

Nonlinear Joint State-Parameter Observer for VAV Damper position Estimation

SysTol'16, Barcelona, Spain June 7-9, 2016

Krishnan Srinivasarengan, José Ragot, Didier Maquin, Christophe Aubrun

UMR 7039

・ロト ・日・ ・ヨ・・

200

			CONCLUDING REMARKS
000000	00000000	000000	

Outline

Motivation

Building HVAC Optimization

2

Problem Formulation

- Modeling
- Joint state and parameter estimation in T-S Models

- Algorithm
- Simulation Results

MOTIVATION			CONCLUDING REMARKS
000000	00000000	000000	

Outline

Motivation Building HVAC Optimization

Duchlam Formulation

Modeling

Joint state and parameter estimation in T-S Models

3 Results

- Algorithm
- Simulation Results

4 Concluding Remarks

MOTIVATION		CONCLUDING REMARKS
000000		
BUILDING HVAC OPTIMIZATION		

Optimizing Energy Consumption of HVAC

Stages of HVAC optimization

- Commissioning phase of HVAC vs operational phase
- Studies indicate HVAC use 20% more power than designed for

Operational Phase Issues

- Faults from design phase, malfunctioning equipments
- Incorrectly configured control systems (e.g for weather changes)
- Inappropriate operating procedures (e.g. occupancy scheduling)

Energy in Time

- FP7 project: Integrated control systems and methodologies to monitor and improve building energy performance
- Large Scale non-residential buildings' operational phase issues: FDI, FTC, prognosis etc. as focus

MOTIVATION		CONCLUDING REMARKS
000000		
BUILDING HVAC OPTIMIZATION		

Building HVAC Schematic

MOTIVATION		CONCLUDING REMARKS
000000		
BUILDING HVAC OPTIMIZATION		

FDI/FTC in Building HVAC

Challenges

- Difficulty in obtaining model from normal operation data
- Large number of disturbances
- Need to consider fault propagation
- Presence of multiple local control act as a mask of faults
- Nonlinear and bilinear process models

Approaches

- A need for combined model based and data based approach
- Distributed FDI mechanism with fault propagation
- Usage of T-S model based approach for estimation tasks

MOTIVATION	PROBLEM FORMULATION	CONCLUDING REMARKS
0000000		
BUILDING HVAC OPTIMIZATIO)N	
Relevant W	orks	

Relevant Projects

- OptiControl ETH Zurich: Stochastic MPC
- Berkeley-Lawrence UC Berkeley: SQP to solve BMI
- CIESOL Spain + Brazil: Lagrangian dual method and parallel programming

FDI in Building HVAC

- Major focus in literature is on equipment level fault diagnosis
- Data based approach is prominent

Distributed FDI strategies for Building HVAC

- V.Reppa et.al 2015-VAV, Papadopoulous et.al 2015-FCU
- Strategy for distributed FDI for Sensor fault estimation
- Looking to extend to actuator faults

MOTIVATION		CONCLUDING REMARKS
0000000		
BUILDING HVAC OPTIMIZATI	ON	
Takagi-Sug	eno Modeling	

$$\dot{x}(t) = \sum_{i=1}^{r} \mu_i(\xi(t))(A_i x(t) + B_i u(t))$$
$$y(t) = \sum_{i=1}^{r} \mu_i(\xi(t))(C_i x(t) + D_i u(t))$$

- Polytopic, Quasi-LPV, Multi-Model, Fuzzy
- The model involves r 'linear sub-models'
- $\xi(t)$: premise variables
- μ_i(ξ(t)): weighting function which follows the convex sum property:

$$\sum_{i=1}^{r} \mu_i(\xi(t)) = 1 \text{ and } 0 \le \mu_i(\xi(t)) \le 1, \forall t, \forall i \in \{1, 2, ..., r\}$$

Allows extension of results in linear framework to nonlinear systems

MOTIVATION		CONCLUDING REMARKS
0000000		
BUILDING HVAC OPTIMIZAT	ION	
Deriving T	-S model	

Obtaining TS Model

- Identification: I/O data from the process to fit model parameters.
- Linearization: Around 'appropriate' operating points: I/O data required to improve weighting function to reduce error.
- Sector Nonlinearity

Sector Nonlinearity

Rewrite function within a compact subspace.

