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Optimizing Energy Consumption of HVAC

Stages of HVAC optimization
e Commissioning phase of HVAC vs operational phase
o Studies indicate HVAC use 20% more power than designed for

v
Operational Phase Issues

o Faults from design phase, malfunctioning equipments
o Incorrectly configured control systems (e.g for weather changes)
o Inappropriate operating procedures (e.g. occupancy scheduling)

o’

Energy in Time

o FP7 project: Integrated control systems and methodologies to
monitor and improve building energy performance

o Large Scale non-residential buildings’ operational phase issues:
FDI, FTC, prognosis etc. as focus
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Building HVAC Schematic
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FDI/FTC in Building HVAC

Challenges

o Difficulty in obtaining model from normal operation data
o Large number of disturbances

o Need to consider fault propagation

e Presence of multiple local control act as a mask of faults
o Nonlinear and bilinear process models

v

Approaches

o A need for combined model based and data based approach
o Distributed FDI mechanism with fault propagation
o Usage of T-S model based approach for estimation tasks
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Relevant Works

Relevant Projects

e OptiControl - ETH Zurich: Stochastic MPC
o Berkeley-Lawrence - UC Berkeley: SQP to solve BMI

o CIESOL - Spain + Brazil: Lagrangian dual method and parallel
programming

v

FDI in Building HVAC

o Major focus in literature is on equipment level fault diagnosis
o Data based approach is prominent

Distributed FDI strategies for Building HVAC
o V.Reppa et.al 2015-VAV, Papadopoulous et.al 2015-FCU
o Strategy for distributed FDI for Sensor fault estimation
e Looking to extend to actuator faults
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Takagi-Sugeno Modeling

Zﬂl +BU( ))

Z pi(€(1)(Cix(1) + Diu(t))

@ Polytopic, Quasi-LPV, Multi-Model, Fuzzy

@ The model involves r ’linear sub-models’

@ £(1): premise variables

@ 1;(&(1)): weighting function which follows the convex sum
property:

zr:,ui(f(t)) =1 and 0 < p(&(t)) <1,V Vie {1,2,...r}

@ Allows extension of results in linear framework to nonlinear
systems
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Deriving T-S model

Obtaining TS Model
o ldentification: |/O data from the process to fit model parameters.

o Linearization: Around 'appropriate’ operating points: I/O data
required to improve weighting function to reduce error.

o Sector Nonlinearity

”
Sector Nonlinearity

Rewrite function within a compact subspace.

{xu) = f(x(1), u(t)) :{xu) = S (&)
)

(Aix(t) + Biu(t))
(

y(t) = hx(0),u(t) |y =i wE0))(Cix(1) + Diu(1))

for f(x(1)) € [a1a2]x(t)

\
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Sector Nonlinearity ldea

Global Sector Local Sector
0 /2,0
f(x(t)) Sf e
d
20) (1)

@ Physical systems: bounded = TS representation feasible.

@ T-S Models ’exactly’ represents the nonlinear system within the
sector
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PROBLEM FORMULATION

Objectives

o A distributed FDI strategy for large building HVAC systems
e A nonlinear model based fault estimation strategy
o Use of joint state and parameter estimation

o Develop a model of AHU-VAV-Zones with unknown time varying
parameter

o Derive T-S equivalent models for joing state and parameter
estimation

o lllustrate feasibility of nonlinear joint state and parameter
estimation using T-S method by customizing existing literature
results

o Outline the direction of integrating such strategy in the overall

framework
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System under consideration

Heat Exchanger
Tai

@ The VAV box has a local control loop whose set point is given by
a central controller
@ Energy balance models are used for modeling the heat
exchanger and zones
o Heat exchanger: lumped nonlinear model of a counter flow heat
exchanger
o Room modeled as energy balance with interaction between zones
and zone and external environment
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MODELING

Models

Heat Exchanger

dTao(t) _ Qa(t) - v Ua(®)
=y () = Teol) + 5 AT()
dTwo(t) _ Qw t) : _ _ UA(t)
e = iy (i) = Tuol) = 522 AT()

AT £ Tyo + Tyi — Tao — Ty

Zones

c %}” = q1(1)Coal Tao(t) — Ta(1)) + Kia(Ta(t) — T1(1))
4 Kiams(Tai(t) — T1(1)) + Koy 0a(1) (1) = 51Gall)
ATy (1) G2(t) = B2qa(t)
Co—g— = ®(0)Coa(Tao(t) = Ta(1)) + Ker (T3 (1) — T (1)) Pi+B2=1

+ Kaamb(Tai(t) — T2(1)) + Kq, (1)
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MODELING

