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Abstract.

Principal component analysis (PCA) is a powerful fault déts technique
which has been widely used in process industries. Howeue®ia draw-
back of PCA is that it is based on least squares estimatidmigges and
hence fails to account for outliers which are common in ptalgirocesses.
This paper is concerned with the fault detection and isatgpiroblem. The
proposed method does not require a data matrix withoutessitfor a PCA
model design. Indeed, the approach directly uses the ealnizorrupt
database to elaborate a robust PCA model allowing faultctiete Then
reconstruction principle and fault signatures analysisueed for fault iso-
lation.

Keywords: Principal component analysis, robustness, fault sigeafiault
detection and isolation, outliers.

1. Introduction

Principal component analysis (PCA) is widely used as a wariite statistical method for
fault detection, isolation and diagnosis. PCA is mainlydshen the description of linear
relations between variables and optimises a MSE (Mean 8dtraor) criterion. It is well-
known that the estimation based on a criterion like MSE is tebust to outliers than that
resulting from other criteria like error absolute value fdttet al., 2005). Let us recall that
the traditional approach of tHeCA uses a preliminary calculation of the average of data
and their covariance matrix; average and variance aretsensi outliers, and the obtained
results are often not exploitable because too biased byfluence of these outliers.

To take outliers into account, a robust covariance matrtkefdata can be used to construct
a robust principal component analysis. For that, Croux aaelddroeck, (2000) built partic-
ular functions of influence and the asymptotic variancestvinésult from them. Engelen
et al.,(2005) proposed the robust appro&PBPCA, which combines revealing projections
with a robust estimate of the variance matrix. This techaiguoduces estimates which
appear robust in the presence of outliers. Brawil.,(2005) focused on the robust es-
timate of the covariance matrix for multidimensional sys¢e Other approaches dealing
with the problem of robustness were proposed ial{@ng and Ruangroj, 2002) by using a
scale-contaminated distribution law and in (SalibiantBeaet al., 2006) where the authors
develop an approach based on a moment calculation.
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Our presentation is devoted to the problem of fault detactiod isolation in data. In gen-

eral, faults result from process dysfunctions or from theteay of measurement acquisition.
The contribution essentially deals with the detection a&othition of outliers by using com-

plementary tools: robust principal component analysisa daconstruction and residual
analysis with the fault signatures. Section 2 is a shortmet, on one hand, of the princi-
pal component analysis in the traditional case and, on ther diand, of the robust principal

component analysis. A detection and isolation proceduredtiers is proposed in section
3, then, in section 4, is applied to an example of synthesighasizing the generation of
fault signatures.

2. PCA fault detection and isolation

Let us consider a data matrix € RV*", with vector linesz?, which gatherN' measure-
ments collected on the system variables.

2.1. Traditional approach

In the traditionalPCA case, data are supposed to be collected on a system beingiimaln
process operationPCA determines an optimal linear transformation of the dataimat
in terms of capturing the variation in the data:

T=XP et X=1PT (1)

with T € RV>™ the principal component matrix and the matfxc R™*™ the one that
contains the principal vectors which are the eigenvectsss@ated to the eigenvalugsof
the covariance matrix (or correlation matriX)of X:

Y =PAPT avec PPT=P'P=1, 2

where A = diag(); ... \,) is a diagonal matrix with diagonal elements in decreasing
magnitude order.

The relations (1) are meaningful when the dimension of theagentation space is reduced.
Once the component numbéto retain is determined, the data matfxcan be approxi-
mated. For that, the eigenvectors matrix is partitioned the form:

P=(P P) P e R €)

From the decomposition (1)¥ is the principal part of the data explained by thérst
eigenvectors and the residual partis explained by the remaining components:
X =XxPP" = XC, (4)
E=X-X=X(I-0C)) (5)

where the matrixC;, = PP is not equal to the identity matrix.

2.2. Robust approach

A major difficulty of PCA comes from its sensitivity to outliers. In order to reducis th
sensitivity, various techniques are usable and in padictiiat which consists in carrying
out PCA directly on the data possibly contaminated by outliers. Aeraative is to seek
principal directions robust to these outliers. Fekri andzRBazen,(2003) define a “local”
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matrix of variance in the sense that the suggested form teretaphasize the contribution of
close observations in comparison with distant observatfontliers). The matrix is defined
in the following way according to the observations
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where the weights; ; themselves are defined by:

w;,j = exp <—§(ml - x_j)TE_l(a:i — acj)> @)

0 being a turning parameter to reduce the influence of the wasens faraway, the authors
recommend a value close 2o Thanks to the presence of adapted weights, PCA can
then be carried out on this “new” matrix of covariance coasid robust with respect to
outliers.