$$\begin{cases} \dot{x}(t) &= f(x(t), u(t)) \\ y(t) &= h(x(t), u(t)) \end{cases} \Rightarrow \begin{cases} \dot{x}(t) &= \sum_{i=1}^{r} \mu_i(\xi(t))(A_i x(t) + B_i u(t)) \\ y(t) &= \sum_{i=1}^{r} \mu_i(\xi(t))(C_i x(t) + D_i u(t)) \end{cases}$$

for $f(x(t)) \in [a_1a_2]x(t)$

Local Sector

Sector Nonlinearity Idea

Global Sector

- Physical systems: bounded \Rightarrow TS representation feasible.
- T-S Models 'exactly' represents the nonlinear system within the sector

PROBLEM FORMULATION	CONCLUDING REMARKS

Outline

Motivation Building HVAC Optimization

Problem Formulation

Modeling

Joint state and parameter estimation in T-S Models

3 Results

- Algorithm
- Simulation Results

Concluding Remarks

MOTIVATION	PROBLEM FORMULATION	CONCLUDING REMARKS

Objectives

Overall

- A distributed FDI strategy for large building HVAC systems
- A nonlinear model based fault estimation strategy
- Use of joint state and parameter estimation

Present work

- Develop a model of AHU-VAV-Zones with unknown time varying parameter
- Derive T-S equivalent models for joing state and parameter estimation
- Illustrate feasibility of nonlinear joint state and parameter estimation using T-S method by customizing existing literature results
- Outline the direction of integrating such strategy in the overall framework

	PROBLEM FORMULATION	CONCLUDING REMARKS
	00000000	
MODELING		

System under consideration

- The VAV box has a local control loop whose set point is given by a central controller
- Energy balance models are used for modeling the heat exchanger and zones
 - Heat exchanger: lumped nonlinear model of a counter flow heat exchanger
 - Room modeled as energy balance with interaction between zones and zone and external environment

	PROBLEM FORMULATION	CONCLUDING REMARKS
	00000000	
MODELING		
Models		

Heat Exchanger

$$\begin{aligned} \frac{dT_{ao}(t)}{dt} &= \frac{q_a(t)}{M_a} (T_{ai}(t) - T_{ao}(t)) + \frac{U_A(t)}{2C_{pa}M_a} \Delta T(t) \\ \frac{dT_{wo}(t)}{dt} &= \frac{q_w(t)}{M_w} (T_{wi}(t) - T_{wo}(t)) - \frac{U_A(t)}{2C_{pw}M_w} \Delta T(t) \\ \Delta T &\triangleq T_{wo} + T_{wi} - T_{ao} - T_{ai} \end{aligned}$$

Zones

$$C_{1} \frac{dT_{1}(t)}{dt} = q_{1}(t)C_{pa}(T_{ao}(t) - T_{1}(t)) + K_{12}(T_{2}(t) - T_{1}(t)) + K_{1amb}(T_{ai}(t) - T_{1}(t)) + K_{d_{2}}d_{2}(t) C_{2} \frac{dT_{2}(t)}{dt} = q_{2}(t)C_{pa}(T_{ao}(t) - T_{2}(t)) + K_{21}(T_{1}(t) - T_{2}(t)) + K_{2amb}(T_{ai}(t) - T_{2}(t)) + K_{d_{3}}d_{3}(t)$$

VAV

$$q_1(t) = \beta_1 q_a(t)$$
$$q_2(t) = \beta_2 q_a(t)$$
$$g_1 + \beta_2 = 1$$

<回><モ><モ><モ><モ><

13/31

	PROBLEM FORMULATION	CONCLUDING REMARKS
	0000000	
Modeling		

State space representation

State space model

$$\begin{aligned} \dot{x}_1 &= \alpha_1 q_a (d_1 - x_1) + \alpha_{2au} (T_{wi} + x_2 - d_1 - x_1) \\ \dot{x}_2 &= \alpha_3 u (T_{wi} - x_2) - \alpha_{2wu} (T_{wi} + x_2 - d_1 - x_1) \\ \dot{x}_3 &= \alpha_4 \beta_1 q_a (x_1 - x_3) + \alpha_5 (x_4 - x_3) + \alpha_6 (d_1 - x_3) + \alpha_7 d_2 \\ \dot{x}_4 &= \alpha_8 (1 - \beta_1) q_a (x_1 - x_4) + \alpha_9 (x_3 - x_4) + \alpha_{10} (d_1 - x_4) + \alpha_{11} d_3 \end{aligned}$$

