part can be bounded as:
(ha)"T Aa < A (14)
Reference
model X(K) whereA € R9*9is a known diagonal positive definite
Figure 1: Tracking fault tolerant controller design scheme matrix.

both faults and state estimates. Thus, the followind-€t us define the state tracking, the state and
Proportional Integral (PI) observer is considered.  the fault estimation errors given respectively as:

£0(6) = 5 (& (K) (A% () + Biu (K) + ¢ (K)) ep (k) = x(k) —xt (k)
) i ) ) es (k) —xf (k) — ¢ (k) (15)
w&%=%yNEWD®MMM+DmM@+WfWD (8) eq (k) = f (k) — f (k)

(ki) = 3 (& (kD HE (yr (k) =91 (k) + T (k) The dynamics okp(k), es(k) andeg(k) are respec-

tively given by:

. _ f 1 o
where 91(K) = Gif (k) + HE(Vi (=91 (), 0 et - pwes® —Bues(+0u1 (0 (16)

H! € R™P andH? € R9P are gain matrices of the

Pl observer to be determined. where My, = Ay —ByKy, Qu =By — Gy and
_ Xup = BuKy.
Along of this work, we assume that: ) ” ) a7
&s =Mypes(k) +Ouuey 17
e The system states and the faults are observable HH HH

e The nonlinear weighting functions depend only — _H2C,ec(K)+ 3 K+af(kl (18
on measurable premise variables (@) and/or & (k+) HCuEs () Zyuea (k) +arf (k) (18)

u(t)). whereZ,;, =1 —HZW, anda = a—1. The combi-
nation of (16), (17) and (18) leads to the following
4 FTC DESIGN LMI CONDITIONS expression:
In this work, two kind of time varying faults are con- e(k}) = Aype(k) +2Z,f (k) (19)
sidered. The first one concerns the faults modeled by
exponential function. The second one concerns the Qy ep (k)
case of faults modeled by a first order polynomial. Where Z, = ( 0 ),e(k) = ( es((t)) ) and
a €d

4.1 Case of faults approximated by an exponential — My —Xun —Bu
function Aup = up Ouu
0 —HiCy Zuu

Let us consider that the system behavior is affected by

several faults in the form: . :
Remark 1: Along this work, we consider that

f, (k) = e¥k+h (9) the matricesB; and G; of the system (6) and the
observer (8), have the same dimensions.

whereag;,b; € R, fori =1,...,q. The variation of the

faults is given by: The conditions leading to FTC design controller
are proposed in the following theorem 1.

fi(ke) = € fi (K) (10)



Theorem 1. The state tracking erroey(k), the
state and fault estimation errom(k) and ey(k)

converge assymptotically to zero and thé-gain
from the faults to the errorgy(k), es(k) andey(K) is

bounded by/y, if there exists matriceX¥; = XlT >0,

Xo =XJ >0,X3=XJ >0,Kj, Lt andL? and positive
scalarsy and 1 such that the following LMI, for
i=212,...rhold

Yij <0 (20)

The matrixYj; is defined in the next page.

wherep!=(0 0 0 0 X; 0 0),

@, =(-ByKy 0 0 0 0 0 0),

@, =(0 —ByKy, 0 0 0 0 0),

*=(0 0 0 0 0 0 Xza ),

=(0 0 0 Aa 0 0O 0)andW¥W,, is givenin
the next page

To provide LMI conditions, consider the follow-
ing bijective change of variableg:= y?, L}, = XoH}
andL? = XsHZ.

By applying lemma 1, (27) can be rewritten as:

Proof. To study the asymptotic convergence to zero

.
of the above errorey(k), es(k) andegy(k), we consider W, +1; ((pl)T ot ((pﬁu) O+ T2 ((pl)T 0

the following Lyapunov function candidate:

V (k) = €T (k) Xe(k) (21)
with
X=XT>0 (22)

Let us consider the following#, constraint minimiz-
ing the fault effect orep(k), es(k) andey(k).

N N
T & (KQel) <y Y (KT (K (23)
k=0 k=0

whereN denotes the final step timg,represents the
attenuation level an@ is a known symmetric positive
definite weighting matrix.

