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Abstract—This paper deals with the state estimation of
nonlinear systems. The systems under study are characterized
by two-time scale models. The state estimation is performed by
designing a proportional integral observer (PIO) with unknown
inputs. In order to design such an observer, the nonlinear
model is transformed into an equivalent multiple model form
and the fast dynamics are considered as unknown inputs. An
application to an ASM1 model of Wastewater Treatment Plants
(WWTP) is considered and the obtained numerical results show
the performances of the proposed approach.
Index Terms—multiple modeling, singularly perturbed sys-

tems, unmeasurable premise variables, LMI, L2 approach

I. INTRODUCTION
The application of linear methods to nonlinear systems is a

difficult problem when talking about the observer/controller
synthesis. The multiple model (MM) [12] -also called in
the literature fuzzy Takagi-Sugeno model [17], or polytopic
linear model [1]- has received a special attention in the last
two decades, in order to overcome this difficulty. The MM
structure is mainly based on the idea of complexity reduc-
tion of nonlinear systems, by constructing linear submodels
aggregated by weighting functions [17]. Several techniques
were developed in order to obtain such a structure from a
general representation of nonlinear system. In this paper, the
MM is obtained by applying a method proposed in [13] to
represent nonlinear system into an equivalent MM. Only the
general steps of this technique are given here.
In many practical situations, systems can have multiple
time scale dynamics. In order to deal with such systems,
the singularly perturbed theory is often used to highlight
the decomposition of the system into various time scales.
Nevertheless, it is not obvious to model a process under the
standard singularly perturbed form especially if the system
is nonlinear.
The first difficult point of this modeling technique is the
separation of the slow and fast dynamics. Different methods
are proposed in the literature [16], [15], [6]; the most
frequently used is based on the evaluation of the jacobian
eigenvalues of the linearized system and will be used here.
After the separation of the multiple-time scale dynamics,
the standard singularly perturbed form is obtained. In the
limit case, when the singularly perturbed parameter tends
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towards zero, this form has a dynamic part, represented by
an ordinary differential equation (ODE), and a static part
expressed by an algebraic equation. Thus, a second difficult
point is to solve the algebraic system in order to express the
fast variables and replace them into the ODE corresponding
to the slow dynamics. The method mainly used to deal with
this problem is based on a coordinate change [16], [18]
requiring a linear transformation in order to eliminate the
fast dynamic components. In order to be able to apply this
method, the nonlinear system has to respect some structural
constraints, which are not always satisfied.
By considering the standard singularly perturbed system, an
equivalent MM can be written. The classical MM form is
slightly modified in order to separate the slow and the fast
dynamics of the system.
The main contribution of this paper is to estimate the state
variables of a two-time scale nonlinear system by avoiding
the resolution of the algebraic -static- equation correspond-
ing to fast variables. This is possible by constructing an
augmented output vector using the static equation and by
considering the fast state variables as unknown inputs. Thus,
a proportional integral observer (PIO) with unknown inputs
can be designed by using the MM singularly perturbed form.
Due to the limited number of sensors, this approach turns out
to be interesting because of the choice of the fast variables
as unknown inputs. This observer enables to reconstruct
simultaneously the slow and fast variables and gives better
results than a classic unknown input observer concerning the
noise reconstruction [8].
In [11] is presented a state estimation method for singu-
lar MM affected by unknown inputs and with measurable
decision variables. As in [11], most of the existing works,
dedicated to MM in general and to observer design based
on MM in particular [4], [9], are with measurable decision
variables (inputs/outputs). But, in many practical situations,
these premise variables depend on the states, thus they are
not accessible. Recently, few works [2], [8], [19] are devoted
to the case of unmeasurable decision variables. This last case
will be treated here. The convergence conditions of the state
and unknown input estimation error are expressed through
LMIs (Linear Matrix Inequalities) by using the Lyapunov
method and the L2 approach.
In the second part of the paper, the MM structure and the
singularly perturbed theory are used in order to reconstruct
the states of an ASM1 (Activate Sludge Model 1)[14]
describing a biological degradation process characterized by
two-time scale dynamics. The proportional integral observer
proposed previously is applied to this model for this purpose.
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In section II are given the essential tools for modeling
nonlinear systems, in section III the observer design is
presented. Section IV proposes the application to the ASM1,
known to be a realistic model of WWTP. The paper ends with
some conclusions and future works.