3. Fault detection

3.1. Data reconstruction

PCA can be used for fault detection, these faults resulting thiesa which are highlighted
by projection onto the residual space (Dunia and Qin, 19888 PCA model being known,
a new measurement vectoican be decomposed as below:

x=i+& , £=Cxz , T=I-Cpx (8)

wheret andz are respectively the projections:obn the principal space and residual space.
From (8), it is possible to estimate a particular componénhe vectorz, for example the
R where R is a subset containing the indices of the recoristiu@riables. However,
the presence of outliers in the observation veatoeturns the estimatet! sensitive to this
value. Itis then preferable to express this estimateg using only the fault-free part of the
observation vectar.

The reconstruction (Dunia and Qin, 1998) of process fautssists in estimating the re-
constructed vectot z by eliminating the effect of the faults. MatriXy indicates the re-
construction directions. This matrix is orthonormal wittmeénsion ¢ x number of re-
constructed variables) and is constructed with 0 and 1, evhéndicates the reconstructed
variables from the other variables (with 0), for exam@le = [0 1 0 1 0]” for n = 5 and
one reconstructed variabl®& (= {2, 4}).

The expression for the reconstructibp of the variabler is given by (Dunia and Qin, 1998):

Er(ERER)'ER)e 9)

.fR = [I — SR
where= = (I — Cy)Ep.
Let us note that if=L=g) ! exists theR!" variable is completely reconstructable or else
the fault is partially reconstructable. This two cases aesgnted by (Dunia and Qin, 1998).
In the following, only completely reconstructable faulte @onsidering.
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3.2. Residual generation

In a diagnosis objective, residuals are generated for fetéiction and isolation. The recon-
struction procedure is successively applied to all the aomepts ofr. The reconstructions
obtained[(9) are then compared with the measurements. Sliiads are obtained by pro-
jecting the reconstructed variables onto the residualesp&esiduals are defined bk,
projection ofz r onto the residual space:

in = Py (10)
Py = (I-Cy)-Zr(EhER) 15, (11)

Remark 1. Matrix Pl(f) has the following proprieties:
PYZr=0 and ELPY =0 (12)

It means that the components ®f, are not sensitive to th&” components of:. This
remark can be used to identify which component @& disturbed by faults.

For example, considering a measuremenbmposed with the true valu€e', a noisec with
null mean and one fault of amplitudeand directiorE -, whereF' is a subset containing the
indices of the reconstructed variables:

r=x"+e+Epd (13)
then the residual is:
in=PY(a* +e+Epd) = PV (c + Epd) (14)
and its expected value is:
E(ig) = PYZrd (15)

-if the reconstruction directioB r is the same as the fault, i.e.Af = F',then all components
of the vectorPI(f)EF are nullandE(Zr) =0

-if the reconstruction directioB y, is different from the fault direction, then all components
of the vectorPI(f)EF are a priori not null except thB** components.

Then, the analysis of the residual amplitudes for all possible combinations shows the
presence of faults and makes it possible to determine th@aoemts of the measurement
affected by this fault.

4. Numerical example

4.1. Numerical example - mono-fault case

Data generation
A simple example based on four variables ,(x2, x3 etz,4) and two models is used. The
data matrixX includesN = 240 measurements defined in the following way:

zi1 = v +1+sin(0.13), wv; ~ N(0,1) (16)
Tip =Ti1, Xiz=—2x;1, x4~ N(0,1)

Realizations of centered normal distributions with the satandard deviation equal@®2
are added to these four variables. The variableindependent of other variables, is a
perturbation forPCA. A constant bias of amplitude equal 3osimulates the presence of
outliersdxy, dxo, dx3 affecting the variables, xo andxs: from 24 to 44 for the variable
x1, from 80 to 100 for the variablexsy, from 140 to 160 for the variablexs. It's important

to notice that 60 observations contained abnormal values;d25 percent of the data are
contaminated by these values. The objective is to detecespekially isolate them.