States and Inputs:

$$x_1 riangleq T_{ao}, \ x_2 riangleq T_{wo}, \ x_3 riangleq T_1, \ x_4 riangleq T_2 \ u riangleq q_w, \ d_1 riangleq T_{au}$$

Constants:

$$\alpha_{1} \triangleq \frac{1}{M_{a}}, \alpha_{3} \triangleq \frac{1}{M_{w}}, \alpha_{2au} \triangleq \frac{U_{A}}{2C_{pa}M_{a}}, \alpha_{2wu} \triangleq \frac{U_{A}}{2C_{pw}M_{w}}, \alpha_{4} \triangleq \frac{C_{pa}}{C_{1}}, \alpha_{5} \triangleq \frac{K_{12}}{C_{1}}$$
$$\alpha_{6} \triangleq \frac{K_{1amb}}{C_{1}}, \alpha_{7} \triangleq \frac{K_{d1}}{C_{1}} \alpha_{8} \triangleq \frac{C_{pa}}{C_{2}}, \alpha_{9} \triangleq \frac{K_{21}}{C_{2}}, \alpha_{10} \triangleq \frac{K_{2amb}}{C_{2}}, \alpha_{11} \triangleq \frac{K_{d3}}{C_{2}}$$

14/31

	PROBLEM FORMULATION	CONCLUDING REMARKS
	00000000	
Modeling		
T-S pauive	lent model	

First step is to obtain a model of the form

$$\dot{x}(t) = \sum_{i=1}^{2^{\rho}} \mu_i(z(t)) (A_i(\theta(t))x(t) + B_i^{\nu}u(t) + B^{T}T_{wi} + B_i^{d}d(t))$$

$$y(t) = Cx(t) + H\nu(t)$$

where, $\theta = \beta_1$ and the premise variables are: $z_1 \triangleq q_a$ (measured) and $z_2 \triangleq T_{wo} = x_2$ (unmeasured state)

$$\begin{aligned} A_{i}(\theta(t)) &= \begin{bmatrix} -\alpha_{1}z_{1}^{i} - \alpha_{2au} & \alpha_{2au} & 0 & 0 \\ \alpha_{2wu} & -\alpha_{2wu} & 0 & 0 \\ \alpha_{4}\theta(t)z_{1}^{i} & 0 & -\alpha_{4}\theta(t)z_{1}^{i} - \alpha_{5} - \alpha_{6} & \alpha_{5} \\ \alpha_{8}(1 - \theta(t))z_{1}^{i} & 0 & \alpha_{9} & -\alpha_{8}(1 - \theta(t))z_{1}^{i} - \alpha_{9} - \alpha_{10} \end{bmatrix} \\ B_{i}^{u} &= \begin{bmatrix} 0 \\ \alpha_{3}(T_{wi} - z_{2}^{i}) \\ 0 \\ 0 \end{bmatrix}, B^{T} = \begin{bmatrix} \alpha_{2au} \\ -\alpha_{2wu} \\ 0 \\ 0 \end{bmatrix}, B_{i}^{d} = \begin{bmatrix} \alpha_{1}z_{1}^{i} - \alpha_{2au} & 0 & 0 \\ \alpha_{2wu} & 0 & 0 \\ \alpha_{6} & \alpha_{7} & 0 \\ \alpha_{10} & 0 & \alpha_{11} \end{bmatrix} \end{aligned}$$

where *i* subscript refers to the boundary value of the premise variable corresponding to the submodel.

	PROBLEM FORMULATION	CONCLUDING REMARKS
	00000000	
MODELING		

Models for Joint State and Parameter Estimation

Model derivation

 T-S model with time varying A-matrix (i.e., SNL applied to system considering premise variables),

$$\dot{x}(t) = \sum_{i=1}^{2^{p}} \mu_{i}^{z}(z) (A_{i}(\theta(t))x(t) + B_{i}(\theta(t))u(t))$$

 To apply SNL again to take care of unknown time varying parameter (where θ is the unknown time varying parameter with the bounds of [θ¹, θ²]):

$$A_i(\theta(t)) = \check{A}_i + \sum_{j=1}^{n_\theta} \sum_{k=1}^2 \mu_j^{\theta}(\theta(t)) \theta_j^k \bar{A}_j \qquad B_i(\theta(t)) = \check{B}_i + \sum_{j=1}^{n_\theta} \sum_{k=1}^2 \mu_j^{\theta}(\theta(t)) \theta_j^k \bar{B}_j$$

