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BUILDING HVAC OPTIMIZATION

Optimizing Energy Consumption of HVAC

Stages of HVAC optimization

Commissioning phase of HVAC vs operational phase
Studies indicate HVAC use 20% more power than designed for

Operational Phase Issues

Faults from design phase, malfunctioning equipments
Incorrectly configured control systems (e.g for weather changes)
Inappropriate operating procedures (e.g. occupancy scheduling)

Energy in Time

FP7 project: Integrated control systems and methodologies to
monitor and improve building energy performance
Large Scale non-residential buildings’ operational phase issues:
FDI, FTC, prognosis etc. as focus
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Building HVAC Schematic
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BUILDING HVAC OPTIMIZATION

FDI/FTC in Building HVAC

Challenges

Difficulty in obtaining model from normal operation data
Large number of disturbances
Need to consider fault propagation
Presence of multiple local control act as a mask of faults
Nonlinear and bilinear process models

Approaches

A need for combined model based and data based approach
Distributed FDI mechanism with fault propagation
Usage of T-S model based approach for estimation tasks
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BUILDING HVAC OPTIMIZATION

Relevant Works

Relevant Projects

OptiControl - ETH Zurich: Stochastic MPC
Berkeley-Lawrence - UC Berkeley: SQP to solve BMI
CIESOL - Spain + Brazil: Lagrangian dual method and parallel
programming

FDI in Building HVAC

Major focus in literature is on equipment level fault diagnosis
Data based approach is prominent

Distributed FDI strategies for Building HVAC

V.Reppa et.al 2015-VAV, Papadopoulous et.al 2015-FCU
Strategy for distributed FDI for Sensor fault estimation
Looking to extend to actuator faults
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BUILDING HVAC OPTIMIZATION

Takagi-Sugeno Modeling

ẋ(t) =
r∑

i=1

µi (ξ(t))(Aix(t) + Biu(t))

y(t) =
r∑

i=1

µi (ξ(t))(Cix(t) + Diu(t))

Polytopic, Quasi-LPV, Multi-Model, Fuzzy
The model involves r ’linear sub-models’
ξ(t): premise variables
µi (ξ(t)): weighting function which follows the convex sum
property:

r∑
i=1

µi (ξ(t)) = 1 and 0 ≤ µi (ξ(t)) ≤ 1,∀t ,∀i ∈ {1,2, ...r}

Allows extension of results in linear framework to nonlinear
systems
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BUILDING HVAC OPTIMIZATION

Deriving T-S model

Obtaining TS Model

Identification: I/O data from the process to fit model parameters.
Linearization: Around ’appropriate’ operating points: I/O data
required to improve weighting function to reduce error.
Sector Nonlinearity

Sector Nonlinearity

Rewrite function within a compact subspace.{
ẋ(t) = f (x(t),u(t))

y(t) = h(x(t),u(t))
⇒

{
ẋ(t) =

∑r
i=1 µi (ξ(t))(Aix(t) + Biu(t))

y(t) =
∑r

i=1 µi (ξ(t))(Cix(t) + Diu(t))

for f (x(t)) ∈ [a1a2]x(t)
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BUILDING HVAC OPTIMIZATION

Sector Nonlinearity Idea

Global Sector Local Sector

Physical systems: bounded⇒ TS representation feasible.
T-S Models ’exactly’ represents the nonlinear system within the
sector
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Objectives

Overall

A distributed FDI strategy for large building HVAC systems
A nonlinear model based fault estimation strategy
Use of joint state and parameter estimation

Present work

Develop a model of AHU-VAV-Zones with unknown time varying
parameter
Derive T-S equivalent models for joing state and parameter
estimation
Illustrate feasibility of nonlinear joint state and parameter
estimation using T-S method by customizing existing literature
results
Outline the direction of integrating such strategy in the overall
framework