State space representation

State space model

X1 = a1Ga(dy — x1) + c2au(Twi + X2 — di — xy)

Xo = agU(Twi — X2) — cowu(Twi + Xo — di — X1)

X3 = a4f1qa(X1 — x3) + as(Xs — X3) + ag(dy — X3) + azdz

x4 = ag(1 — B1)qa(x1 — Xq) + ag(X3 — X4) + c10(dh — Xa) + 1103

States and Inputs:

A ay A A A A
Xt = Tao, X2 = Two, X3 = Ty, X4 = To U= Qu, 01 = Ty

Constants:
a1éia éia éiu'q as éiu'q a4é%a5é@
Ma s O3 MW s X2au ZCpaMa ) wu chw MW ) C1 ) C1

ag 2 Kiamb az 2 @Ocs s Cpa ag 2 K1 a2 Kaamb a2 Kas

[ C C’ G’ C Co
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MODELING

T-S equivalent model

First step is to obtain a model of the form
oP
X(t) =3 wi(Z(6))(A(O(D)x(1) + Bl u(t) + BT Ty + B d(t))
i=1
y(t) = Cx(1) + Hu(t)
where, § = $; and the premise variables are: z; £ g, (measured)
and z £ T, = Xo (Unmeasured state)

_*0124 — Qgy Q2ay 0 0
. _ 2wy —C2wy 40 0
ACDI= | a0tz 0 —asb(t)z) — a5 — a a5
_048(1 — 9(t))Z4 0 Qg —a8(1 — 0(t))24 — g — Qqp
[ (U Q2au ozl —agay 00
BY — az(Tw — 25) BT — | ~Qaw| pgd _ Qawy 0 0
i 0 ’ [ ag ay 0
L 0 0 a1 0 as

where i subscript refers to the boundary value of the premise
variable corresponding to the submodel.
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Models for Joint State and Parameter Estimation

Model derivation

@ T-S model with time varying A-matrix (i.e., SNL applied to system considering premise
variables),

2P

(1) = ui (2)(AO(1)x(1) + Bi(O(t)u(t))

i=1

@ To apply SNL again to take care of unknown time varying parameter (where 6 is the unknown
time varying parameter with the bounds of [0, 62]):

2
Ai(B(t)) = A; +ZZM ()64 Bi(a(1) B,+Zzu]9(0 £))6/B;
k=

j=1 k=1 Jj=1 1
@ This can be simplified as,
2P 27
X(t) =737 ui(2(t)f (0(1)(Ayx(t) + Bju())
=1 j=1
y(t) = Cx(t)

@ The constant system matrices are split as
N ng
Aj=A+> 0fA  Bi=B+> 0B
j=1 j=1
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T-S joint state and parameter models

@ The bound for unknown parameter # = 34 is [0, 1]

@ Only the A matrix depends on the unknown parameter. Hence
Bj = Bj" and so on.

—a1Z4 — Qoay Qoay 0 0
Aij _ Q2w | —Q2wy o 0 0
agtzy 0 —a40/z] — a5 — ag as

ag(1 —9’)24 0 Qg —Otg(1 —9/)24 — Qg — Qqp

And since the two zone temperatures are the measured variables,
we have,
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T-S Parameter Estimation [Bezzaoucha et.al 2013]

Model structure

o System Model structure

2P 270

(1) = D7 > wi (2(1)n] (0(0)(Ajx(t) + Bju(t))

=1 j=1

y(t) = Cx(t) (1)

o Observer Structure

2P 2M6
=303 ui (@u] (O)AX(1) + Byu(t) + Ly(y(1) — 9(1))]
i=1 j=1
. 2P 2Mg R R
o) = > >~ ui (@2)u] O)Ky(y () — () — md(D)]

=1 j=1
y(t) = Cx(1) @)

o Original system in uncertain-like form for comparison
2P 270
(1) = 7> wi (2)u] (0)(Ay + DAD)X(H) + (Bj + AB(1))u(t)]

i=1 j=1

y(t) = Cx(1)
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T-S Parameter Estimation [Bezzaoucha et.al 2013]

Error Dynamics

o This representation helps to obtain the observer error dynamics

of the form:
2P 2M
ea(t) =Y uf (2)u] (B)[®jea(t) + Wy(1)a(1)]
i=1 j=1

o ea(t) £ [ex(t) en(t)]", T = [x(t) 6(t) 6(1) u(t) v(D)].

o Two objectives: stabilize ¢; and reduce impact of V;(t) by
bounding it.

o Stabilization: Bounded Real Lemma applied considering
quadratic Lyapunov function (V(e(t)) = e’ (t)Pe(t)) with a
derivative limit given by: V(t) + el (t)Pey(t) — 4T (t)F20(t) < 0

o To bound W;(t), the convexity property of weighting functions
and known matrix properties are used.
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T-S Parameter Estimation [Bezzaoucha et.al 2013]