L+

5

' (‘pﬁu>T Gt T (‘P4)T o1t ((p )T ¢><0

(28)
Consideringr;=1,=1 and applying the Schur comple-

ment on (28), thus the sufficient LMI conditions pro-
posed in theorem 1 hold. O

4.2 Case of faults approximated by a first order
polynomial

Let us consider the faults occuring in the system are
modeled by a first order polynomial as:

fi (k) = ajk+b; (29)

The error dynamics expressed in (19) is stable under

the %, constraint (23) if:

(% ) (F)eche 0

To provide easly LMI stability conditions for (19),

we choose the matrix structukeas:
X=diag( X1 X2 X3) (25)

According to (22), matriceX;, Xo and X3 are sym-
metric positive definite matrices.

By applying the Schur complement on (24), one can

obtain:
Q—X O *
0 —yI1 x |<oO (26)
XAy XZy —X

wherea;,bj € R, fori=1,...,q.
In the same way as the first case, we deéing; and
Ag; as follows:

a=diag( a1 aq )
ap = diag( a1 aq ) (30)
Aa=diag( Aag Nag )

Let us consider that the uncertain part is bounded as:

(ha)" Aa< b (31)
whered € R99is a known diagonal positive definite
matrix.

In this case, the fault estimation dynamics is given by:

eq (ki) = —Hﬁcues(k)+zuued(k)+a (32)

Considering the matrices defined in (19), the matheThe combination of (16), (17) and (32) leads to:

matical developement of (26) leads to:

T T T
Wup + (%) %u*("ﬁu) o'+ (9) @i+

(cpﬁu)T o'+ (@) ¢+ (<p5)T ¢ <0 (27)

e(ky) =Ayue(k) +E,f (k) +P (33)

where e(k) and A, are defined in equation (19),

Qu 0
E:< 0 )andP:<0>.
0 a



Q1 — X% 0 0 0 x 0 0 0 0 % O
0 Q— X 0 0 0 = * 0 0 0 =«
0 0 Q3 — X3 0 * * * 0 0O 0 O
0 0 0 TN —yi * 0 * 0 * 0O O
X1A 0 —X1B; X1(Bi—Gij) =X O 0 0 0 0O O
Yij = 0 XA -LIG XG—Liw 0 0 X% O 0 0O 0 O
0 LG X3 — LAWY —X3 0 0 —X3 =« 0 0 O
0 0 0 0 0 0 aXs -t 0 0 O
0 0 0 0 X1 O 0 0O -2 0 0
BiK;| 0 0 0 0 0 0 0 0 -1 0
0 BiK; 0 0 0 O 0 0 0 0 —I
Q1— X1 0 0 0 « 0 0
0 Q22— X2 0 0 0 * *
0 0 Q3 —X3 0 * * *
0 0 0 —A x 0
Yuu =1 xA, 0 —X1By, X;(By—Gy) —X2 0 0
0 Xo(Au—HiC) X (Gu—Hiw,) 0 0 —X O
0 “XHECH X (1 - HAwW,) —Xa 0 0 —X
The main provided results are given in the fol- wheree is a knows small positive scalar.
lowing theorem 2. The mathematical developpement of (36) leads to:

Theorem 2. The state tracking erroep(k), the e’ (k) T | 0 O e(k)
state and fault estimation erroms(k) and ey(k) fT (k) (O 0 0 ) ( f (K) ) >0 (37)
converge assymptotically to zero and t#-gain | 0 0 —¢l |

from the faults to the errorgy(k), es(k) andey(Kk) is

bounded by/y, if there exists matrice¥; = X] >0, By applying S-procedure lemma 2 on (35) and (37),
Xp =XJ >0,X3=X; >0,K;, LI andL? and positive ~one can obtain:

scalarsy, T and p such that the following LMI are

verified, fori=1,2,...,r

pl+Q—-X 0 0
D <0 (34) 0 -yl 0 -
0 0 —pel

where®j; is given in the next page, with:
OLL=pl+ Q1 —X1, P*2=pl+Qr— X
33 =pl +Q3— Xz, D> =—pel+1716I
O =X (B -G), 7 =XA-LiG

AT

AU_[H _

E X( Ay E P)<O0 (38)
®)® = %G — LIW and @° = X3 — L2

PT
By applying Schur complement on (38), this latter be-

Proof. Considering (21), (22), (23) and (33), then fol- comes
lowing the same steps of the theorem 1 from (21) to