II. MODELING MAIN TOOLS
A. Multiple model representation
Generally, a dynamic nonlinear system can be described

by the following ordinary differential equations:

ẋ(t) = f (x(t),u(t))
y(t) = g(x(t),u(t)) (1)

where x ∈ R
n is the state vector, u ∈ R

m is the input vector,
y ∈ R

l the output vector.
The multiple model enables to represent a nonlinear dynamic
system into a convex combination of r linear submodels:

ẋ(t) =
r
∑
i=1

μi(x,u) [Aix(t)+Biu(t)]

y(t) =
r
∑
i=1

μi(x,u) [Cix(t)+Diu(t)]
(2)

where Ai, Bi, Ci and Di are constant matrices of suitable
dimensions. The functions μi(x,u) represent the weights of
the submodels {Ai,Bi,Ci,Di} in the global model and they
have the following properties:

r

∑
i=1

μi(x,u) = 1 and μi(x,u) ≥ 0,∀(x,u) ∈ R
n×R

m (3)

In order to obtain the MM form, a method giving an
equivalent rewriting of the nonlinear system (1) is used [13].
Firstly, by extracting the state in the input vectors contained
in the functions f and g, the system (1) is transformed into
a quasi-Linear Parameter Varying (quasi-LPV) form:

ẋ(t) = A(x(t),u(t))x(t)+B(x(t),u(t))u(t)
y(t) =C(x(t),u(t))x(t)+D(x(t),u(t))u(t) (4)

Secondly, some nonlinear entries of the matrices A, B, C
and D are considered as ”premise variables” and denoted
z j(x,u)( j = 1, ...,q). Several choices of these premise vari-
ables are possible due to the existence of different equivalent
quasi-LPV forms (further details on the selection procedure
can be found in [13]).
Thirdly, a convex polytopic transformation is performed for
all premise variables ( j = 1, ...,q), as follows:

z j(x,u) = Fj,1(z j(x,u))z j,1+Fj,2(z j(x,u))z j,2 (5)

where

z j,1 = max
x,u

{
z j(x,u)

}
(6a)

z j,2 = min
x,u

{
z j(x,u)

}
(6b)

and where

Fj,1(z j(x,u)) =
z j(x,u)− z j,2
z j,1− z j,2

(7a)

Fj,2(z j(x,u)) =
z j,1− z j(x,u)
z j,1− z j,2

(7b)

Remark 1: For q decision variables z j, r = 2q submodels
will be obtained. By multiplying the functions Fj,σ ji

, the
weighting functions are obtained:

μi(x,u) =
q

∏
j=1
Fj,σ ji

(z j(x,u)), i= 1, · · · ,r (8)

where the indexes σ j
i (i= 1, ...,2q and j = 1, ...,q), equal to

1 or 2, indicate which partition of the jth decision variable
(Fj,1 or Fj,2) is involved in the ith submodel.
In definition (2), the constant matrices Ai, Bi, Ci and Di
(i= 1, ...,2q) are obtained by replacing the premise variables
z j(x,u) involved in the matrices A(x,u), B(x,u), C(x,u)
and D(x,u) with the scalars defined in (6). Here, only the
matrices Ai are given, the others being obtained similarly:

Ai = A(z1,σ1i , ...,zq,σqi ), i= 1, · · · ,r (9)

B. Singularly perturbed systems
Considering equation (1), the standard form of a singularly

perturbed system with two-time scales can be expressed by
the following system:

ε ẋ f (t) = f f (xs(t),x f (t),u(t),ε) (10a)
ẋs(t) = fs(xs(t),x f (t),u(t),ε) (10b)

where xs ∈ R
ns and x f ∈ R

n f are respectively the slow
and fast state variables, f f (x,u,ε) ∈ R

n f , fs(x,u,ε) ∈ R
ns ,

n= ns+n f and ε is a small and positive parameter, known
as singular perturbed parameter.
In order to obtain the standard singularly perturbed form,
the identification and separation of slow and fast dynamics
is the keypoint. In this article, this is realized by using
the homotopy method for the linearized system [18]. This
method enables to link each state variable with an eigenvalue.
By comparing all the real parts of the eigenvalues, the biggest
(resp. smallest) ones will be associated with the slowest
(resp. fastest) dynamics. The comparison has to be performed
when linearizing the system around several operating points
in order to test if this classification remains the same.
Remark 2. Note that the linearized system is only used
to identify the slow and fast dynamics, but not to design
the observer in order to estimate the state variables. An
equivalent MM representation will be used for this purpose.
In the limit case ε → 0, the degree of the system (10)
degenerates from n to ns, and the system becomes:

