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Abstract: Principal component analysis (PCA) is a powerful fault detection and isolation method.
However, the classical PCA which is based on the estimation of the sample mean and variance-
covariance matrix of the data is very sensitive to outliers in the training data set. Usually robust principal
component analysis was applied to remove the effect of outliers on the PCA model. In this paper, a fast
two-step algorithm is proposed. First, the objective was tofind a robust PCA. Hence a scale-M estimator
is computed using an iterative re-weighted least squares (IRWLS) procedure. This algorithm is initialized
from a nearly robust variance-covariance estimate which tends to emphasize the contribution of close
observations in comparison with distant observations (outliers). Second, structured residuals are used
for multiple fault detection and isolation. These structured residuals are based on the reconstruction
principle and the existence condition of such residuals is used to determine the detectable faults and the
isolable faults. The proposed scheme avoids the combinatorial explosion of faulty scenarios related to
multiple faults to consider. Then, this procedure is successfully applied for sensor fault detection and
isolation of the hydraulic part of an activated sludge wastewater treatment plant (WWTP).
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1. INTRODUCTION

Principal component analysis (PCA) has been applied success-
fully in the monitoring of complex systems [Chiang and Cole-
grove, 2007, Harkat et al., 2006]. It enables the determination of
the redundancy relationships which are then used to detect and
isolate faults. It transforms the data to a smaller set of variables
which are linear combinations of the original variables while
retaining as much information as possible. In the classicalap-
proach, the principal components correspond to the directions
in which the projected observations have the largest variance.
The principal components, correspond to the eigenvectors of
the empirical covariance matrix. From a regression point of
view, PCA also constructs the optimal orthogonal linear projec-
tions (in terms of mean squared error) from the eigenvectorsof
the data covariance matrix. The performance of PCA model is
then based on the accurate estimation of the covariance matrix
from the data which is very sensitive to abnormal observations.

In general, the majority of the training data set is associated
with normal operating conditions. The remaining data (faulty
data, data obtained during shutdown or startup periods or data
issued from different operating mode) are referred to as “out-
liers”. They disturb the correlation structure of the “normal
data” and then the PCA model does not accurately represent
the process. In practice one often tries to detect outliers using
diagnostic tools starting from a classical fitting method. How-
ever, classical methods can be affected by outliers so strongly
that the resulting fitted model does not allow to detect the true
outliers (masking and swamping phenomena). To avoid these
effects, the goal of robust PCA methods is to obtain principal
components that are not influenced much by outliers.

Our presentation is devoted to the problem of sensor fault
detection and isolation in data. In this paper, a fast two-step
algorithm is proposed. First, a scale-M estimator [Maronna,
2005] is used to determine a robust model. This estimator is
computed using an iterative re-weighted least squares (IRWLS)
procedure. This algorithm is initialized from a very simple
estimate derived from a one-step weighted variance-covariance
estimate [Ruiz-Gazen, 1996]. Second, structured residuals are
used for multiple fault detection and isolation. These structured
residuals are based on the reconstruction principle. The variable
reconstruction approach assumes that each set of faulty vari-
ables is unknown and suggests to reconstruct these variables
using the PCA model from the remaining variables [Dunia and
Qin, 1998]. If the faulty variables are reconstructed, the fault
effect is eliminated. This property is useful for fault isolation.
Moreover instead of considering the isolation of one up to all
sensors, we determine the maximum number of faulty scenarios
to take into account by evaluating the existence condition of
structured residuals. The proposed scheme avoids the combi-
natorial explosion of faulty scenarios related to multiplefaults
to consider. Section 2 is a short reminder, on one hand, of the
principal component analysis in the traditional case and, on the
other hand, of the proposed robust principal component analy-
sis. A detection and isolation procedure for outliers is proposed
in section 3. Then, in section 4, this procedure is successfully
applied for diagnosis of the hydraulic part of an activated sludge
wastewater treatment plant (WWTP).