11 / 31



MOTIVATION PROBLEM FORMULATION RESULTS CONCLUDING REMARKS

MODELING

System under consideration

The VAV box has a local control loop whose set point is given by
a central controller
Energy balance models are used for modeling the heat
exchanger and zones

Heat exchanger: lumped nonlinear model of a counter flow heat
exchanger
Room modeled as energy balance with interaction between zones
and zone and external environment
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MODELING

Models

Heat Exchanger

dTao(t)
dt

=
qa(t)
Ma

(Tai (t) − Tao(t)) +
UA(t)

2CpaMa
∆T (t)

dTwo(t)
dt

=
qw (t)
Mw

(Twi (t) − Two(t)) −
UA(t)

2Cpw Mw
∆T (t)

∆T , Two + Twi − Tao − Tai

Zones

C1
dT1(t)

dt
= q1(t)Cpa(Tao(t) − T1(t)) + K12(T2(t) − T1(t))

+ K1amb(Tai (t) − T1(t)) + Kd2 d2(t)

C2
dT2(t)

dt
= q2(t)Cpa(Tao(t) − T2(t)) + K21(T1(t) − T2(t))

+ K2amb(Tai (t) − T2(t)) + Kd3 d3(t)

VAV

q1(t) = β1qa(t)

q2(t) = β2qa(t)

β1 + β2 = 1
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MODELING

State space representation

State space model

ẋ1 = α1qa(d1 − x1) + α2au(Twi + x2 − d1 − x1)

ẋ2 = α3u(Twi − x2) − α2wu(Twi + x2 − d1 − x1)

ẋ3 = α4β1qa(x1 − x3) + α5(x4 − x3) + α6(d1 − x3) + α7d2

ẋ4 = α8(1 − β1)qa(x1 − x4) + α9(x3 − x4) + α10(d1 − x4) + α11d3

States and Inputs:

x1 , Tao, x2 , Two, x3 , T1, x4 , T2 u , qw , d1 , Tai

Constants:

α1 ,
1

Ma
, α3 ,

1
Mw

, α2au ,
UA

2CpaMa
, α2wu ,

UA

2Cpw Mw
, α4 ,

Cpa

C1
, α5 ,

K12

C1

α6 ,
K1amb

C1
, α7 ,

Kd1

C1
α8 ,

Cpa

C2
, α9 ,

K21

C2
, α10 ,

K2amb

C2
, α11 ,

Kd3

C2
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MODELING

T-S equivalent model
First step is to obtain a model of the form

ẋ(t) =
2p∑

i=1

µi (z(t))(Ai (θ(t))x(t) + Bu
i u(t) + BT Twi + Bd

i d(t))

y(t) = Cx(t) + Hν(t)

where, θ = β1 and the premise variables are: z1 , qa (measured)
and z2 , Two = x2 (unmeasured state)

Ai (θ(t)) =


−α1z i

1 − α2au α2au 0 0
α2wu −α2wu 0 0

α4θ(t)z i
1 0 −α4θ(t)z i

1 − α5 − α6 α5
α8(1 − θ(t))z i

1 0 α9 −α8(1 − θ(t))z i
1 − α9 − α10



Bu
i =


0

α3(Twi − z i
2)

0
0

 , BT =


α2au
−α2wu

0
0

 ,Bd
i =


α1z i

1 − α2au 0 0
α2wu 0 0
α6 α7 0
α10 0 α11


where i subscript refers to the boundary value of the premise
variable corresponding to the submodel.
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MODELING

Models for Joint State and Parameter Estimation

Model derivation
T-S model with time varying A-matrix (i.e., SNL applied to system considering premise
variables),

ẋ(t) =
2p∑
i=1

µ
z
i (z)(Ai (θ(t))x(t) + Bi (θ(t))u(t))

To apply SNL again to take care of unknown time varying parameter (where θ is the unknown
time varying parameter with the bounds of [θ1, θ2]):