0 = f f (xs(t),x f (t),u(t),0) (11a)
ẋs(t) = fs(xs(t),x f (t),u(t),0) (11b)

By solving the algebraic equations (11a), the solution x f (t) =
ϕ(xs(t),u(t)) is obtained and used in (11b) to derive the
reduced system:

x f (t) = ϕ(xs(t),u(t)) (12a)
ẋs(t) = fs(xs(t),x f (t),u(t)) (12b)

Remark 3. The fast variables cannot always be explicitly
expressed from (11a). The most popular method used to deal
with this problem is based on a change of coordinates [16],
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[18], requiring a linear transformation in order to eliminate
the fast dynamics. So, this method can only be applied to
systems for which this linear transformation can be found.
By taking into account the previous remark, no change of co-
ordinates will be considered; the reduced standard singularly
perturbed form (11) is taken into account, supposing that the
fast variables cannot be obtained by solving the algebraic
equation (11a). Thus, this last equation is used to construct
an augmented output vector, as it will be described in detail
in the following section, where the design of the proportional
integral observer is presented.

III. STATE ESTIMATION
A. Multiple model with slow and fast dynamics
Let us consider the reduced system (11) under an equiv-

alent QLPV form

0= Af f (x,u)x f (t)+Af s(x,u)xs(t)+Bf (x,u)u(t) (13)
ẋs(t) = As f (x,u)x f (t)+Ass(x,u)xs(t)+Bs(x,u)u(t) (14)

It is here assumed that in the QLPV form, the matrix function
Bf does not depend on x(t), i.e. Bf (u(t)). The multiple model
form that is obtained using the methodology described in
[13] slightly modified in order to separate the slow and fast
variables:

0=
r

∑
i=1

μi(x,u)
[
Aif f x f (t)+Aif sxs(t)

]
+

r̃

∑
i=1

μ̃i(u)Bif u(t)

ẋs(t) =
r

∑
i=1

μi(x,u)
[
Ais f x f (t)+Aissxs(t)+Bisu(t)

]
y(t) =Cf x f (t)+Cs xs(t) (15)

where r̃ ≤ r, μi(x,u) and μ̃i(u) satisfy (3), the matrices Aif f ,
Aif s, A

i
s f , A

i
ss, Bif , B

i
s correspond to slow and fast dynamics

identified in the matrices Ai and Bi:

Ai =
[
Aif f Aif s
Ais f Aiss

]
Bi =

[
Bif
Bis

]
(16)

The measurement equation in (15) can be considered as
linear and time invariant since, in most practical situations,
the sensors do not change according to the operating point.
In the first equation of (15) the control term is moved from
the right side of the equality to the left side to obtain:

ẋs(t) =
r

∑
i=1

μi(x,u)
[
Aissxs(t)+Bisu(t)+Ais f x f (t)

]
(17a)

ya(t) =
r̃

∑
i=1

μ̃i(u)
[
Cixs(t)+Gix f (t)

]
(17b)

where ya(t) is a measurable augmented output vector defined
by:

ya(t) =

⎡
⎣ −

r̃
∑
i=1

μ̃i(u)Bif u(t)

y(t)

⎤
⎦ (18)

where the matrices Ci and Gi are given by:

Ci =

[
Aif s
CS

]
Gi =

[
Aif f
Cf

]
(19)

As it can be seen, the new output vector ya is no more
linear in the state variable, as the initial output vector y,
but becomes nonlinear.
The system (17) can be considered as a MM affected by
the unknown inputs x f . Let us note the unknown input
d(t) = x f (t), with the following property:

ḋ(t) = 0 (20)

