WWTP diagnosis based on robust principal
component analysis

Y. Tharrault* G. Mourot * J. Ragot *

*Centre de Recherche en Automatique de Nancy (CRAN)
Nancy Universi¢, CNRS
2, Avenue de la fé@t de Haye. F-54516 VandoeuvesiNancy
{yvon.tharrault, gilles.mourot, jose.raga@®ensem.inpl-nancy.fr

Abstract: Principal component analysis (PCA) is a powerful fault déts and isolation method.
However, the classical PCA which is based on the estimatioth® sample mean and variance-
covariance matrix of the data is very sensitive to outlierthe training data set. Usually robust principal
component analysis was applied to remove the effect ofeyatin the PCA model. In this paper, a fast
two-step algorithm is proposed. First, the objective wdsda robust PCA. Hence a scale-M estimator
is computed using an iterative re-weighted least squaRd/|(IS) procedure. This algorithm is initialized
from a nearly robust variance-covariance estimate whindgd¢o emphasize the contribution of close
observations in comparison with distant observationsligyg}). Second, structured residuals are used
for multiple fault detection and isolation. These struetliresiduals are based on the reconstruction
principle and the existence condition of such residualséiuo determine the detectable faults and the
isolable faults. The proposed scheme avoids the combiahexplosion of faulty scenarios related to
multiple faults to consider. Then, this procedure is susftdly applied for sensor fault detection and
isolation of the hydraulic part of an activated sludge waater treatment plant (WWTP).
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1. INTRODUCTION Our presentation is devoted to the problem of sensor fault
detection and isolation in data. In this paper, a fast tvep-st
algorithm is proposed. First, a scale-M estimator [Margnna

Principal component analysis (PCA) has been applied se€ceg005] is used to determine a robust model. This estimator is
fully in the monitoring of complex systems [Chiang and Colecomputed using an iterative re-weighted least squares (IRWL
grove, 2007, Harkat et al., 2006]. It enables the deternwnatff  procedure. This algorithm is initialized from a very simple
the redundancy relat|onsh|ps which are then used to detelct aestimate derived from a one-step weighted variance-caneg
isolate faults. It transforms the data to a smaller set dhbd#s estimate [Ruiz-Gazen, 1996]. Second, structured resicaral
which are linear combinations of the original variables lehi used for multiple fault detection and isolation. Thesedted
retaining as much information as possible. In the classipal residuals are based on the reconstruction principle. Thiabla
proach, the principal components correspond to the dmesti reconstruction approach assumes that each set of faulky var
in which the projected observations have the largest vegian ables is unknown and suggests to reconstruct these vagiable
The principal components, correspond to the eigenvectbrs @sing the PCA model from the remaining variables [Dunia and
the empirical covariance matrix. From a regression point abin, 1998]. If the faulty variables are reconstructed, theltf
view, PCA also constructs the optimal orthogonal lineajgro  effect is eliminated. This property is useful for fault iatbn.
tions (in terms of mean squared error) from the eigenveadbrs Moreover instead of considering the isolation of one up to al
the data covariance matrix. The performance of PCA model éensors, we determine the maximum number of faulty scenario
then based on the accurate estimation of the covariancématio take into account by evaluating the existence conditibn o
from the data which is very sensitive to abnormal obsermatio structured residuals. The proposed scheme avoids the eombi
natorial explosion of faulty scenarios related to multifalelts

to consider. Section 2 is a short reminder, on one hand, of the
grmmpal component analysis in the traditional case andhe
other hand, of the proposed robust principal componentanal
Usis. A detection and isolation procedure for outliers isposed

éﬂ section 3. Then, in section 4, this procedure is succhgsfu

In general, the majority of the training data set is assediat
with normal operating conditions. The remaining data (faul
data, data obtained during shutdown or startup periodstar d
issued from different operating mode) are referred to as-“o
liers”. They disturb the correlation structure of the “nam
data” and then the PCA model does not accurately repres lied for di fthe hvdrauli t of tvated
the process. In practice one often tries to detect outlisirsgu applied for diagnosis of the hydraulic part of an activatedge
diagnostic tools starting from a classical fitting methodwH wastewater treatment plant (WWTP).

ever, classical methods can be affected by outliers sogifron 2. PRINCIPAL COMPONENT ANALYSIS

that the resulting fitted model does not allow to detect the tr

outliers (masking and swamping phenomena). To avoid theket us consider a data matriXx ¢ ON*", with row vector
effects, the goal of robust PCA methods is to obtain prifcipa(k)", which gather®\ measurements collected on theystem
components that are not influenced much by outliers. variables.