Theorem

There exists a robust state and parameter observer for the linear time varying parameter system
with a bounded £, gain 4 of the transfer from {i(t) to ea(t) (8 > 0) if there exists Py = P] > 0,
Py = P1 > 0,8 >0, )\, A2, I'2, Fz, I’2, Fz, M, M2, Fi, F2, Ry and Ry (fOI’I— 1, 2;71
j=1,..,2"):
minimize
PoPy s Rjjs Fipsmijs A s A2,T 3,78 .13,r3

rk < Blfork =0,1,2,3

under the LMI constraints

Ti4 —CTF] 0 0 0 0 PyA  PoB

* =iy = g <1 0 i Py 0 0 0

* * - 0 0 0 0 0

* * x -} 0 0 0 0 | <o
* * * * —rg 0 0 0

* * * * * —Fg 0 0

* * * * * * -l 0

* * * * * * 0 —Xol.

with Ty = PoAj + AfPo — R;C — CTR] + 1
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ALGORITHM

Algorithm

Implementation steps

e Choose 7 such that its eigenvalues are comparable to ¢;. Needs
iterations. Diagonal with requisite eigenvalues.

o Choose '§ values to reduce the number of LMI variables.

o Enforce Py > Pyinir and Py > Pyt for sufficiently large Py and
Piinir. This would ensure that Py ' and P, are not close to
singular and make the computation of the observer gains Kj and
L unreliable.

o To ensure that there is a balance between the gains Kj and ), an
additional LMI constraint is considered as,

Fij > pPin
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Updated LMI conditions

Theorem

There exists a robust state and parameter observer (2) for the Takagi-Sugeno time varying
parameter system (1) with a bounded gain of v = [vx 7o V4 Yu 7,17 from &(t) to ea(t), if there
exists Py = Py >0, Py = P[ >0, A, A2 > 0, Fj, Rj such that (for i = 1..,2° and j = 1.., ny),
the following LMIs are satisfied

Ty T2 0 0 0 0 —Rjl,  PyA  PB

* T22 0 7]0P1 P1 0 — jj/,, 0 0

* * Tas 0 0 0 0 0 0

* * * —7e I,,e 0 0 0 0 0

* * * * =5 I”e 0 0 0 0 <0
* * * * * Tss 0 0 0

* * * * * * vl 0 0

* * * * * * * -\l 0

* * * * * * * * —Xa!

Fij > P1pnoln,

where, T = PoAj + Al Py — RjC — CTR] + In,, Tio = —CTF], Top = —2nP; + 1,
Tas = —Yxlny + ME4Ea and Tos = —yuln, + XoEj Ep.
The observer gains are given by:

mj=mo, Lj =Py Rjand Kj =Py 'F
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Summary of Simulation results

Simulation parameters

Model parameters (sector Parameters | Values

min/max) n 110 s
Parameter Min Max o 0
2 0.16kg/s | T.6kg/s fo 0.1

2> 293K 368 K s 0.1

B 0 100 r 0.1/,

re 0.1

ry 0.1

Summary of Simulation results

Error | Mean (%) | Standard Deviation (%)
[6x, | 0.04 0.4
[€x, | 0.07 0.55
[€x | 0.03 0.3
lex, | 0.03 0.3
les| 10.9 18.34
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State Estimation

AHU output - Air Temperature AHU Output - Water Temperature
310 350

hrs hrs

Zone 1 Temperature Zone 2 Temperature
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SIMULATION RESULTS

Parameter Estimation

Parameter
100 T T

_20 -

40 L L L L L I L 1 1
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SIMULATION RESULTS

Input used to generate results

Mass flow rates Ambient air temperature
1 2745
274
2735
07
w06 273
?ccn 4
05 2725
04
2rn2
03
02 — 2715
0.1 271
0 1 2 3 4 5 0 1 2 3 4 5
hrs hrs
Zone disturbances measurement noise
80
70
60
50
40
30
20
10
ol
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CONCLUDING REMARKS

FDI using the estimation

Fay sP
» Bl Blsp < T1
» Obs1 FD1
—>(O«—] I
r:l
> B B —T"
2 2
Obs 2 FD 2
> T



CONCLUDING REMARKS

Future Improvements

@ A vanishing estimation error instead of an £, gain.
@ Extending results to discrete-time TS models

@ Exploring approaches to cases where the unknown time varying
parameter takes only discrete values (VAV damper position
estimation with ON/OFF position)

@ Using the T-S approach results in a distributed estimation
framework
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