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Abstract.
Principal component analysis (PCA) is a powerful fault detection technique
which has been widely used in process industries. However, amain draw-
back of PCA is that it is based on least squares estimation techniques and
hence fails to account for outliers which are common in physical processes.
This paper is concerned with the fault detection and isolation problem. The
proposed method does not require a data matrix without outliers for a PCA
model design. Indeed, the approach directly uses the eventually corrupt
database to elaborate a robust PCA model allowing fault detection. Then
reconstruction principle and fault signatures analysis are used for fault iso-
lation.

Keywords: Principal component analysis, robustness, fault signature, fault
detection and isolation, outliers.

1. Introduction

Principal component analysis (PCA) is widely used as a multivariate statistical method for
fault detection, isolation and diagnosis. PCA is mainly based on the description of linear
relations between variables and optimises a MSE (Mean Square Error) criterion. It is well-
known that the estimation based on a criterion like MSE is less robust to outliers than that
resulting from other criteria like error absolute value (Hubertet al., 2005). Let us recall that
the traditional approach of thePCA uses a preliminary calculation of the average of data
and their covariance matrix; average and variance are sensitive to outliers, and the obtained
results are often not exploitable because too biased by the influence of these outliers.
To take outliers into account, a robust covariance matrix ofthe data can be used to construct
a robust principal component analysis. For that, Croux and Haesbroeck, (2000) built partic-
ular functions of influence and the asymptotic variances which result from them. Engelen
et al.,(2005) proposed the robust approachROBPCA, which combines revealing projections
with a robust estimate of the variance matrix. This technique produces estimates which
appear robust in the presence of outliers. Brownet al.,(2005) focused on the robust es-
timate of the covariance matrix for multidimensional systems. Other approaches dealing
with the problem of robustness were proposed in (Böhning and Ruangroj, 2002) by using a
scale-contaminated distribution law and in (Salibian-Barreraet al., 2006) where the authors
develop an approach based on a moment calculation.
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Our presentation is devoted to the problem of fault detection and isolation in data. In gen-
eral, faults result from process dysfunctions or from the system of measurement acquisition.
The contribution essentially deals with the detection and isolation of outliers by using com-
plementary tools: robust principal component analysis, data reconstruction and residual
analysis with the fault signatures. Section 2 is a short reminder, on one hand, of the princi-
pal component analysis in the traditional case and, on the other hand, of the robust principal
component analysis. A detection and isolation procedure for outliers is proposed in section
3, then, in section 4, is applied to an example of synthesis emphasizing the generation of
fault signatures.

2. PCA fault detection and isolation

Let us consider a data matrixX ∈ ℜN×n, with vector linesxT
i , which gatherN measure-

ments collected on then system variables.

2.1. Traditional approach

In the traditionalPCA case, data are supposed to be collected on a system being in a normal
process operation.PCA determines an optimal linear transformation of the data matrix X
in terms of capturing the variation in the data:

T = XP et X = TPT (1)

with T ∈ ℜN×m the principal component matrix and the matrixP ∈ ℜm×m the one that
contains the principal vectors which are the eigenvectors associated to the eigenvaluesλi of
the covariance matrix (or correlation matrix)Σ of X:

Σ = PΛPT avec PPT = PT P = Im (2)

whereΛ = diag(λ1 . . . λm) is a diagonal matrix with diagonal elements in decreasing
magnitude order.
The relations (1) are meaningful when the dimension of the representation space is reduced.
Once the component numberℓ to retain is determined, the data matrixX can be approxi-
mated. For that, the eigenvectors matrix is partitioned into the form:

P =
(

P̂ P̃
)

P̂ ∈ Rn×ℓ (3)

From the decomposition (1),̂X is the principal part of the data explained by theℓ first
eigenvectors and the residual partX̃ is explained by the remaining components:

X̂ = XP̂ P̂T = XCℓ (4)

E = X − X̂ = X(I − Cℓ) (5)

where the matrixCℓ = P̂ P̂T is not equal to the identity matrix.

2.2. Robust approach

A major difficulty of PCA comes from its sensitivity to outliers. In order to reduce this
sensitivity, various techniques are usable and in particular that which consists in carrying
out PCA directly on the data possibly contaminated by outliers. An alternative is to seek
principal directions robust to these outliers. Fekri and Ruiz-Gazen,(2003) define a “local”
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matrix of variance in the sense that the suggested form tendsto emphasize the contribution of
close observations in comparison with distant observations (outliers). The matrix is defined
in the following way according to the observationsxi:

V =

N−1
∑

i=1

N
∑

j=i+1

wi,j(xi − xj)(xi − xj)
T

N−1
∑

i=1

N
∑

j=i+1

wi,j

(6)

where the weightswi,j themselves are defined by:

wi,j = exp

(

−
β

2
(xi − xj)

T Σ−1(xi − xj)

)

(7)

β being a turning parameter to reduce the influence of the observations faraway, the authors
recommend a value close to2. Thanks to the presence of adapted weightswi,j , PCA can
then be carried out on this “new” matrix of covariance considered robust with respect to
outliers.