This can be simplified as,

$$\dot{x}(t) = \sum_{i=1}^{2^{p}} \sum_{j=1}^{2^{n} \theta} \mu_{i}^{z}(z(t)) \mu_{j}^{\theta}(\theta(t)) (A_{ij}x(t) + B_{ij}u(t))$$
$$y(t) = Cx(t)$$

The constant system matrices are split as

$$A_{ij} = \check{A}_i + \sum_{j=1}^{n_{\theta}} \theta_j^k \bar{A}_j \qquad B_{ij} = \check{B}_i + \sum_{j=1}^{n_{\theta}} \theta_j^k \bar{B}_j$$

	PROBLEM FORMULATION		CONCLUDING REMARKS
	000000000		
Modeling			
T-S joint s	tate and parameter n	nodels	

• The bound for unknown parameter $\theta \triangleq \beta_1$ is [0, 1]

• Only the *A* matrix depends on the unknown parameter. Hence $B_{ij}^{u} = B_{i}^{u}$ and so on.

$$A_{ij} = \begin{bmatrix} -\alpha_1 Z_1^i - \alpha_{2au} & \alpha_{2au} & 0 & 0 \\ \alpha_{2wu} & -\alpha_{2wu} & 0 & 0 \\ \alpha_4 \theta^j Z_1^i & 0 & -\alpha_4 \theta^j Z_1^i - \alpha_5 - \alpha_6 & \alpha_5 \\ \alpha_8 (1 - \theta^j) Z_1^i & 0 & \alpha_9 & -\alpha_8 (1 - \theta^j) Z_1^i - \alpha_9 - \alpha_{10} \end{bmatrix}$$

And since the two zone temperatures are the measured variables, we have,

$$\mathcal{C} = egin{bmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

PROBLEM FORMULATION

Results 000000 CONCLUDING REMARKS

JOINT STATE AND PARAMETER ESTIMATION IN T-S MODELS

T-S Parameter Estimation [Bezzaoucha et.al 2013]

Model structure

System Model structure

$$\dot{x}(t) = \sum_{i=1}^{2^{p}} \sum_{j=1}^{2^{n_{\theta}}} \mu_{i}^{z}(z(t)) \mu_{j}^{\theta}(\theta(t)) (A_{ij}x(t) + B_{ij}u(t))$$
$$y(t) = Cx(t)$$

- Observer Structure $\dot{\hat{x}}(t) = \sum_{i=1}^{2^{p}} \sum_{j=1}^{2^{n_{\theta}}} \mu_{i}^{z}(z)\mu_{j}^{\theta}(\hat{\theta})[A_{ij}\hat{x}(t) + B_{ij}u(t) + L_{ij}(y(t) - \hat{y}(t))]$ $\dot{\hat{\theta}}(t) = \sum_{i=1}^{2^{p}} \sum_{j=1}^{2^{n_{\theta}}} \mu_{i}^{z}(z)\mu_{j}^{\theta}(\hat{\theta})[K_{ij}(y(t) - \hat{y}(t)) - \eta_{ij}\hat{\theta}(t)]$ $\hat{y}(t) = C\hat{x}(t)$
- Original system in uncertain-like form for comparison $\dot{x}(t) = \sum_{i=1}^{2^{p}} \sum_{j=1}^{2^{n_{\theta}}} \mu_{i}^{z}(z)\mu_{j}^{\theta}(\hat{\theta})[(A_{ij} + \Delta A(t))x(t) + (B_{ij} + \Delta B(t))u(t)]$ y(t) = Cx(t)

(2)

(1)

うく(や 18/31

PROBLEM FORMULATION

Results 000000 CONCLUDING REMARKS

JOINT STATE AND PARAMETER ESTIMATION IN T-S MODELS

T-S Parameter Estimation [Bezzaoucha et.al 2013]

Error Dynamics

 This representation helps to obtain the observer error dynamics of the form:

$$\dot{oldsymbol{e}}_{oldsymbol{a}}(t) = \sum_{i=1}^{2^{
ho}} \sum_{j=1}^{2^{
ho_{ heta}}} \mu_i^{z}(z) \mu_j^{ heta}(\hat{ heta}) [\Phi_{ij}oldsymbol{e}_{oldsymbol{a}}(t) + \Psi_{ij}(t) \widetilde{u}(t)]$$