(26), one can obtain: pl+§—x s;ZI * *
0 0 —;el . | <0 39
Al XAuu +Q—X x * XAy  XE  XP =X
TXA, ETXE — 2l < _
|I:E>T§((§““ PTXEV2 PT;P Following the same path as for the proof of theorem
e

1 from (27) to the end, thus the sufficient LMI condi-

(35) tions proposed in theorem 2 hold. O

To transform (35) to a feasable problem, we consideb SIMULATION EXAMPLE

the following inequality ensuring the asymptotic con-

vergence of the error dynamics to a ball of radsus  Let us consider the nonlinear T-S model (6) described
by the following matrices and weighting nonlinear

le(k)[|3 > el (36) functions:



0O 0O = 0 0 0 = 0 ©
0 @22 0 0 © 0 * % 0 0 =« 0
0 o 3% 0o 0 %« % x« 0O 0 O O
0 0 0O -y 0 = 0 0O 0 0 0 ©
0 0 0 0 5 0 0 %« 0 0 0 0
. XA 0 —XB ®* 0 -x 0 0 x 0 0 O
"1 0o o o 0 o0 0 -Xx 0 0 0 0 0
0 -G @f° 0 Xa 0 0 -X 0 0 0 =
0 0 0 O 0 X 0 0 -2 0 0 ©
BK; O 0 O 0O O 0 0O 0 -1 0 ©
0 BK; 0 o 0O O O 0O 0 O0-1 ©
0 0 0 0 O 0O 0 X3 0 0 0 —t74
-05 01 0 02
A= ( 1 -1 ) Ao =\ _o4s —07 ) o
0.4 0.6
Bl:(o.s)’B2:(o.4>’ M ‘
0.2 0.5 ‘
Glz(o4>,62:(05>,C1:(02 0), OW
C2 — ( 04 01 )! W]_ - _03, VVZ - —04, the iﬁ—0.02
nominal input signali(k) = 0.5cogsin(0.1k)0.1k). . S

The activation nonlinear functions are depend-Figure 3: State estimation errors
ing on the known nominal inpui(k), they are given
by: p1 (u(k)) = 1—tanh(0.5—u(k)) and

H2 (u(k)) = 1= g (u(k)).

Let us consider that the fault affecting the sys-

tem at 9< k < 17 is given by:

f (k) _ te]k—lO

03

T T T T T
—
0.251 — — — Estimated f(k)

0.2

0.151
0.1
0.051

(40) \ A

oo -~

-0.05

L L L L L
0 5 10 15 20 25 30

The observer and the controller are designed for k

ap = €*! leading toAag = €*%L. For simulation, the  gigyre 4:

parameteA defined in (14) is chosen equal t@31

Remark 2: To show the robustness of the syn- e N
thesized FTC controller and observer, the parameter TN
value of the fault acting in the system are augmented. * \ "\
indeed, the following results given by Figures 2 to 6 TN

are obtained forf (k) = e®5—10,

‘ — Healthy system states — — — Faulty system states‘

OAZ?\M
i

/ / /
-0.2 \/ \J V

WA\U /’_\\ ~ //\\ /,/\/
\ \ \ /

AUAY.

\ L

L L L L
5 10 15 20

Figure 2. Reference model states vs. faulty system ones wit

FTC

25

30

0.6

-0.2 \

-0.4F \/
\

-0.6

Figure 5: Nominal and FTC control input signals
6 CONCLUSION

In this paper, a new approach dealing with fault tol-
erant controller design problem for nonlinear systems
represented by Takagi-Sugeno model has been inves-
tigated. The proposed results, obtained by using Lya-
rE)unov method, are formulated in terms of LMI which
can be easily solved by using Matlab software. The
effectiveness of the provided trajectory tracking ap-



U0 and p(u(k)

0 é lb 15 2‘0 2‘5 30
Figure 6: Weighting nonlinear functions

proaches has been illustrated by considering a numer-
ical example. Indeed, the fault occurring in the system
has been taken into account by the synthesized FTC
controller allowing to ensure the tracking between the
healthy system states and the faulty ones.
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