3. Fault detection

3.1. Data reconstruction

PCA can be used for fault detection, these faults resulting in outliers which are highlighted
by projection onto the residual space (Dunia and Qin, 1998).ThePCA model being known,
a new measurement vectorx can be decomposed as below:

x = x̂ + x̃ , x̂ = Cℓ x , x̃ = (I − Cℓ) x (8)

wherex̂ andx̃ are respectively the projections ofx on the principal space and residual space.
From (8), it is possible to estimate a particular component of the vectorx, for example the
Rth, where R is a subset containing the indices of the reconstructed variables. However,
the presence of outliers in the observation vectorx returns the estimated̂x sensitive to this
value. It is then preferable to express this estimatedx̂ by using only the fault-free part of the
observation vectorx.
The reconstruction (Dunia and Qin, 1998) of process faults consists in estimating the re-
constructed vector̂xR by eliminating the effect of the faults. MatrixΞR indicates the re-
construction directions. This matrix is orthonormal with dimension (n × number of re-
constructed variables) and is constructed with 0 and 1, where 1 indicates the reconstructed
variables from the other variables (with 0), for exampleΞR = [0 1 0 1 0]

T for n = 5 and
one reconstructed variable (R = {2, 4}).
The expression for the reconstructionx̂R of the variablex is given by (Dunia and Qin, 1998):

x̂R = [I − ΞR(Ξ̃T
RΞ̃R)−1Ξ̃T

R)]x (9)

whereΞ̃ = (I − Cℓ)ΞR.
Let us note that if(Ξ̃T

RΞ̃R)−1 exists theRth variable is completely reconstructable or else
the fault is partially reconstructable. This two cases are presented by (Dunia and Qin, 1998).
In the following, only completely reconstructable faults are considering.
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3.2. Residual generation

In a diagnosis objective, residuals are generated for faultdetection and isolation. The recon-
struction procedure is successively applied to all the components ofx. The reconstructions
obtained (9) are then compared with the measurements. The residuals are obtained by pro-
jecting the reconstructed variables onto the residual space. Residuals are defined bỹxR,
projection ofx̂R onto the residual space:

x̃R = P
(ℓ)
R x (10)

P
(ℓ)
R = (I − Cℓ) − Ξ̃R(Ξ̃T

RΞ̃R)−1Ξ̃T
R (11)

Remark 1. Matrix P
(ℓ)
R has the following proprieties:

P
(ℓ)
R ΞR = 0 and ΞT

RP
(ℓ)
R = 0 (12)

It means that the components ofx̃R are not sensitive to theRth components ofx. This
remark can be used to identify which component ofx is disturbed by faults.
For example, considering a measurementx composed with the true valuex∗, a noiseǫ with
null mean and one fault of amplituded and directionΞF , whereF is a subset containing the
indices of the reconstructed variables:

x = x∗ + ǫ + ΞF d (13)

then the residual is:

x̃R = P
(ℓ)
R (x∗ + ǫ + ΞF d) = P

(ℓ)
R (ǫ + ΞF d) (14)

and its expected value is:
E(x̃R) = P

(ℓ)
R ΞF d (15)

-if the reconstruction directionΞR is the same as the fault, i.e. ifR = F ,then all components
of the vectorP (ℓ)

R ΞF are null andE(x̃R) = 0
-if the reconstruction directionΞR is different from the fault direction, then all components
of the vectorP (ℓ)

R ΞF are a priori not null except theRth components.
Then, the analysis of the residual amplitudesx̃R for all possible combinations shows the
presence of faults and makes it possible to determine the components of the measurement
affected by this fault.

4. Numerical example

4.1. Numerical example - mono-fault case

Data generation
A simple example based on four variables (x1, x2, x3 et x4) and two models is used. The
data matrixX includesN = 240 measurements defined in the following way:

xi,1 = v2
i + 1 + sin(0.1i), vi ∼ N (0, 1) (16)

xi,2 = xi,1, xi,3 = −2xi,1, xi,4 ∼ N (0, 1)

Realizations of centered normal distributions with the same standard deviation equal to0.02
are added to these four variables. The variablex4, independent of other variables, is a
perturbation forPCA. A constant bias of amplitude equal to3 simulates the presence of
outliersδx1, δx2, δx3 affecting the variablesx1, x2 andx3: from 24 to 44 for the variable
x1, from 80 to 100 for the variablex2, from 140 to 160 for the variablex3. It’s important
to notice that 60 observations contained abnormal values, hence25 percent of the data are
contaminated by these values. The objective is to detect andespecially isolate them.
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Sensitivity analysis and theoretical fault signature
The data in the table 1 summarize the relationship between residual sensitivitỹxR (10) and
outliers or faultsδx1, δx2 andδx3 (fault δx4 on variablex4 is not considered). This table
was constructed while taking into account proprieties of the matrixP