The assumption of a constant d(t) is classically needed in
the framework of PIO design for the theoretical proof of the
convergence of the state estimation error [10]. Nevertheless
it is well known that the only practical need is to have a
low frequency signal. One should not be confused by this
assumption made an a signal called fast. The vocable fast
refers to the dynamics of fs. Due to this, x f (t) is -for ε → 0-
a static function of xs(t) which obeys to a slow dynamic
process. As a consequence, when ε → 0 (i.e. when neglecting
the dynamic behavior of the fast part of the system), x f (t)
is also a slow signal.
Let us construct the augmented state vector xTa =

[
xTs dT

]
and denote:

Ãi =
[
Aiss Ais f
0 0

]
, B̃i =

[
Bis
0

]
, C̃i =

[
Ci Gi

]
Using the previous notations and the property of unknown
inputs (20), the system (17) is equivalent to a system under
an augmented form, as following:

ẋa(t) =
r

∑
i=1

μi(xa(t),u(t))
[
Ãi xa(t)+ B̃i u(t)

]
(21a)

ya(t) =
r

∑
i=1

μi(xa(t),u(t))C̃i xa(t) (21b)

Since xa is unknown, the following form with μi(x̂a,u) is
used:

ẋa(t) =
r

∑
i=1

μi(x̂a,u)
[
Ãi xa(t)+ B̃i u(t)

]
+Γω(t) (22a)

ya(t) =
r̃

∑
i=1

μ̃i(u)C̃i xa(t) (22b)

where Γ = [I 0]T and the term ω(t) plays the role of a
bounded disturbance of the form:

ω(t) =
r

∑
i=1

[μi(xa,u)−μi(x̂a,u)]
[
Ãi xa(t)+ B̃i u(t)

]
(23)

B. Proportional Integral Observer
The following proportional integral observer is proposed:

˙̂xa(t) =
r

∑
i=1

μi(x̂a,u)
[
Ãix̂a(t)+ B̃iu(t)+Ki(ya(t)− ŷa(t))

]
(24a)

ŷa(t) =
r̃

∑
i=1

μ̃i(u)C̃ixa(t) (24b)

The state estimation error is given by

ea(t) = xa(t)− x̂a(t) (25)
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Taking into account (22a) and (24) the augmented state
estimation error is governed by:

ėa(t) =
r

∑
i=1

r̃

∑
j=1

μi(x̂a,u)μ̃ j(u)(Ãi−KiC̃j)ea(t)+Γω(t) (26)

One can see that the dynamic of the state estimation error is
only disturbed by ω(t).
Theorem 1: The optimal proportional integral observer

(24) for the system (22) is obtained if there exists a sym-
metric positive definite matrix X , matrices Mi and a positive
scalar λ , minimizing λ under the LMI constraints (27) for
i= 1, . . . ,r and j = 1, . . . , r̃.[

ÃTi X+X Ãi−C̃Tj MTi −MiC̃j+ I XΓ
ΓTX −λ I

]
< 0 (27)

The observer gains are given by: Ki = X−1Mi.
Proof: The state estimation error ea(t) converges to

zero when ω = 0 and the L2 gain from ω(t) to ea(t) is
bounded by γ if there exists X = XT > 0 such that the
following inequalities hold for i = 1, . . . ,r and j = 1, . . . , r̃
[3]: [

φTi j X+Xφi j+ I XΓ
ΓTX −γ2I

]
< 0 (28)

where φi j = Ãi−KiC̃j is used. With λ = γ2 and Mi = XKi
the LMI (27) is obtained.
Remark 2: In order to improve the estimation quality, the

conditions (29) (for all i = 1, ...,r and j = 1, . . . , r̃) can be
added to (27) to ensure pole clustering [5]:

ÃTi X+X Ãi−C̃Tj MTi −MiC̃j+2α X < 0 (29)

These conditions ensure that the eigenvalues of the gener-
ating system of the state estimation error (26) lie in the
following region of the complex plane:

S (α,ρ) = {w ∈ C|Re(w) < −α, |w| < ρ} (30)