Ai (θ(t)) = Ăi +

nθ∑
j=1

2∑
k=1

µ
θ
j (θ(t))θk

j Āj Bi (θ(t)) = B̆i +

nθ∑
j=1

2∑
k=1

µ
θ
j (θ(t))θk

j B̄j

This can be simplified as,

ẋ(t) =
2p∑
i=1

2nθ∑
j=1

µ
z
i (z(t))µθj (θ(t))(Aij x(t) + Bij u(t))

y(t) = Cx(t)

The constant system matrices are split as

Aij = Ăi +

nθ∑
j=1

θ
k
j Āj Bij = B̆i +

nθ∑
j=1

θ
k
j B̄j
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MODELING

T-S joint state and parameter models

The bound for unknown parameter θ , β1 is [0, 1]
Only the A matrix depends on the unknown parameter. Hence
Bu

ij = Bu
i and so on.

Aij =


−α1z i

1 − α2au α2au 0 0
α2wu −α2wu 0 0
α4θ

j z i
1 0 −α4θ

j z i
1 − α5 − α6 α5

α8(1 − θj )z i
1 0 α9 −α8(1 − θj )z i

1 − α9 − α10


And since the two zone temperatures are the measured variables,
we have,

C =

[
0 0 1 0
0 0 0 1

]
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JOINT STATE AND PARAMETER ESTIMATION IN T-S MODELS

T-S Parameter Estimation [Bezzaoucha et.al 2013]

Model structure

System Model structure

ẋ(t) =
2p∑
i=1

2nθ∑
j=1

µ
z
i (z(t))µθj (θ(t))(Aij x(t) + Bij u(t))

y(t) = Cx(t) (1)

Observer Structure
˙̂x(t) =

2p∑
i=1

2nθ∑
j=1

µ
z
i (z)µθj (θ̂)[Aij x̂(t) + Bij u(t) + Lij (y(t)− ŷ(t))]

˙̂
θ(t) =

2p∑
i=1

2nθ∑
j=1

µ
z
i (z)µθj (θ̂)[Kij (y(t)− ŷ(t))− ηij θ̂(t)]

ŷ(t) = Cx̂(t) (2)

Original system in uncertain-like form for comparison

ẋ(t) =
2p∑
i=1

2nθ∑
j=1

µ
z
i (z)µθj (θ̂)[(Aij + ∆A(t))x(t) + (Bij + ∆B(t))u(t)]

y(t) = Cx(t)
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JOINT STATE AND PARAMETER ESTIMATION IN T-S MODELS

T-S Parameter Estimation [Bezzaoucha et.al 2013]

Error Dynamics

This representation helps to obtain the observer error dynamics
of the form:

ėa(t) =
2p∑

i=1

2nθ∑
j=1

µz
i (z)µθj (θ̂)[Φijea(t) + Ψij (t)ũ(t)]

ea(t) , [ex (t) eθ(t)]T , ũ , [x(t) θ(t) θ̇(t) u(t) ν(t)]T .
Two objectives: stabilize Φij and reduce impact of Ψij (t) by
bounding it.
Stabilization: Bounded Real Lemma applied considering
quadratic Lyapunov function (V (e(t)) = eT (t)Pe(t)) with a
derivative limit given by: V̇ (t) + eT

a (t)Pea(t)− ũT (t)Γ2ũ(t) < 0
To bound Ψij (t), the convexity property of weighting functions
and known matrix properties are used.
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JOINT STATE AND PARAMETER ESTIMATION IN T-S MODELS

T-S Parameter Estimation [Bezzaoucha et.al 2013]

Theorem
There exists a robust state and parameter observer for the linear time varying parameter system
with a bounded L2 gain β of the transfer from ũ(t) to ea(t) (β > 0) if there exists P0 = PT