Robust fault detection and isolation 5

Sensitivity analysis and theoretical fault signature

The data in the table 1 summarize the relationship betwesdual sensitivityz z (10) and
outliers or faultsdxq, dzo anddxs (fault §z4 on variablexr, is not considered). This table
was constructed while taking into account proprieties efrttatrixPI(f) (12). For example,
the first four residualg; to 714 (relative to variables:, x2, x3 andxz,) were obtained by
projection onto the residual space of reconstructed vi@sakithout variable:;. As the first
line and the first column aP{ are null, according to (12), the residual; is not sensitive to
variablesr, o andxs and consequently to potential faufts;, dxo or dx3 affecting these
variables. Moreover, the residuals,, 213 andz4 are not sensitive to variablg and thus
to the faultéx; which can affect them. To summarize these different sibnatithe symbols
x andO translate, or not, the fault influence on the residuals. Tthergparts of the table
were constructed with this same principle by considerirgdifferent projection matrices
Pz(‘g), P3(’Z) andPy). By analysing the dependence of the columns of the signatatex,
one can establish necessary conditions allowing the fattotion and isolation.

Let us note that only two projection matrices and two redslase necessary for fault de-
tection and isolation. For example, matridég) andPQ(Z) (11), allow to build the residuals
T12 (relative toxs), To1 (relative tox;) which, permit to detect and isolate one of the three
faults. Indeed, tablé (1) indicates that with these twodhessis, the signature fauls: |,
anddzs are respectively0 x), (x 0) and (x x); these three signatures are
independent and thus the faults are isolable from each.other

Table 1. Fault signatures

r=2 r=3 r=4
T11 T12 T13 T14|To1 Too Tog To4|T31 T32 T33 T34|Ta1 T42 T43 Ty
610 0 O Olx 0 x x|x x 0 x|x x x 0
o2l 0 x x x| 0 O O O x x 0
ox3] 0 x x x|x 0 x X x x 0

r=1

X

x 0 x| x
0 0 O0|x

o

Fault detection

Through the use of raw data, we established a robust PCA nhgdabplying the proposi-
tions of section 3. The analysis of the decrease of the stdizéa eigenvalues of the covari-
ance matrix (85.94, 13.99, 0.04, 0.03), allows to retain principal components/(= 2).
As indicated by remark 1, in the case of the residual gengnaithout using variabler;,
only faults affecting the variables, andx 3 are detectable on the residuéls, 713 andz4.
Graphics of the figure 1 are relative to a global indicalgr (norm of the projection vector
weighted by the covariance matri%; = P}(%Z)EPS)T of these projections) computed for
each observation:

Ar =] &r |2 (17)
R

A simple jump test on thé z quantity (like Page-Hinkley for example) allows to detemmi
the index of the fault observations. Detection and isotatice realised without ambiguity
and are in accordance with the theoretical results of thatiso procedure (table/1). We
can notice that a traditional non-robust PCA gives no sigaifi result for fault detection.

4.2. Numerical example - multi-fault case

Data generation
The matrixX includesN = 108 observations of a vectar with 8 components generated
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Fig. 1. Global indicator for z; and z2

in the following way:

T = viz +sin(0.1é), ;2 = 2sin(i/6) cos(i/4) exp(—i/N), wv; ~ N(0,1) (18)
;3= 108;(%2,2), Tia = Ti1 + Ty, Tis = Til — Ti2

Tig =2x;1 + Ti, Tig =1+ Tiz, Tig~ N(0,1)

On the data thus generated were superimposed realizafigaadom variables with cen-
tered normal distribution and standard deviations equél@® as well as fault9z, dxs,
dxs, dx4 represented by a bias of amplitude equas tand defined in the following way:
observations fromO0 to 24 for the variabler;, observations from35 to 49 for the variables
9 andzs, observations fron60 to 74 for the variables:s andxz,4, observations fron85 to
99 for the variabler4. In the following, these four intervals are indicated Ry I, I3, I4.

Sensitivity analysis

Concerning the a priori analysis of fault isolation, we limiirselves to giving a reduced ta-
ble of signatures (table 2) established from the propeftigs It reveals only some possible
faults, noted in the first line, those affecting variablés 2, 3, 4 and those affecting the
couples of variable$§1, 2}, {1,3},{1,4},{2,3},{2,4}, {3,4}. The first column relates to
the normA, of the residual vectors obtained by reconstruction-ptajacf the variables
by using all the components afexcept that with the indiceB. The residuals are defined
by (10). This table, which the reader will be able to extentbyjles a correspondence be-