2. PRINCIPAL COMPONENT ANALYSIS

Let us consider a data matrixX ∈ ℜN×n, with row vector
x(k)T , which gathersN measurements collected on then system
variables.



2.1 Classical approach

In the classicalPCAcase, data are supposed to be collected on
a system being in a normal process operation.PCAdetermines
an optimal linear transformation of the data matrixX in terms
of capturing the variation in the data:

T = XP and X = TPT (1)
with T ∈ ℜN×n the principal component matrix and the matrix
P∈ℜn×n contains the principal vectors which are the eigenvec-
tors associated to the eigenvaluesλi of the covariance matrix (or
correlation matrix)Σ of X:

Σ = PΛPT with PPT = PTP = In (2)
whereΛ = diag(λ1 . . .λn) is a diagonal matrix with diagonal
elements in decreasing magnitude order andIn ∈ ℜn×n an
identity matrix.

The relations (1) are useful when the dimension of the represen-
tation space is reduced. Once the component numberℓ to retain
is determined, the data matrixX can be approximated. For that,
the eigenvector and eigenvalues matrices are partitioned into
the form:

P =
(

P̂ P̃
)

P̂∈ ℜn×ℓ (3)

Λ =

[

Λ̂ 0
0 Λ̃

]

Λ̂ ∈ ℜℓ×ℓ (4)

From the decomposition (1),̂X is the principal part of the data
explained by theℓ first eigenvectors and the residual partX̃ is
explained by the remaining components:

X̂ = XP̂P̂T = XCℓ (5)

X̃ = X− X̂ = X(I −Cℓ) (6)

where the matrixCℓ = P̂P̂T is not equal to the identity matrix,
excepted in the caseℓ = n.

Hence the residualr(k), for k = 1..N, is defined as follows:

r(k) = ||P̃Tx(k)− P̃T µ ||2 (7)
whereµ correspond to the mean of the dataX.

ChoosingP as the eigenvectors of the covariance matrix is
equivalent as minimizing the functionϕ of the estimation error
with the constraintPTP = I such as:

ϕ =
1
N

N

∑
k=1

r(k) (8)

The PCA model being known according to (5) and (6), a
new measurement vectorx(k) (which may contains abnormal
values) can be decomposed as below:

x(k) = x̂(k)+ x̃(k), x̂(k) = Cℓ x(k), x̃(k) = (I −Cℓ) x(k)
(9)

wherex̂(k) andx̃(k) are respectively the projections ofx(k) onto
the principal space and the residual space.

2.2 Robust approach

Our approach consists in carrying outPCAdirectly on the data
possibly contaminated by outliers. For that, a simple robust
estimator, called scale-M estimator, is used. However, this
estimator is computed by an iterative procedure. Then, good
initialization parameters are needed to avoid local minimum.
To initialize this scale-M estimator a robust covariance matrix
is first calculated with a low computational cost.

Robust covariance Ruiz-Gazen (1996) define a “local” ma-
trix of variance in the sense that the suggested form tends to
emphasize the contribution of close observations in comparison
with distant observations (outliers). The matrix is definedin the
following way:

T =

N−1

∑
i=1

N

∑
j=i+1

w(i, j)(x(i)−x( j))(x(i)−x( j))T

N−1

∑
i=1

N

∑
j=i+1

w(i, j)

(10)

where the weightswi, j themselves are defined by:

w(i, j) = exp

(

−
β
2

(x(i)−x( j))TΣ−1(x(i)−x( j))

)

(11)

β being a tuning parameter to reduce the influence of the obser-
vations faraway, the authors recommend a value close to 2. For
β = 0, the robust covariance matrixT is equal to 2Σ. And for
a high value ofβ , only the closest observations are taken into
account in the robust covariance matrixT.