IV. APPLICATION
A. Process description and nonlinear model
The wastewater treatment with activated sludge is widely

used in the last two centuries [14]. It consists in putting in
contact waste water with a mixture rich in bacteria to degrade
and eliminate the polluting constituents contained in the wa-
ter, in suspension or dissolved. The functioning principle of
the process is briefly described after. The simplified diagram,
given in Fig. 1, includes a bioreactor and a clarifier. In this
figure qin represents the input flow, qout the bioreactor output
flow, qa the air flow, qR, qW are respectively the recycled
and the rejected flows. The reactor volume is assumed to
be constant and thus: qout = qin+qR. In general, qR and qW
represent fractions of input flow qin:

qR(t) = fR qin(t), 1≤ fR ≤ 2 (31)
qW (t) = fW qin(t), 0< fW < 1 (32)

The polluted circulates in the bioreactor in which the bac-
terial biomass degrades the organic matter. Micro-organisms
gather together in colonial structures called flocs and produce

sludges. The mixed liqueur is then sent to the clarifier where
the separation of the purified water and the flocs is made
by gravity. A fraction of settled sludges is recycled towards
the bioreactor to maintain its capacity of purification. The
purified water is thrown in the natural environment. The

Fig. 1. The diagram of activated sludge wastewater treatment

ASM1 is a commonly used model to describe this process.
For simplicity reasons and lack of space, only the carbon
pollution of the activated sludge reactor is considered. Thus,
the proposed estimation method is illustrated by using a
model with three state variables x= [SS, SO, XBH ]T :

ṠS(t) = −
1
YH

μHϕ1(t)+(1− fP)bHϕ2(t)+D1(t)

ṠO(t) =
YH −1
YH

μHϕ1(t)+D2(t)

ẊBH(t) = μHϕ1(t)−bHϕ2(t)+D3(t) (33)

where:

D1(t) =
qin(t)
V

[SS,in(t)−SS(t)]

D2(t) =
qin(t)
V

[SO,in(t)−SO(t)]+Kqa(t) [SO,sat −SO(t)]

D3(t) =
qin(t)
V

[
XBH,in(t)−XBH(t)+ fR

1− fW
fR+ fW

XBH(t)
]
(34)

The process kinetics are:

ϕ1(t) =
SS(t)

KS+SS(t)
SO(t)

KOH +SO(t)
XBH(t) (35)

ϕ2(t) = XBH(t) (36)

The variables involved are presented in table I. We suppose
that the dissolved oxygen concentration at the reactor input
(SO,in) is null.
The clarifier is supposed to be perfect, i.e. with no internal
dynamic process and no biomass in the effluent. In this case,
we can write at each time instant:

[qin(t)+qR(t)]XBH(t) = [qR(t)+qW (t)]XBH,R(t) (37a)
SS,R(t) = SS(t) (37b)

The following heterotrophic growth and decay kinetic
parameters are considered [14]: μH = 3.733[1/24h], KS =
20[g/m3], KOH = 0.2[g/m3], bH = 0.3[1/24h]. The stoichio-
metric parameters are YH = 0.6[g cell formed], fP = 0.1
and the oxygen saturation concentration is SO,sat = 10[g/m3].
The following numerical values are considered here for the
fractions fR and fW : fR = 1.1 and fW = 0.04.
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Reactor input Reactor output Recycled
XBH Heterotrophic biomass concentration

XBH,in XBH,out XBH,R
SS Fast biodegradable substrate concentration

SS,in SS,out SS,R
SO Dissolved oxygen concentration

SO,in SO,out SO,R
q Flow

qin qout qR
qa Air flow
V Reactor volume

TABLE I
TABLE OF VARIABLES

B. Slow and fast variables

Let us consider the linearization of the nonlinear system
(33) around various equilibrium points (x0,u0):

ẋ(t) = A0x(t)+B0u(t) (38)

where A0 =
∂ f (x,u)

∂x
∣∣
(x0,u0) and B0 =

∂ f (x,u)
∂u

∣∣
(x0,u0) .

Considering Re(λ1) ≤ Re(λ2) ≤ ... ≤ Re(λn) the ordered
real part eigenvalues of A0, the biggest (resp. smallest) real
part of eigenvalues correspond to the slowest (resp. fastest)
dynamic. This separation will be made by fixing a threshold
of separation of both time scales, τ , such as: Re(λ1) ≤ ... ≤
Re(λn f ) << τ ≤ Re(λn f+1) ≤ ... ≤ Re(λn).
For the reduced ASM1 (33), the slow and fast separation is
confirmed by the eigenvalues of the jacobian A0, as one can
notice on Fig. 2 displaying the real parts of these eigenvalues
for forty operating points. The real part of two eigenvalues
(λ2 and λ3) are included between −50 and −0.4 and the
real part of the other (λ1) between −175 and −250. Setting
a threshold at τ = 70, it can be deduced that the system
has one fast dynamic (x f = SS) and two slow dynamics
(xs = [SO XBH ]T ).