(ℓ)
R (12). For example,

the first four residuals̃x11 to x̃14 (relative to variablesx1, x2, x3 andx4) were obtained by
projection onto the residual space of reconstructed variables without variablex1. As the first
line and the first column ofP ℓ

1 are null, according to (12), the residualx̃11 is not sensitive to
variablesx1, x2 andx3 and consequently to potential faultsδx1, δx2 or δx3 affecting these
variables. Moreover, the residualsx̃12, x̃13 andx̃14 are not sensitive to variablex1 and thus
to the faultδx1 which can affect them. To summarize these different situations, the symbols
× and0 translate, or not, the fault influence on the residuals. The other parts of the table
were constructed with this same principle by considering the different projection matrices
P

(ℓ)
2 , P

(ℓ)
3 andP

(ℓ)
4 . By analysing the dependence of the columns of the signaturematrix,

one can establish necessary conditions allowing the fault detection and isolation.
Let us note that only two projection matrices and two residuals are necessary for fault de-
tection and isolation. For example, matricesP

(ℓ)
1 andP

(ℓ)
2 (11), allow to build the residuals

x̃12 (relative tox2), x̃21 (relative tox1) which, permit to detect and isolate one of the three
faults. Indeed, table (1) indicates that with these two residuals, the signature faultsδx1, δx2

andδx3 are respectively(0 ×), (× 0) and(× ×); these three signatures are
independent and thus the faults are isolable from each other.

Table 1. Fault signatures
r = 1 r = 2 r = 3 r = 4

x̃11 x̃12 x̃13 x̃14 x̃21 x̃22 x̃23 x̃24 x̃31 x̃32 x̃33 x̃34 x̃41 x̃42 x̃43 x̃44

δx1 0 0 0 0 × 0 × × × × 0 × × × × 0
δx2 0 × × × 0 0 0 0 × × 0 × × × × 0
δx3 0 × × × × 0 × × 0 0 0 0 × × × 0

Fault detection
Through the use of raw data, we established a robust PCA modelby applying the proposi-
tions of section 3. The analysis of the decrease of the standardized eigenvalues of the covari-
ance matrix (85.94, 13.99, 0.04, 0.03), allows to retain twoprincipal components (ℓ = 2).
As indicated by remark 1, in the case of the residual generated without using variablex1,
only faults affecting the variablesx2 andx3 are detectable on the residualsx̃12, x̃13 andx̃14.
Graphics of the figure 1 are relative to a global indicator∆R (norm of the projection vector
weighted by the covariance matrixVR = P

(ℓ)
R ΣP

(ℓ)T
R of these projections) computed for

each observation:
∆R =‖ x̃R ‖2

V
−1

R

(17)

A simple jump test on the∆R quantity (like Page-Hinkley for example) allows to determine
the index of the fault observations. Detection and isolation are realised without ambiguity
and are in accordance with the theoretical results of the isolation procedure (table 1). We
can notice that a traditional non-robust PCA gives no significant result for fault detection.

4.2. Numerical example - multi-fault case

Data generation
The matrixX includesN = 108 observations of a vectorx with 8 components generated
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Fig. 1. Global indicator for x1 and x2

in the following way:

xi,1 = v2
i + sin(0.1i), xi,2 = 2 sin(i/6) cos(i/4) exp(−i/N), vi ∼ N (0, 1) (18)

xi,3 = log(x2
i,2), xi,4 = xi,1 + xi,2, xi,5 = xi,1 − xi,2

xi,6 = 2xi,1 + xi,2, xi,7 = xi,1 + xi,3, xi,8 ∼ N (0, 1)

On the data thus generated were superimposed realizations of random variables with cen-
tered normal distribution and standard deviations equal to0.02 as well as faultsδx1, δx2,
δx3, δx4 represented by a bias of amplitude equal to3 and defined in the following way:
observations from10 to 24 for the variablex1, observations from35 to 49 for the variables
x2 andx3, observations from60 to 74 for the variablesx3 andx4, observations from85 to
99 for the variablex4. In the following, these four intervals are indicated byI1, I2, I3, I4.