Scale-M estimator Two M-estimators are used, one for es-
timation of the objective functionϕ (8) and another one for
the estimation of the robust residual scale. The general scale-M
estimator minimizes the following objective function withthe
constraintP̃T P̃ = In−ℓ [Maronna, 2005]:

1
N

N

∑
k=1

ρ
(

r(k)
σ̂

)

(12)

with r(k) the residual defined by equation (7),σ̂ the robust
scale of the residualr(k) and the functionρ :ℜ+ → [0,1] is
nondecreasing, withρ(0) = 0 andρ(∞) = 1, and differentiable.
P̃ is the eigenvector matrix of the robust covariance matrixC
(14) corresponding to itsn− ℓ smallest eigenvalues. Then the
weighted meanµ and the covarianceC are defined as follows:

µ =
∑N

k=1w(k)x(k)

∑N
k=1w(k)

with w(k) = ρ̇
(

r(k)
σ̂

)

(13)

C =
N

∑
k=1

w(k)(x(k)−µ)(x(k)−µ)T (14)

Then the scale factor̂σ is defined as the solution of:

1
N

N

∑
k=1

ρ
(

r(k)
σ̂

)

= δ (15)

with δ ∈ (0,1).

Then an iterative algorithm is necessary to determine all these
parameters. To avoid local minimum a good initialization is
needed. Here the robust covariance matrixT (10) is used to
determined the values of the initial parameters.
However, this method is only robust to fault with a projection
into the residual space. Then to be robust to all possible fault, a
similar approach in the principal space is used, in that casethe
scale-M estimator maximizes the following objective function
with the constraint̂PT P̂ = Iℓ :

1
N

N

∑
k=1

ρ
(

||P̂Tx(k)− P̂T µ ||2

σ̂

)

(16)

To ensure the elimination of fault disturbing the residual space
when the scale-M estimator in the principal space is used, the
minimum between the weight determine with the first scale-
M estimator (robust to fault with a projection into the residual



space) and the weight obtained with the second scale-M esti-
mator is used (step 9f of the algorithm). Finally, to improvethe
estimation of the covariance matrix, and thus the PCA model,
a last weighting step is done using the Mahalanobis distanceto
eliminate outliers.

The algorithm is described as follows:

(1) it = 1 andσ0 = ∞
(2) ComputeP̃ the eigenvector matrix of the robust covariance

matrixT corresponding to itsn− ℓ smallest eigenvalues.
(3) Computea = median(XP̃)
(4) Do until it = N1 or ∆ ≤ tol

(a) Computer(k) = ||P̃x(k)−a||2 for k = 1...N
(b) Computeσ̂ from (15)
(c) If it > 1, set∆ = 1− σ̂/σ0
(d) Setσ0 = σ̂
(e) Compute thew(k) = ρ̇ (r(k)/σ̂) for k = 1...N
(f) Computeµ from (13)
(g) ComputeC from (14)
(h) P̃ the eigenvector matrix of the covariance matrixC

corresponding to itsn− ℓ smallest eigenvalues.
(i) Computea = P̃T µ
(j) Set it = it +1

(5) End do.
(6) Setwres = w, it = 1 andσ0 = ∞
(7) ComputeP̂ the eigenvector matrix of the robust covariance

matrixC corresponding to itsℓ largest eigenvalues.
(8) Computea = median(XP̂)
(9) Do until it = N1 or ∆ ≤ tol

(a) Computer(k) = ||P̂x(k)−a||2 for k = 1...N
(b) Computeσ̂ from (15)
(c) If it > 1, set∆ = 1− σ̂/σ0
(d) Setσ0 = σ̂
(e) Compute thew(k) = ρ̇ (r(k)/σ̂) for k = 1...N
(f) Setw = min(w,wres)
(g) Computeµ from (13)
(h) ComputeC from (14)
(i) P̂ the eigenvector matrix of the covariance matrixC

corresponding to itsℓ largest eigenvalues.
(j) Computea = P̂T µ
(k) Setit = it +1

(10) End do.
(11) Compute

µ =
∑N

k=1w(k)x(k)

∑N
k=1w(k)

(17)

S=

(

N

∑
k=1

w(k)(x(k)−µ)(x(k)−µ)T

)/(

N

∑
k=1

w(k)−1

)

(18)
with

{

w(k) = 1 if D(k) ≤ χ2
n,0.975

w(k) = 0 else
(19)

whereD(k) is the Mahalanobis distance defined as fol-
lows:

D(k) = x(k)TPΛ−1PTx(k) (20)

In the experiments of this article,ρ , defined by equation (12),
was chosen as the bisquare function (r represents the squared
distances).