- $\boldsymbol{e}_{a}(t) \triangleq [\boldsymbol{e}_{x}(t) \ \boldsymbol{e}_{\theta}(t)]^{T}, \ \tilde{\boldsymbol{u}} \triangleq [\boldsymbol{x}(t) \ \theta(t) \ \dot{\boldsymbol{\theta}}(t) \ \boldsymbol{u}(t) \ \boldsymbol{\nu}(t)]^{T}.$
- Two objectives: stabilize Φ_{ij} and reduce impact of Ψ_{ij}(t) by bounding it.
- Stabilization: Bounded Real Lemma applied considering quadratic Lyapunov function (V(e(t)) = e^T(t)Pe(t)) with a derivative limit given by: V(t) + e^T_a(t)Pe_a(t) - ũ^T(t)Γ₂ũ(t) < 0
- To bound Ψ_{ij}(t), the convexity property of weighting functions and known matrix properties are used.

PROBLEM FORMULATION

Results 000000 CONCLUDING REMARKS

JOINT STATE AND PARAMETER ESTIMATION IN T-S MODELS

T-S Parameter Estimation [Bezzaoucha et.al 2013]

Theorem

There exists a robust state and parameter observer for the linear time varying parameter system with a bounded \mathcal{L}_2 gain β of the transfer from $\tilde{u}(t)$ to $e_a(t)$ ($\beta > 0$) if there exists $P_0 = P_0^T > 0$, $P_1 = P_1^T > 0$, $\beta > 0$, λ_1 , λ_2 , Γ_2^0 , Γ_2^1 , Γ_2^2 , Γ_3^3 , η_1 , η_2 , F_1 , F_2 , R_1 and R_2 (for $i = 1, ...2^p$, $j = 1, ..., 2^{n_\theta}$):

$$\begin{array}{l} \underset{P_0,P_1,R_{ij},\Gamma_{ij},\eta_{ij},\lambda_1,\lambda_2,\Gamma_2^0,\Gamma_2^1,\Gamma_2^2,\Gamma_2^3}{\text{minimize}} \beta \\ \Gamma_2^k < \beta I \text{ for } k = 0,1,2,3 \end{array}$$

under the LMI constraints

$$\begin{bmatrix} T_{11} & -C^T F_{jj}^T & 0 & 0 & 0 & 0 & P_0 \mathcal{A} & P_0 \mathcal{B} \\ * & -\bar{\eta}_{ij} - \bar{\eta}_{ij}^T + I & 0 & \bar{\eta}_{ij} & P_1 & 0 & 0 & 0 \\ * & * & -\Gamma_2^0 & 0 & 0 & 0 & 0 & 0 \\ * & * & * & -\Gamma_2^1 & 0 & 0 & 0 & 0 \\ * & * & * & * & * & -\Gamma_2^2 & 0 & 0 \\ * & * & * & * & * & * & -\Gamma_2^3 & 0 & 0 \\ * & * & * & * & * & * & * & -\lambda_1 I & 0 \\ * & * & * & * & * & * & * & 0 & -\lambda_2 I \end{bmatrix} < 0$$

with $T_{11} = P_0 A_{ij} + A_{ij}^T P_0 - R_{ij} C - C^T R_{ij}^T + I$

PROBLEM FORMULATION	RESULTS	CONCLUDING REMARKS

Outline

Building HVAC Optimization

- Modeling
- Joint state and parameter estimation in T-S Models

- Algorithm
- Simulation Results

		RESULTS	CONCLUDING REMARKS
0000000	00000000	00000	
Algorithm			

Implementation steps

Algorithm

- Choose η such that its eigenvalues are comparable to Φ_{ij}. Needs iterations. Diagonal with requisite eigenvalues.
- Choose Γ_2^k values to reduce the number of LMI variables.
- Enforce $P_0 > P_{0init}$ and $P_1 > P_{1init}$ for sufficiently large P_{0init} and P_{1init} . This would ensure that P_0^{-1} and P_1^{-1} are not close to singular and make the computation of the observer gains K_{ij} and L_{ij} unreliable.
- To ensure that there is a balance between the gains K_{ij} and η , an additional LMI constraint is considered as,

$$F_{ij} > \rho P_1 \eta$$

Updated L	MI conditions		
Algorithm			
0000000	00000000	00000	
	PROBLEM FORMULATION	RESULTS	CONCLUDING REMARKS