Sensitivity analysis
Concerning the a priori analysis of fault isolation, we limit ourselves to giving a reduced ta-
ble of signatures (table 2) established from the properties(12). It reveals only some possible
faults, notedδ in the first line, those affecting variables1, 2, 3, 4 and those affecting the
couples of variables{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. The first column relates to
the norm∆R of the residual vectors obtained by reconstruction-projection of the variables
by using all the components ofx except that with the indicesR. The residuals are defined
by (10). This table, which the reader will be able to extend , provides a correspondence be-

Table 2. Reduced table of faults signature
∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆12 ∆13 ∆14 ∆15 ∆16 ∆23 ∆24 ∆25 ∆26 ∆34 ∆35 ∆36

δ1 0 × × × × × 0 0 0 0 0 × × × × × × ×
δ2 × 0 × × × × 0 × × × × 0 0 0 0 × × ×
δ3 × × 0 × × × × 0 × × × 0 × × × 0 0 0
δ4 × × × 0 × × × × 0 × × × 0 × × 0 × ×
δ12 × × × × × × 0 × × × × × × × × × × ×
δ13 × × × × × × × 0 × × × × × × × × × ×
δ14 × × × × × × × × 0 × × × × × × × × ×
δ23 × × × × × × × × × × × 0 × × × × × ×
δ24 × × × × × × × × × × × × 0 × × × × ×
δ34 × × × × × × × × × × × × × × × 0 × ×

tween the symptoms∆R and the faultsδR. For example, the defectδ2 affects all projections
except those established without components2, {1, 2}, {2, 3}, {2, 4}, {2, 5}, {2, 6}.
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Fault detection
From the contaminated data, the robustPCA model, with four principal axes, was chosen.
Without carrying out the reconstruction, the observationswere projected onto the residual
space. The analysis of the residual norm thus generated by using all the variables reveals
the presence of defects in the four intervalsI1, I2, I3, I4, without being able to call into
question a particular variable. This phase of detection is now supplemented by a stage of
fault isolation.
The reconstruction is then carried out from all the variables except the variable1, then
starting from all the variables except the variables1 and2,... the last reconstruction being
made from all the variables except the variables7 and8.
The figures 2 visualize the reconstructions of variables without using the variable1. This
figure shows the reconstruction of the first seven variables which are to be associated with
the column∆1 of table 2 specifying the isolable faults.
TheN reconstructed data were then projected onto the residual space. For each observation
fault indicator∆R (17) were calculated.
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Fig. 2. Variables reconstruction without using variable 1 and global indicator

Let us analyse the figure 2. The variable1, biased for the observations of the intervalI1, is
not used for the reconstruction and the other variables which are used for the reconstruction
do not present any bias. For these observations, the reconstructions are thus correct, em-
phasizing the first graph (starting from the top of the figure)which shows the superposition
of the reconstructed variables (symbol ’o’) with the true variables (in practice the latter are
unknown, but at this stage where the data are generated, the comparison is possible). The
measurement of the variable is also indicative (continuousline) in order to compare it with
the reconstruction.
This result is confirmed by the last graph of the figure 2 where the norm of the vector
projection (17) was traced. For the observations of the interval I1 this norm is close to the
value0 thus testifying to the absence of outliers in the variables used for the reconstruction
and projection, i.e. all the variables exceptx1. Let us note that the three other groups of
observations (I2, I3, I4) are affected by faults, without knowing exactly which components
of the measurement vector are faulty. Finally, by taking into account the fault presence in
the four intervals, the examination of the figure 2 concludesthat:
- in each intervalI2, I3, I4, a variable other thanx1 is faulty
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Other projections (not presented here) are built and are interpreted in a similar way. The
table 3 summarizes the conclusions resulting from the projection analysis. The line∆1

relates to the reconstructed residuals without using the first variable, the symbol0 attests the
fault absence in the considered interval. The diagnosis is then:

- in the intervalI1, x1 is faulty
- in the intervalI2, x2 andx3 are faulty
- in the intervalI3, x3 andx4 are fautly
- in the intervalI4, x4 is faulty

Table 3. Fault signatures
I1 I2 I3 I4

∆1 0 × × ×
∆23 × 0 × ×
∆24 × × × 0
∆34 × × 0 0

5. Conclusion

Simulation results confirm that for data not contaminated byerrors, classicalPCA and ro-
bustPCA give similar results. In the other situations where outliers corrupt the data, tradi-
tionalPCA proves to be ineffective, whereas its robust version gives completely satisfactory
results. On the treated examples, the presence of approximately 25 percent of outliers autho-
rizes a correct estimation of the principal directions, then the estimation is not very sensitive
to these values. APCA model can thus be built directly from the available data containing
potential faults.
The most important result concerns the diagnosis of the systems, applied here to the detec-
tion and isolation of outliers. For that, we showed how to build fault indicators. The use
of the principle of reconstruction and projection of the reconstructed data together made it
possible to detect and isolate outliers in an effective way.
The procedure suggested here, is not limited in theory by thenumber of variables. However,
the computational load is likely to become incompatible with an on-line treatment of the
data and a reduction of the reconstruction and projection number is possible; this point will
require a detailed attention in the follow-up of our work.
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