ρ(r) = min{1,1− (1− r)3} (21)

The constantδ in equation (15) is chosen as defined by
Maronna (2005):

δ =
N−n+ ℓ−1

2N
(22)

However, this algorithm needs the number of principal compo-
nents. Hence, a robust method to find the number of principal
components is introduced.

3. ROBUST DETERMINATION OF THE NUMBER OF
PRINCIPAL COMPONENTS

The number of principal components to choose is obtained by
minimizing the normalized VRE (variance of reconstruction
error) with respect to the numberℓ [Qin and Dunia, 2000], the
criterion is then :

J(ℓ) =
n

∑
j=1

ξ T
j (In−Cℓ)S(In−Cℓ)ξ j
(

ξ T
j (In−Cℓ)ξ j

)2 (23)

with ℓ = 1, . . . ,n−1, In ∈ ℜn×n an identity matrix,S the robust
covariance matrix andξ j the reconstruction direction (ξ j =

[0 ... 1 ... 0]T where value 1 is at the jth position)

Qin and Dunia [2000] show that this criterion may present a
minimum in the interval[1,n].

From this new model, detection and isolation of outliers are
carried out using the Mahalanobis distance (20) and the recon-
struction principle.

4. FAULT DETECTION AND ISOLATION

The variable reconstruction approach assumes that a group of
variables may be faulty and suggests to reconstruct the assumed
faulty variables using the PCA model from the remaining vari-
ables [Dunia and Qin, 1998]. This approach is used for fault
isolation.

4.1 Data reconstruction

The reconstruction ˆxR(k) of an observationx(k) is obtained by
minimizing the influence of fault. It is defined as follows:

x̂R(k) = x(k)−ΞR fR (24)

with fR the fault magnitude (unknown) and the matrixΞR indi-
cates the reconstruction directions. This matrix is orthonormal
with dimension (n × r), with r the number of component to
reconstruct, and is built with 0 and 1, where 1 indicates the
reconstructed variables from the other variables (with 0).For
example, to reconstruct the set of variablesR= {2,4} among 5
variables, matrixΞR is formed as follows:

ΞR =

[

0 1 0 0 0
0 0 0 1 0

]T

The estimation of the fault magnitudefR is obtained by solving
the following optimization problem:

f̂R = argmin
fR

{DR(k)} (25)

whereDR(k) is the fault detection indicator (Mahalanobis dis-
tance) and is given by:

DR(k) = x̂T
R(k)Φx̂R(k) (26)

with

Φ = PΛ−1PT (27)



The system is considered normal if:

DR(k) ≤ γ2 (28)

where γ2 is the detection threshold. The expression for the
reconstruction ˆxR(k) of the vectorx(k) is given by:

x̂R(k) = GR x(k) (29)

with GR =
(

I −ΞR(ΞT
RΦΞR)−1ΞT

RΦ
)

Condition of reconstruction :
To reconstruct a fault, it must be at least projected into the
principal space (r ≤ ℓ) or into the principal space (r ≤ n− ℓ).
This implies that the number of reconstructed variablesr must
respect the following inequality (30):

r ≤ max(n− ℓ,ℓ) (30)

4.2 Structured residual generation

In a diagnosis objective, residuals are generated for faultdetec-
tion and isolation. Considering a measurementx(k) composed
with the true valuex∗(k), a noiseε(k) with zero mean and one
fault with amplituded and directionΞF , whereF is a subset
containing the indices of the fault directions:

x(k) = x∗(k)+ ε(k)+ΞFd (31)