2.1 Classical approach Robust covariance Ruiz-Gazen (1996) define a “local” ma-
trix of variance in the sense that the suggested form tends to

In the classicaPCA case, data are supposed to be collected ggmphasize the contribution of close observations in corsgar

a system being in a normal process operatR@Adetermines with distant observations (outliers). The matrix is defimethe

an optimal linear transformation of the data matixn terms following way:

of capturing the variation in the data: N-1 N .
T=XP and X=TP' 1) Z > Wi, () =x(5) (x(0) = x(}))
&L
with T € ON*" the principal component matrix and the matrix =" NN (10)
P € O™ contains the principal vectors which are the eigenvec- w(i, )
tors associated to the eigenvaldesf the covariance matrix (or i; =21 ’

correlation matrlx)z of X: , S where the weightsy; j themselves are defined by:
> = PAP with  PPT=PTP=1, 2) B
whereA = diag(A1...An) is a diagonal matrix with diagonal ~ w(i, j) = exp(—z(x(i) —x(IMNT=7x() —x(j))) (11)
elements in decreasing magnitude order dpe O™" an
identity matrix. B being a tuning parameter to reduce the influence of the obser-
. . . vations faraway, the authors recommend a value close tor2. Fo
The relations (1) are useful when the dimension of the rejpres 3 = 0, the robust covariance matrixis equal to Z. And for
tation space is reduced. Once the component nufizeretain 5 high value ofg, only the closest observations are taken into
is determined, the data matocan be approximated. For that, ;-cqunt in the robust covariance maffix

the eigenvector and eigenvalues matrices are partitiomted i

the form:
P=(PP) PeOm™! (3) Scale-M estimator Two M-estimators are used, one for es-
A0 . timation of the objective functiop (8) and another one for
N= [0 /~\] AeO®! (4) the estimation of the robust residual scale. The generkd-$¢a

R estimator minimizes the following objective function withe
From the decomposition (1X is the principal part of the data constraint” P = I,,_, [Maronna, 2005]:
explained by the first eigenvectors and the residual p&rts )
12)

N
explained by the remaining components: 1 Z o r(Ak)
N & o

with r(k) the residual defined by equation (@, the robust

X =XPP" = XG (5)
scale of the residual(k) and the functiono:0*" — [0,1] is

X=X-X=X(1-C) (6)

where the matrixC; = PP is not equal to the identity matrix, nondecreasing, with(0) = 0 andp() = 1, and differentiable.
excepted in the cage=n. P is the eigenvector matrix of the robust covariance magrix
(14) corresponding to ita — ¢ smallest eigenvalues. Then the

Hence the residualk), fork =1..N, is defined as follows: weighted meamu and the covariancg are defined as follows:

r(k) = [[PTx(k) —P" ul[? (7) N
_ W(k)x(k . . (r(k
wherepu correspond to the mean of the data p= w with w(k) = p ( (6)) (13)
k=
ChoosingP as the eigenvectors of the covariance matrix is N !
equivalent as minimizing the functigh of the estimation error C=3 wk)(x(k) = p)(x(k) — W’ (14)
with the constrainP™ P = | such as: K=1
1N Then the scale factad is defined as the solution of:
¢:N Zr(k) (8) 1 N I’(k)
K=1 ot —
PYCIR @

The PCA model being known according to (5) and (6), a
new measurement vectafk) (which may contains abnormal With & € (0,1).