Table 2. Reduced table of faults signature

Ay Ay Az Ay A5 Ag A1z Az Ay Ags Agg Aoz Aoy Ags Agg Agy Ags Asg
0110 X x x x x 0 0 0 0O 0 x x X X x x x
b |x 0 x x x x 0 x x x x 0 0 O 0 x x x
d3Ix x 0 x x x x 0 x x x 0 x x x 0 0 O
dg X x x 0 x x x x 0 x x x 0 x x 0 x x
012]X X x x x x 0 X X X X X X X X X x X
03X X X X X x x 0 X X X X X X X X X X
OalX X X X X X x x 0 X X X X X X X X X
0a3|X X X X X X X X X x x 0 x x x x x x
dog|X X X X X X X X X xXx x x 0 x x x x x
034/X X X X X X X X X X X x x x x 0 x x

tween the symptomA r and the fault$ z. For example, the defedt affects all projections
except those established without componéntd, 2}, {2, 3}, {2, 4}, {2,5}, {2, 6}.
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Fault detection

From the contaminated data, the robBSIA model, with four principal axes, was chosen.
Without carrying out the reconstruction, the observatimese projected onto the residual
space. The analysis of the residual norm thus generatedity al the variables reveals
the presence of defects in the four intervals I, I3, 14, without being able to call into
guestion a particular variable. This phase of detectioroig supplemented by a stage of
fault isolation.

The reconstruction is then carried out from all the varial#&cept the variablé, then
starting from all the variables except the variableend?2,... the last reconstruction being
made from all the variables except the variatiesds.

The figures 2 visualize the reconstructions of variableseuit using the variablé. This
figure shows the reconstruction of the first seven variableisiware to be associated with
the columnA; of tabld 2 specifying the isolable faults.

The N reconstructed data were then projected onto the residaaksf-or each observation
fault indicatorAr (17) were calculated.
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Fig. 2. Variables reconstruction without using variable 1 and global indicator

Let us analyse the figure 2. The varialilebiased for the observations of the interyal is
not used for the reconstruction and the other variablesiwdnie used for the reconstruction
do not present any bias. For these observations, the reaotishs are thus correct, em-
phasizing the first graph (starting from the top of the figuvl)ch shows the superposition
of the reconstructed variables (symbol '0’) with the trueiables (in practice the latter are
unknown, but at this stage where the data are generatedpthgacison is possible). The
measurement of the variable is also indicative (contindioe$ in order to compare it with
the reconstruction.

This result is confirmed by the last graph of the figure 2 whaeertorm of the vector
projection [(17) was traced. For the observations of thenmtd; this norm is close to the
value( thus testifying to the absence of outliers in the variabkediufor the reconstruction
and projection, i.e. all the variables excapt Let us note that the three other groups of
observationsl, I3, I,) are affected by faults, without knowing exactly which campnts
of the measurement vector are faulty. Finally, by taking iatcount the fault presence in
the four intervals, the examination of the figlrfe 2 conclutias:

- in each intervals, I3, I, avariable other tham, is faulty
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Other projections (not presented here) are built and aeggdreted in a similar way. The
table[ 3 summarizes the conclusions resulting from the ptioje analysis. The ling\;
relates to the reconstructed residuals without using teevariable, the symbdl attests the
fault absence in the considered interval. The diagnosksis:t

- in the intervally, z; is faulty Table 3. Fault signatures
- in the intervall,, 2 andzs are faulty L I, Is 14
-in the intervalls, x5 andz4 are fautly A |0 x  xx
- in the intervally, x4 is faulty Agg | x 0 x X%

Aoy | X X x 0
5. Conclusion Bag [ x> 00

Simulation results confirm that for data not contaminatecvgrs, classicaPCA and ro-
bustPCA give similar results. In the other situations where ouslieorrupt the data, tradi-
tional PCA proves to be ineffective, whereas its robust version gieasaietely satisfactory
results. On the treated examples, the presence of appr@tyria percent of outliers autho-
rizes a correct estimation of the principal directionsnttiee estimation is not very sensitive
to these values. 2CA model can thus be built directly from the available data aomihg
potential faults.

The most important result concerns the diagnosis of thesystapplied here to the detec-
tion and isolation of outliers. For that, we showed how tddéhult indicators. The use
of the principle of reconstruction and projection of theamstructed data together made it
possible to detect and isolate outliers in an effective way.

The procedure suggested here, is not limited in theory bydingber of variables. However,
the computational load is likely to become incompatiblehvan on-line treatment of the
data and a reduction of the reconstruction and projectionb&u is possible; this point will
require a detailed attention in the follow-up of our work.
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