0 5 10 15 20 25 30 35 40
−250

−200

−150

−100

−50

−0.5

Operating points index

Ja
co

bia
n e

ige
nv

alu
es

λ1 (SS)
λ2 (SO)
λ3 (XBH)

Fig. 2. The real parts of jacobian eigenvalues in various points of the
operating space

C. Multiple model

A multiple model is built and used to design an observer
allowing slow and fast state estimation.
Considering the process equations (33) and (34), it is natural

to define the following decision variables:

z1(u(t)) =
qin(t)
V

(39a)

z2(x(t)) =
1

KS+SS(t)
SO(t)

KOH +SO(t)
XBH(t) (39b)

z3(u(t)) = qa(t) (39c)

The input vector is defined by:

u(t) = [ SS,in(t) qa(t) XBH,in(t) ]T (40)

The quasi-LPV form of the model (33) is characterized by
matrices A(t) = A(x(t),u(t)) and B(t) = B(u(t)) decomposed
in the following way:

A(t) =

[
Af f (t) Af s(t)
As f (t) Ass(t)

]
B(t) =

[
Bf (t)
Bs(t)

]
(41)

where

Af f (t) =
[
−z1(t)− 1

YH μH z2(t)
]

(42)

Af s(t) =
[
0 (1− fP)bH

]
(43)

Bf (t) =
[
z1(t) 0 0

]
(44)

As f (t) =

[YH−1
YH μHz2(t)
μHz2(t)

]
(45)

Ass(t) =

[
−K z3(t)− z1(t) 0

0
[
fR(1− fW )
fW+ fR −1

]
z1(t)−bH

]

(46)

Bs(t) =

[
0 KSosat 0
0 0 z1(t)

]
(47)

The decomposition of the three premise variables (39) is
realized by using the convex polytopic transformation, as
in (5), (6) and (7). Multiplying the functions F.,., the r = 8
weighting functions μi(z(x(t)),u(t)) are obtained:

μi(z(x,u)) = F1,σ1i (x,u)F2,σ2i (x,u)F3,σ3i (x,u)

The constant matrices Ai and Bi representing the 8 sub-
models are defined as in (16) by using the block matrices A
and B and the scalars (6), for i= 1, ...,8:

Aif f = Af f (z1,σ1i ,z2,σ2i )

Aif s = [0 (1− fP)bH ]

Ais f = As f (z2,σ2i )

Aiss = Ass(z1,σ1i ,z3,σ3i )

Bif = Bf (z1,σ1i )

Bis = Bs(z1,σ1i ) (48)

The model (33) is thus equivalently written under the MM
form by using the separation into slow and fast states.
The output vector is defined by y=Cf x f +Cs xs+η , where
η(t) is a bounded measurement noise and the matrices Cs
and Cf are given by:

Cf =

[
1
0

]
Cs =

[
0 0
1 0

]
(49)
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By applying Theorem 1 to the ASM1 model (33), represented
into an equivalent MM form, the following state estimation
results are obtained and presented in Fig. 3. The L2 gain
from ω(t) to ea(t) is bounded by γ = 1.057.
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Fig. 3. State estimation using PIO

The estimation of the fast dynamic SS, considered as
unknown input in the global MM, is presented first and is
followed by the estimation results of the slow dynamics SO
and XBH . The output estimation results are displayed on Fig.
4, where one can see that the output noise is filtered.
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V. CONCLUSIONS AND FUTURE WORKS
In this article we propose state estimation of two-time

scale systems represented under a MM form with unmeasur-
able premise variables, by means of a proportional integral
observer with unknown inputs. The nonlinear system is
put under a MM form that highlights the slow and fast
dynamics and then the fast dynamics are considered as
unknown inputs and estimated simultaneously with the slow
variables. The application to a biological reactor offers good
state estimation results. As future works, first the design

of a proportional multi-integral observer is envisaged, and
second, the extension to the complete ASM1 model.
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