values) can be decomposed as below: Then an iterative algorithm is necessary to determine aligh
x(K) = X(k) +X(k), R(k) =C;x(k), X(k)=(1—-Cy)x(k) parameters. To avoid local minimum a good initialization is
(9) needed. Here the robust covariance matrix10) is used to
wherex(k) andX(k) are respectively the projectionsxdk) onto  determined the values of the initial parameters.
the principal space and the residual space. However, this method is only robust to fault with a projentio
into the residual space. Then to be robust to all possiblg fau
similar approach in the principal space is used, in that tase
2.2 Robust approach scale-M estimator maximizes the following objective fuoot
with the constrainP™P =1, :
Our approach consists in carrying ®EAdirectly on the data 1 N Hlf)TX(k) _ f)TuHZ
possibly contaminated by outliers. For that, a simple rbbus N Z p( = ) (16)
estimator, called scale-M estimator, is used. Howevess thi k=1 o
estimator is computed by an iterative procedure. Then, god@ ensure the elimination of fault disturbing the residyzdce
initialization parameters are needed to avoid local mimmu when the scale-M estimator in the principal space is used, th
To initialize this scale-M estimator a robust covariancdrima minimum between the weight determine with the first scale-
is first calculated with a low computational cost. M estimator (robust to fault with a projection into the resdl




space) and the weight obtained with the second scale-M esti- 5 N-—n+/¢-1 29
mator is used (step 9f of the algorithm). Finally, to impreke = 2N (22)

estimation of the covariance matrix, and thus the PCA model ) ) e
a last weighting step is done using the Mahalanobis distanceHowever, this algorithm needs the number of principal compo
eliminate outliers. nents. Hence, a robust method to find the number of principal

. . ) components is introduced.
The algorithm is described as follows:

(1) it =1andgp =
(2) ComputeP the eigenvector matrix of the robust covariance
matrix T corresponding to ita— ¢ smallest eigenvalues.

3. ROBUST DETERMINATION OF THE NUMBER OF
PRINCIPAL COMPONENTS

(3) Computea = mediar{XP) The number of principal components to choose is obtained by
(4) Do untilit = Ny or A < tol minimizing the normalized VRE (variance of reconstruction
(a) Compute (k) = ||Px(k) —al|? fork=1...N error) with respect to the numbé{Qin and Dunia, 2000], the
(b) Computed from (15) criterion is then : .
c) Ifit >1,setA=1—-6/0; n & (In—C))S(In—Cp) &;
((d; Setop =6 oo J(0) = i (In =G Sl s)EJ (23)
(e) Compute thev(k) = p (r(k)/6) fork=1..N =1 (EJ-T(In —Cz)éj)

(f) Computeu from (13)

(9) ComputeC from (14)

(h) P the eigenvector matrix of the covariance mattix
corresponding to ita — ¢ smallest eigenvalues.

with£=1,...,n— 1,1, € O™" an identity matrix Sthe robust
covariance matrix and;j the reconstruction directioné( =
[0...1...0]" where value 1 is at th&"jposition)

(i) Computea=PT Qin and Dunia [2000] show that this criterion may present a
() Setit =it +1 minimum in the interva[1,n).

(5) Enddo. ) ) ) . .

(6) Setwes=W, it =1 andog = o From this new model, detectlon_ anq isolation of outliers are

(7) ComputeP the eigenvector matrix of the robust covariancéarried out using the Mahalanobis distance (20) and thewreco
matrixC corresponding to ité largest eigenvalues. struction principle.

(8) Computea = mediar{XP)

(9) Do untilit =Ny or A < tol 4. FAULT DETECTION AND ISOLATION
(@) Compute (k) = ||Px(k) —al|? for k= 1...N
(b) Computed from (15) The variable reconstruction approach assumes that a gifoup o
(c) fit>1,setA=1-35/0p variables may be faulty and suggests to reconstruct thereegbu
(d) Setgp =0 faulty variables using the PCA model from the remaining-vari
(e) Compute thew(k) = p (r(k)/6) fork=1..N ables [Dunia and Qin, 1998]. This approach is used for fault
(f) Setw = min(w, Wres) isolation.

(g) Computeu from (13)

(h) ComputeC from (14)

(i) P the eigenvector matrix of the covariance mattix 4.1 Data reconstruction
corresponding to ité largest eigenvalues.