Considering all possible reconstruction direction:

• If the reconstruction directionsΞR are the same as the fault
directions, i.e. ifR= F , thenDR(k) is under the detection
thresholdγ2, indeed:

DR(k) = x∗T(k)Φx∗(k)−x∗(k)TΦΞR(ΞT
RΦΞR)−1ΞT

RΦx∗(k)

wherex∗T(k)Φx∗(k) ≤ γ2

andx∗T(k)ΦΞR(ΞT
RΦΞR)−1ΞT

RΦx∗(k) > 0
thenDR < γ2

• If the reconstruction directionsΞR are different from the
fault directions, thenDR(k) is higher than the detection
thresholdγ2 if the projection of the reconstruction di-
rections are not collinear to the fault projection into the
residual space and into the principal space.

For the faulty observationsk, the faulty variableŝR are deter-
mine as follows:

R̂= arg
R∈ℑ

DR(k) < γ2 (32)

with ℑ all combinations of possible reconstruction directions.

4.3 Fault isolation

All the directions of reconstructionΞR have to be explored for
fault isolation. The maximum reconstruction number can be
calculated as follows:

max(n−ℓ,ℓ)−1

∑
r=1

C
r
n (33)

with C
r
n denotes the combination ofr from n.

This number takes only into account the number of recon-
structions. However, collinear projections have the same fault
signature. Then we will analyze the angles between the differ-
ent projection of reconstruction directions. The largest primary
angleθ between two sub-spaces of the same size is linked to
the concept of distance between these two sub-spaces [Golub
and Van Loan, 1996].

This distance is defined in the principal spaced(R1,R2) and in
the residual spacẽd(R1,R2) as follows:

d(R1,R2) = ||Ξ̂R1(Ξ̂
T
R1

Ξ̂R1)
−1Ξ̂T

R1
− Ξ̂R2(Ξ̂

T
R2

Ξ̂R2)
−1Ξ̂T

R2
||2
(34)

d̃(R1,R2) = ||Ξ̃R1(Ξ̃
T
R1

Ξ̃R1)
−1Ξ̃T

R1
− Ξ̃R2(Ξ̃

T
R2

Ξ̃R2)
−1Ξ̃T

R2
||2
(35)

with Ξ̂R1 = Λ̂−1/2P̂TΞR1, Ξ̃R1 = Λ̃−1/2P̃TΞR1 and R1 and R2
correspond to sets of variable reconstruction.

Analyzing these distances, then the isolable fault can be deter-
mine. Hence, a global indicatork is built.

k(R1,R2) = max{(d(R1,R2), d̃(R1,R2)} (36)

Thus if k(R1,R2) is close to zero, it means that the projection
of the set of reconstructed variablesR1 andR2 are collinear into
the residual space and into the principal space. It means that
a fault for the sets of reconstructed variablesR1 or R2 are not
isolable. The process to detect useful directions of reconstruc-
tion can be summarized as follows:

(1) r = 1
(2) Calculate for all available directions (R1 ∈ ℑ andR2 ∈ ℑ)

the indicatork(R1,R2) (36). Smaller the value of this
indicator is, higher the magnitude of the fault has to be
important to ensure fault isolation. And if this indicator is
equal to zero, then only a set of variables potentially faulty
may be determined, i.e. the faulty variables are associated
to the indicesR1 or R2 or R1 and R2. Thus, it is only
required to determine one direction, for exampleR1.

(3) r = r +1
(4) While r < max(ℓ,n− ℓ) do to the step 2

This analysis of the structure of the model allows to determine
the isolable faults. The number of useful reconstructions can
then be reduced.