0 > 0,
P1 = PT

1 > 0, β > 0, λ1, λ2, Γ0
2, Γ1

2, Γ2
2, Γ3

2, η1, η2, F1, F2, R1 and R2 (for i = 1, ..2p ,
j = 1, .., 2nθ ):

minimize
P0,P1,Rij ,Fij ,ηij ,λ1,λ2,Γ

0
2,Γ

1
2,Γ

2
2,Γ

3
2

β

Γk
2 < βI for k = 0, 1, 2, 3

under the LMI constraints



T11 −CT F T
ij 0 0 0 0 P0A P0B

∗ −η̄ij − η̄T
ij + I 0 η̄ij P1 0 0 0

∗ ∗ −Γ0
2 0 0 0 0 0

∗ ∗ ∗ −Γ1
2 0 0 0 0

∗ ∗ ∗ ∗ −Γ2
2 0 0 0

∗ ∗ ∗ ∗ ∗ −Γ3
2 0 0

∗ ∗ ∗ ∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −λ2I


< 0

with T11 = P0Aij + AT
ij P0 − Rij C − CT RT

ij + I
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ALGORITHM

Algorithm

Implementation steps

Choose η such that its eigenvalues are comparable to Φij . Needs
iterations. Diagonal with requisite eigenvalues.
Choose Γk

2 values to reduce the number of LMI variables.
Enforce P0 > P0init and P1 > P1init for sufficiently large P0init and
P1init . This would ensure that P−1

0 and P−1
1 are not close to

singular and make the computation of the observer gains Kij and
Lij unreliable.
To ensure that there is a balance between the gains Kij and η, an
additional LMI constraint is considered as,

Fij > ρP1η
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ALGORITHM

Updated LMI conditions

Theorem
There exists a robust state and parameter observer (2) for the Takagi-Sugeno time varying
parameter system (1) with a bounded gain of γ = [γx γθ γθ̇ γu γν ]T from ũ(t) to ea(t), if there
exists P0 = PT

0 > 0, P1 = PT
1 > 0, λ1, λ2 > 0, Fij , Rij such that (for i = 1.., 2p and j = 1.., nθ),

the following LMIs are satisfied

T11 T12 0 0 0 0 −Rij Iν P0A P0B
∗ T22 0 η0P1 P1 0 −Fij Iν 0 0
∗ ∗ T33 0 0 0 0 0 0
∗ ∗ ∗ −γθ Inθ 0 0 0 0 0
∗ ∗ ∗ ∗ −γθ̇ Inθ 0 0 0 0
∗ ∗ ∗ ∗ ∗ T55 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γν Iν 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2I


< 0

Fij > P1ρη0Inθ

where, T11 = P0Aij + AT
ij P0 − Rij C − CT RT

ij + Inx , T12 = −CT F T
ij , T22 = −2η0P1 + 1,

T33 = −γx Inx + λ1ET
A EA and T55 = −γu Inu + λ2ET

B EB .
The observer gains are given by:

ηij = η0, Lij = P−1
0 Rij and Kij = P−1

1 Fij
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SIMULATION RESULTS

Summary of Simulation results

Model parameters (sector
min/max)

Parameter Min Max
z1 0.16 kg/s 1.6 kg/s
z2 293 K 368 K
β1 0 100

Simulation parameters
Parameters Values

η 10−4

ρ 105

Γθ2 0.1
Γθ̇2 0.1
Γx

2 0.1I4
Γu

2 0.1
Γν2 0.1

Summary of Simulation results
Error Mean (%) Standard Deviation (%)
|ex1 | 0.04 0.4
|ex2 | 0.07 0.55
|ex3 | 0.03 0.3
|ex4 | 0.03 0.3
|eθ| 10.9 18.34
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SIMULATION RESULTS

State Estimation
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SIMULATION RESULTS

Parameter Estimation
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SIMULATION RESULTS

Input used to generate results
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FDI using the estimation
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Future Improvements

A vanishing estimation error instead of an L2 gain.
Extending results to discrete-time TS models
Exploring approaches to cases where the unknown time varying
parameter takes only discrete values (VAV damper position
estimation with ON/OFF position)
Using the T-S approach results in a distributed estimation
framework
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Thank you
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