(j) Computea = PTu The reconstructiong(k) of an observatiox(k) is obtained by
10 I(Ek)deetlt =it+1 minimizing the influence of fault. It is defined as follows:
Ellg Cgmpz-te _ Xng) =X(k) —=rfr 5 _(ZA_')
N K)X(K) with fgr the fault magn_|tude_ (unknown) qnd the_ mattix indi-
= % (17) cates the reconstruction directions. This matrix is ortiroral
ZE:lW(k) with dimension @ x r), with r the number of component to

reconstruct, and is built with 0 and 1, where 1 indicates the
w(k) —1| reconstructed variables from the other variables (withF@y.
1

N
s= (ZW(k)(X(k)—M(X(k)—u)T) / ( _
K=1 K example, to reconstruct the set of variaties {2,4} among 5
(18)  wvariables, matrixEg is formed as follows:

with _ , _ [o 10 0 0]
w(k) =1 if D(k) < Xn0.975 (19) R=]1 0 0 0 1 0
=0 else
whereD(K) is the Mahalanobis distance defined as folThe estimation of the fault magnitudg is obtained by solving
lows: the following optimization problem:
D(k) = x(K)TPA~*PT(K) (20) fr = argmin{Dr(k)} (25)
R

In the experiments of this articl@, defined by equation (12),
was chosen as the bisquare functiondgpresents the squared
distances).

2

whereDg(K) is the fault detection indicator (Mahalanobis dis-
tance) and is given by:

p(r)=min{1,1—(1—r)3} (21) Dr(K) = %% (K) DRR(K) (26)

The constantd in equation (15) is chosen as defined byWlth i
Maronna (2005): ®—PA-LP 27)



The system is considered normal if: This distance is defined in the principal spaf&1, R2) and in

Dr(k) < V2 (28) theresidual spaoui(Rl, R2) as follows:
where y2 is the detection threshold. The expression for the d(R1,R2) = [|=r, (Zk,Zr,) 2k, — ZRr,(Zk,=R,) '2R,Il2
reconstructiong(k) of the vectorx(k) is given by: (34)
%r(k) = Grx(K) (29) d~(Rl, R2) = ||§R1(§£1§R1)712E1 - éRz (§E2§R2)712£2||2
with Gr = (I — Zr(ZRP=R) =L P) (39)
with éRl = /A\_1/2|5TER1, éRl = 7\_1/2|5TER1 andR; and Ry
Condition of reconstruction : correspond to sets of variable reconstruction.

To reconstruct a fault, it must be at least projected into thgn )y 7ing these distances, then the isolable fault can ber-de
principal spacer(< ) or into the principal space (< n—{).  ming Hence, a global indicatéris built.
This implies that the number of reconstructed variablasuist ~

respect the following inequality (30): k(Ry,Rz) = max{(d(Rq,Rz),d(Ry,Rp) } (36)
r <maxn—¢,¢) (30)  Thus ifk(Ry,Ry) is close to zero, it means that the projection
. . of the set of reconstructed variablesandR, are collinear into
4.2 Structured residual generation the residual space and into the principal space. It mears tha

] . o ) a fault for the sets of reconstructed variabigsor R, are not
In a diagnosis objective, residuals are generated for f@iéic- jsolable. The process to detect useful directions of recocs

tion and isolation. Considering a measuremdk) composed tion can be summarized as follows:
with the true valuec* (k), a noises(k) with zero mean and one

fault with amplituded and direction=¢, whereF is a subset

containing the indices of the fault directions: gg rC:I1 late for all available directionB{c O andR, & 0)
W - alculate for all available directionR{ € 0 andR; €
X(k) =x"(k) +£(k) + =¢d (31) the indicatork(R;,Ry) (36). Smaller the value of this
Considering all possible reconstruction direction: indicator is, higher the magnitude of the fault has to be
) o important to ensure fault isolation. And if this indicater i
o Ifthe reconstruction directiorisg are the same as the fault equal to zero, then only a set of variables potentially fault
directions, i.e. ifR = F, thenDg(k) is under the detection may be determined, i.e. the faulty variables are associated
thresholdy?, indeed: to the indicesR; or R, or Ry and Ry. Thus, it is only
DR(k) _ X*T(k)CDX*(k) _ X*(k)T¢ER(ER¢ER)7lE;¢X*(k) (3) requifg to determine one direction, for examﬁle
r=r
wherex' " (K)®x* (k) < y? (4) Whiler < max(¢,n— /) do to the step 2
andx*T (K)P=r(ZgP=R) =L dx* (k) > 0 " vsis of th  the model all q .
thenDg < 12 This analysis of the structure of the model allows to deteemi

the isolable faults. The number of useful reconstructioas c

e |f the reconstruction directionSg are different from the then be reduced.

fault directions, therDr(k) is higher than the detection
thresholdy? if the projection of the reconstruction di-
rections are not collinear to the fault projection into the
residual space and into the principal space.