5. APPLICATION TO HYDRAULIC PART OF A
WASTEWATER TREATMENT PLANT

Figure 1 describes the hydraulic part of a real industrial plant
and the position of different sensors. The measures with a gray
background (2, 5, 7, 8, 9) correspond to the different command
of the station with the location of actuators, other numbers(1,
3, 4, 6, 10) represent sensors for which information has to be
validated.

The raw water first goes through bar screen to remove any
solids which are larger than their openings. The water then
comes in a sump, the level of water is measured in this sump.
Then a pumping station brings up the raw water to flow by
gravity in the rest of the station. On leaving the pumping station,
there is a flow measurement. Wastewater are then treated by
activated sludge. There is a recirculation and extraction circuit
(sludge and excess sludge surface) of sludge. Then a sensor
measures the level of the overflow after the clarifier, this over-
flow can restrict the flow in the second in biology. This measure
allows to estimate the flow directly rejected in the river named
“Sûre”. For the different recirculation and extraction flows
of sludge as well as for pumping station, commands pumps
and nominal flows are known. A measure of each variable is
recorded every 15 minutes.

First to apply PCA, a data matrix must be constructed.
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P Sûre

6
2

4

3

5

1

6

10

9

7

8

Va
lv

e

1m60

zoom

Sump

Biology1
Biology2

Overflow Command of the cleaning of the bar screens

Water level after the bar screen (H2)

Pumping station (C4)

Water level in the overflow (H6)

Pump for recirculation sludgesludge sludge
Flow (Q5)

Water level in the sump (H3)

Extraction surface sludge

Extraction

Pump for extraction sludge

Pump for extraction surface sludge

7 8

9

10

5

Fig. 1. Description of the station

5.1 Construction of the data matrix

To take into account dynamic process with PCA, the data
matrix has to be composed of data with temporal lag. Moreover,
transformed variables can be added to take into account non
linear process. To determine the different temporal lag andnon
linear transformation, a simple linear modeling step is used.
Then a new variable tanh((Q5(k−1)−550)./150) andH1(k−
1), H6(k−1) are used in the data matrix.

Two sets of data are used, one for model construction and
second for fault detection and isolation. A vectorx(k) is defined
as follows:

x(k) = [ H1(k) H2(k) H3(k) Q5(k) H6(k)
tanh((Q5(k−1)−550)./150) H1(k−1)

H6(k−1) C4(k) ]
T

(37)

The data matrixX is constituted ofN observations of the vector
x(k). After having constructed the data matrixX, PCA can be
applied. The first step is to determine the number of principal
components.

5.2 Number of principal components

To determine the number of principal components, the robust
approach using the VRE, proposed in the section 3, is used.
Four principal components are selected. The robust model is
then built.

Figure 2 shows a part of the measureH1 with its estimation
obtained with the classic PCA model and the robust PCA model
and the associated residual (measure - estimate).

We noticed that in estimatingH1, a fault is visible on the robust
residual around the observation 1550 while with the classical
PCA, it is not visible. This shows the advantage of using a
robust approach.

5.3 Analysis of the reconstruction directions

From the size of the residual space and of the principal space,
we cannot reconstruct more than five variables simultaneously.
The maximum number of reconstructions is then equal to 255
(33). Table 1 shows the values of the global indicatork (36)
with r = 1, i.e. only one variable is reconstructed.r represents
the number of variables simultaneously faulty. SetsR1 andR2
contain the indices of the reconstructed variables. Smaller the
value of this indicatork is, higher the magnitude of the fault has
to be important to ensure fault isolation. All the values ofk are
not null, then all faults on one variable are isolable.
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k R1

1 2 3 4 5 6 7 8 9
1 0 0.94 0.99 1.00 0.99 0.98 0.97 0.99 1.00
2 0 0.52 1.00 0.98 1.00 1.00 1.00 1.00
3 0 0.99 1.00 1.00 1.00 1.00 0.99