Theorem

There exists a robust state and parameter observer (2) for the Takagi-Sugeno time varying parameter system (1) with a bounded gain of $\gamma = [\gamma_x \gamma_\theta \gamma_\theta \gamma_\theta \gamma_u \gamma_\nu]^T$ from $\tilde{u}(t)$ to $e_a(t)$, if there exists $P_0 = P_0^T > 0$, $P_1 = P_1^T > 0$, $\lambda_1, \lambda_2 > 0$, F_{ij} , R_{ij} such that (for $i = 1..., 2^{\rho}$ and $j = 1..., n_{\theta}$), the following LMIs are satisfied

$$\begin{bmatrix} T_{11} & T_{12} & 0 & 0 & 0 & 0 & -R_{ij}I_{\nu} & P_{0}A & P_{0}B \\ * & T_{22} & 0 & \eta_{0}P_{1} & P_{1} & 0 & -F_{ij}I_{\nu} & 0 & 0 \\ * & * & T_{33} & 0 & 0 & 0 & 0 & 0 \\ * & * & * & -\gamma_{\theta}I_{\eta_{\theta}} & 0 & 0 & 0 & 0 \\ * & * & * & * & -\gamma_{\theta}J_{n_{\theta}} & 0 & 0 & 0 & 0 \\ * & * & * & * & * & T_{55} & 0 & 0 & 0 \\ * & * & * & * & * & * & T_{55} & 0 & 0 & 0 \\ * & * & * & * & * & * & * & -\gamma_{\nu}I_{\nu} & 0 & 0 \\ * & * & * & * & * & * & * & -\lambda_{1}I & 0 \\ * & * & * & * & * & * & * & * & -\lambda_{2}I \end{bmatrix} < C_{0}$$

where, $T_{11} = P_0 A_{ij} + A_{ij}^T P_0 - R_{ij} C - C^T R_{ij}^T + I_{n_X}$, $T_{12} = -C^T F_{ij}^T$, $T_{22} = -2\eta_0 P_1 + 1$, $T_{33} = -\gamma_x I_{n_X} + \lambda_1 E_A^T E_A$ and $T_{55} = -\gamma_u I_{n_u} + \lambda_2 E_B^T E_B$. The observer gains are given by:

$$\eta_{ij} = \eta_0, \ L_{ij} = P_0^{-1} R_{ij} \text{ and } K_{ij} = P_1^{-1} F_{ij}$$

	RESULTS	CONCLUDING REMARKS
	000000	
SIMULATION RESULTS		

Summary of Simulation results

Model parameters (sector min/max)

Parameter	Min	Max
Z1	0.16 kg/s	1.6 kg/s
Z2	293 K	368 K
β_1	0	100

Simulation parameters

Parameters	Values
η	10 ⁻⁴
ρ	10 ⁵
Γ ₂	0.1
Γ_2^{θ}	0.1
$\Gamma_2^{\overline{X}}$	0.1 <i>I</i> 4
$\Gamma_2^{\overline{u}}$	0.1
Γ_2^{ν}	0.1

Summary of Simulation results

Error	Mean (%)	Standard Deviation (%)
$ e_{x_1} $	0.04	0.4
$ e_{x_2} $	0.07	0.55
ex2	0.03	0.3
$ e_{x_A} $	0.03	0.3
$ e_{\theta} $	10.9	18.34

	RESULTS	CONCLUDING REMARKS
	000000	
SIMULATION RESULTS		

State Estimation

	RESULTS	CONCLUDING REMARKS
	000000	
SIMULATION RESULTS		

Parameter Estimation

26/31

	PROBLEM FORMULATION	RESULTS	CONCLUDING REMARKS
		00000	
SIMULATION RESULTS			

Input used to generate results

27/31

			CONCLUDING REMARKS
000000	00000000	000000	

Outline

Motivation

Building HVAC Optimization

Problem Formulation

Modeling

• Joint state and parameter estimation in T-S Models

3 Results

- Algorithm
- Simulation Results

4 Concluding Remarks

PROBLEM FORMULATI

Results 000000 CONCLUDING REMARKS

FDI using the estimation

PROBLEM FORMULATION	CONCLUDING REMARKS

Future Improvements

- A vanishing estimation error instead of an \mathcal{L}_2 gain.
- Extending results to discrete-time TS models
- Exploring approaches to cases where the unknown time varying parameter takes only discrete values (VAV damper position estimation with ON/OFF position)
- Using the T-S approach results in a distributed estimation framework

MOTIVATION PROBLEM FORMULATION RESULTS CONCLUDING REMARKS 0000000 00000000 0000000

Thank you