5. APPLICATION TO HYDRAULIC PART OF A
WASTEWATER TREATMENT PLANT

. _ R Figure 1 describes the hydraulic part of a real industriahpl
For the faulty observatiorls, the faulty variable®R are deter- and the position of different sensors. The measures witlay gr

mine as follows: background (2, 5, 7, 8, 9) correspond to the different contiman
R= arg Dr(K) < V2 (32) of the station with the location of actuators, other numiggrs
Rel 3, 4, 6, 10) represent sensors for which information has to be

with O all combinations of possible reconstruction directions. validated.

The raw water first goes through bar screen to remove any
solids which are larger than their openings. The water then
L - comes in a sump, the level of water is measured in this sump.
All th(_a dlre_ctlons of reconstructiolr have to be explored for Then a pumping station brings up the raw water to flow by
fault isolation. The maX|mum reconstruction number can b&ravityinthe rest of the station. On leaving the pumpingsta
calculated as follows: there is a flow measurement. Wastewater are then treated by
max(n—£,6)-1 r 13 activated sludge. There is a recirculation and extractiouit
Z Ca (33) (sludge and excess sludge surface) of sludge. Then a sensor
~ measures the level of the overflow after the clarifier, thisrov

4.3 Fault isolation

I T
with Cr, denotes the combination ofrom n. flow can restrict the flow in the second in biology. This measur

;—tr:hsct?éjnns]beHrO\tNag\fsr Ocr:)l?llir:gtaor afgzzggézehgyemtﬁ)g:f rel (;Or};ﬂlows to estimate the flow directly rejected in the river regm
’ ! pro) “Shre”. For the different recirculation and extraction flows

signature. Then we will analyze the angles between therdn‘feOf sludge as well as for pumping station, commands pumps

ent projection of reconstruction directions. The largeshpry nd nominal flows are known. A measure of each variable is

angle 6 between two sub-spaces of the same size is linked F :
the concept of distance between these two sub-spaces [Go ggorded every 15 minutes.

and Van Loan, 1996]. First to apply PCA, a data matrix must be constructed.



@
_, © Extraction surface sludge

= |” ------ B @ High before bar screer(l)
@ ® S 1m60 ‘ Overflow @ Command of the cleaning of the bar screens
9 ® -» H = Blology2 %Water level after the bar screeii2)
i Water level in the sumpH3
zoom [P1® Biology1 v Slre ® Pumping stationG4) me
Recnculatlon Extractlon ® Flow (Q5)
sludge ® sludge @ Pump for recirculation sludge
Pump for extraction sludge

@ Pump for extraction surface sludge
(0 Water level in the overflowH6)

Fig. 1. Description of the station

5.1 Construction of the data matrix 80 —

70 Classical estimation 4
= = Robust estimation

To take into account dynamic process with PCA, the data | i
matrix has to be composed of data with temporal lag. Morgover
transformed variables can be added to take into account nor .

linear process. To determine the different temporal lagreord = E |
linear transformation, a simple linear modeling step isduse ~ *J Q“ % I ﬂ .

Then a new variable taifQ5(k— 1) — 550)./150) andH1(k— 20 i & 1
1), H6(k— 1) are used in the data matrix. 1or ' 1

I I I I
800 900 1000 1100 1200 1300 1400 1500 1600

Two sets of data are used, one for model construction and
second for fault detection and isolation. A vect¢k) is defined