R2 4 0 1.00 0.99 1.00 1.00 0.33
5 0 0.82 0.96 0.90 0.99
6 0 0.80 1.00 1.00
7 0 1.00 0.97
8 0 0.97

Table 1. Indicatork for r = 1
For all the directions of reconstruction (r = 2, 3, 4, 5) this indi-
cator is calculated. A case wherek is close to zero is detected
betweenD1,2,6 andD1,3,6. Then the fault signatures of these two
directions are identical (D1,2,6 = D1,3,6). Therefore only one in-
dicator is useful to detect a fault, for exampleD1,2,6. Moreover,
we concluded that the signatures of reconstruction directions
taking into account these sets are identical (D1,2,6,7 = D1,3,6,7,
D1,2,6,8 = D1,3,6,8, ...). The number of useful reconstruction can
be reduced to 202.

5.4 Fault detection and isolation

For fault detection, Mahalanobis distance is used. Figure 3
shows the Mahalanobis distance divided by its detection thresh-
old, i.e. a fault is detected if the normalised Mahalanobis dis-
tance is greater than one. The detection threshold was empir-
ically chosen. Then 22 faults are detected, on this figure, the
different faults are numbered in order to isolate them in thenext
section.

To isolate fault, all useful reconstruction directions arecalcu-
lated. Figure 4 shows some values of the indicatorD for differ-
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Fig. 3. Fault detection with Mahalanobis distance

ent reconstruction directions. Table 2 summarizes the isolation
approach.

Fault index Reconstruction direction
under the detection threshold

16, 17 D1

3, 10, 11, 14, 15, 19, 20, 21 D3

7, 12 D1,6

6, 8, 13, 18, 22 D3,9

1, 2, 5 D1,3,4

4 D3,7,9

9 D1,2,3,7

Table 2. Summary of fault isolation

When the indicatorD3 is calculated, the faults 3, 10, 11, 14,
15, 19, 20 and 21 are close to zero, then one concludes that
during these periods variableH3 is faulty. Physically all these
faults are due to a change in the relationships between different
measures when the value ofH3 is less than 1m85. Indeed, upper
left corner of the figure 1 details the physical relation between
the bar screen and the sump. We can infer that when the water
level in the sump drops below about 1m85, the relationship
between the water level before, after the bar screen and the level
in the sump changes.

For faults 16, 17, the residual is close to zero when the first
variable (H1(k)) is reconstructed. For faults 7, 12 residual is
close to zero when the first (H1(k)) and the sixth (tanh((Q5(k−
1))− 550/150)) variables are reconstructed. These fault are
probably due to an element that disrupts the flow in the bar
screen.

For fault 4, the residual is close to zero when the third (H3(k)),
seventh (H1(k− 1)) and ninth (C4(k)) variables are recon-
structed. For faults 6, 8, 13, 18, 22, the residual is close tozero
when the third (H3(k)) and ninth (C4(k)) variables are recon-
structed. For faults 1, 2, 5, the residual are close to zero when
the first (H1(k)), third (H3(k)) and fourth (Q5(k)) variables are
reconstructed. An explanation for all these faults may be that
the water level in the sumpH3 is so low that a pump of the
pumping station does not work properly. Indeed it is possible
that a pump, because of a lack of water, does not work.

For fault 9, the residual is close to zero when the first (H1(k)),
second (H2(k)), third (H3(k)) and seventh (H1(k− 1)) vari-
ables are reconstructed. It concludes that an element probably
disrupts the flow in the bar screen and that theH3 is less than
1m85.

6. CONCLUSION

A new robust PCA, based on a scale-M estimator, has been
presented in this paper. Then, structured residuals are used for
multiple faults detection and isolation. To avoid the combina-
torial explosion of faulty scenarios related to multiple faults
to consider, the existence condition of structured residuals is
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Fig. 4. Fault isolation

evaluated. This procedure is finally applied for diagnosis of the
hydraulic part of an activated sludge WWTP. Hence, the pro-
posed method allows to determine simultaneous faulty sensors
or system fault for whose fault signature is associated to several
errors on signals from sensors.
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