40
- Classical residual
as fOlIOWS 30r = Robust residual N

20+ q

10 AI"L q

x(k) = [H1(k) H2(k) H3(k) Q5(k) H6(k) ) 4 ‘ ‘ d
tanr((QS(k— 1) - 5?_0) / 150) H 1(k - 1) (37) 800 9(;0 1(;00 11‘00 12‘00 13‘00 14‘00 15‘00 1600
Time
HB(k—1) CAK)] Fig. 2. Measure and estimation idfL
The data matriX is constituted oN observations of the vector K R
x(k). After having constructed the data matXx PCA can be 123|456 7809
applied. The first step is to determine the number of pricipa 0.99] 1.00
components. 1.00| 1.00
1.00| 0.99
5.2 Number of principal components 1.00) 0.33
0.90] 0.99
To determine the number of principal components, the robust 1.00] 1.00
approach using the VRE, proposed in the section 3, is used. 1'80 g'g;

Four principal components are selected. The robust model is

then built For all the directions of reconstruction£ 2, 3, 4, 5) this indi-
Figure 2 shows a part of the measuié with its estimation cator is calculated. A case whekés close to zero is detected
obtained with the classic PCA model and the robust PCA modbetweerD, » ¢ andD4 3 6. Then the fault signatures of these two
and the associated residual (measure - estimate). directions are identicaldy » 6 = D1.36). Therefore only one in-
dicator is useful to detect a fault, for examjple, 6. Moreover,
we concluded that the signatures of reconstruction doasti

Table 1. Indicatokforr =1

We noticed that in estimatinig 1, a fault is visible on the robust
residual around the observation 1550 while with the classic,.; .- - : :

o s . .~ “taking into account these sets are identiéd {67 = D137,
PCA, it is not visible. This shows the advantage of using 1268 =D1368, ...). The number of useful reconstruction can

robust approach. be reduced to 202.

5.3 Analysis of the reconstruction directions 5.4 Fault detection and isolation
From the size of the residual space and of the principal spa
we cannot reconstruct more than five variables simultarigous
The maximum number of reconstructions is then equal to 2
(33). Table 1 shows the values of the global indic&dB6)
with r =1, i.e. only one variable is reconstructedepresents
the number of variables simultaneously faulty. SRtsand R,
contain the indices of the reconstructed variables. Smtike
value of this indicatok is, higher the magnitude of the fault has

to be important to ensure fault isolation. All the valuekafre To isolate fault, all useful reconstruction directions agécu-
not null, then all faults on one variable are isolable. lated. Figure 4 shows some values of the indic&dor differ-

%or fault detection, Mahalanobis distance is used. Figure 3
ows the Mahalanobis distance divided by its detecticsti
d, i.e. a fault is detected if the normalised Mahalanolis d
tance is greater than one. The detection threshold was empir
ically chosen. Then 22 faults are detected, on this figure, th
different faults are numbered in order to isolate them imitnet
section.
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ent reconstruction directions. Table 2 summarizes thatisol g o T ljzooo 2500
approach. ‘ ‘ ‘ —o,
Fault index Reconstruction direction \ . . . . Il . .
. 0 A [ . " Al Sonctan 20 M
under the detection threshold . 500 1000 1500 2000 2500
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When the indicatoDs is calculated, the faults 3, 10, 11, 14, 500 1000 1500 2000 2500
15, 19, 20 and 21 are close to zero, then one concludes that
during these periods variabk3 is faulty. Physically all these

Di237 5
Table 2. Summary of fault isolation | | I | —
o | ST T W S | ILJ_ _ "

faults are due to a change in the relationships betweerreliffe . 500 ] 1000 1500 2000 2500
measures when the valuetdB is less thanh85. Indeed, upper — Dy
left corner of the figure 1 details the physical relation tesw : : i , , :

the bar screen and the sump. We can infer that when the water ° 500 1000 1500 2000 2500

level in the sump drops below about&5, the relationship ] ]
between the water level before, after the bar screen andvbke | Fig. 4. Faultisolation

in the sump changes. evaluated. This procedure is finally applied for diagno$thie

For faults 16, 17, the residual is close to zero when the firfydraulic part of an activated sludge WWTP. Hence, the pro-
variable H1(k)) is reconstructed. For faults 7, 12 residual ig?0Sed method allows to determine simultaneous faulty senso
close to zero when the firgtiL(k)) and the sixtht@nh((Q5(k—  ©OF System fault for whose fault signature is associatedversé

1)) — 550/150)) variables are reconstructed. These fault ar8Ors on signals from sensors.

probably due to an element that disrupts the flow in the bar
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