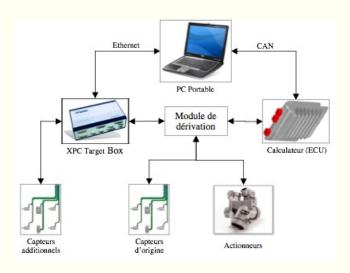
Modélisation et simulation de la boucle des gaz dans un moteur diesel à injection directe

Zahi SABEH, José RAGOT, Didier MAQUIN

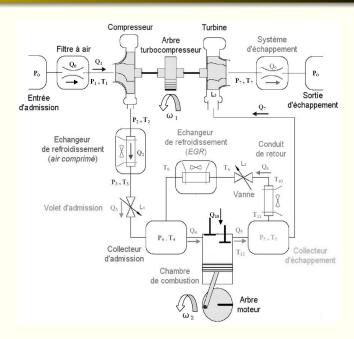
http://www.ensem.inpl-nancy.fr/Jose.Ragot/ Centre de Recherche en Automatique de Nancy (CRAN) Institut National Polytechnique de Lorraine (INPL)

Modélisation, Optimisation et Simulation des Systèmes : Communication, Coopération et Coordination Paris, 31 mars - 2 avril 2008

Enjeux et objectifs de la modélisation

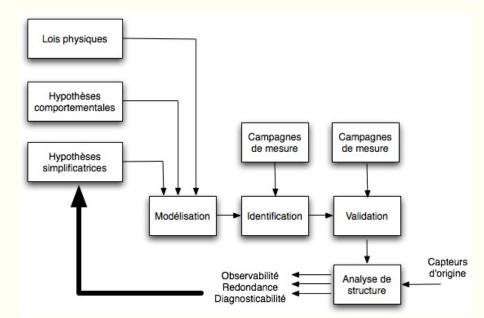

- La complexité des moteurs diesel modernes contrôlés par l'électronique, avec un nombre croissant de capteurs et d'actionneurs, nécessite des systèmes de mesure et de diagnostic améliorés et automatisés à bord des véhicules utilisant ces moteurs.
- La surveillance appropriée et la détection précoce des défauts nécessite de disposer de modèles de bon fonctionnement des composants.
- On établit des modèles des composants de cette boucle, on identifie leurs paramètres et on procède à la validation du modèle complet de la boucle.
- Quelques idées sur l'utilisation des modèles pour la surveillance et le diagnostic de fonctionneemnt

Enjeux et objectifs de la modélisation


Les trois points importants de l'exposé

- Modéle : connaissances physiques + traitement statistique
- Etude d'un moteur à l'échelle 1
- Calage paramétrique à partir d'essais réels

Dispositif expérimental


Schéma de la boucle des gaz du moteur diesel

Etapes de l'étude de la boucle des gaz en vue de son diagnostic

- Décomposition fonctionnelle de la boucle des gaz
- Modélisation de chaque composant
- Identification paramétrique de chaque composant
- Validation locale de chaque composant
- Validation globale du modèle
- Analyse structurelle du modèle

Etapes de l'étude de la boucle des gaz en vue du diagnostic

Liste des variables de la boucle des gaz du moteur diesel

	Var.	Définition	Var.	Définition
	P_0	Pression atmosphérique	ω_1	Vitesse angulaire turbocompresseur
	P_1	Pression après filtre à air	ω_2	Régime moteur
	P_2	Pression après compresseur	V	Vitesse véhicule
	P_4	Pression dans collecteur admission	Q_0	Débit air traversant filtre à air
	P_5	Pression dans collecteur échappement	Q_1	Débit air traversant compresseur
	P_7	Pression après turbine	Q_{10}	Débit carburant injecté
Ì	T_1	Température après filtre à air	D_1	Consigne angle ouverture volet admission
	T_2	Température après compresseur	D_2	Consigne angle ouverture vanne EGR
	T_3	Température après échangeur	D_3	Consigne angle ouverture aubes turbine
		refroidissement air	L_1	Angle d'ouverture volet d'admission
	T_4	Température collecteur admission	L_2	Angle d'ouverture vanne EGR
İ	T_5	Température collecteur échappement	L_3	Angle d'ouverture aubes turbine
İ	T_7	Température après turbine		
İ	T_8	Température après échangeur		
		refroidissement EGR		
- 1			1	

 T_9

 T_{10}

Température liquide refroidissement

Température après conduit retour EGR

Filtre à air

Relation

« débit volumique de l'air traversant le filtre et la perte de charge »

$$P_0(t) - P_1(t) = C_1 \left(Q_0(t) \frac{C_{14} T_1(t)}{P_0(t)} \right)^2$$

 C_1 coefficient de décharge (lié à la section effective de passage et les frictions avec les parois)

 C_{14} constante du gaz parfait de l'air d'admission

 P_0 pression en entrée du filtre P_1 est la pression en sortie du filtre

 T_1 température en sortie du filtre

 Q_0 débit massique de l'air traversant le filtre.

Filtre à air

- La perte de charge dans le filtre à air varie en fonction du débit qui dépend à son tour, en partie, de la pression en sortie du filtre.
- Cette pression peut être calculée en s'inspirant de la loi du gaz parfait (PV = nRT) comme suit :

$$P_1(t) - P_{10} = \frac{C_{14}T_1(t)}{C_0} \int_0^t (Q_0(\tau) - Q_1(\tau))d\tau$$

 C_0 est le volume du filtre C_{14} la constante du gaz parfait de l'air d'admission

 P_1 est la pression en sortie du filtre

 T_1 la température en sortie du filtre

 Q_0 le débit massique de l'air traversant le filtre

 Q_1 le débit d'air sortant du filtre et traversant le compresseur.

• Le seul paramètre *a priori* inconnu ou mal connu de ce modèle est la constante C_0 qui devra être ultérieurement identifiée.

Compresseur

 P_1 et P_2

 Q_1 et Q_{1cor}

$$\begin{array}{lcl} Q_{1}(t) & = & Q_{1cor} \frac{P_{1}(t)}{P_{ref}} \sqrt{\frac{T_{ref}}{T_{1}(t)}} \\ Q_{1cor} & = & f_{Q_{1cor}} \left(\frac{P_{2}(t)}{P_{1}(t)}, \omega_{1cor}(t) \right) \\ \omega_{1cor}(t) & = & \omega_{1}(t) \sqrt{\frac{T_{ref}}{T_{2}(t)}} \\ T_{2}(t) & = & T_{1}(t) + \frac{T_{1}(t)}{f(Q_{1}(t), \omega_{1}(t))} \left(\left(\frac{P_{2}(t)}{P_{1}(t)} \right)^{C_{7}} - 1 \right) \\ P_{2}(t) - P_{20} & = & \frac{T_{2}(t)}{C_{16}} \int_{0}^{t} (Q_{1}(\tau) - Q_{2}(\tau)) d\tau \end{array}$$

pressions en sortie du filtre et en sortie du compresseur température en sortie du filtre à air est la température de l'air en sortie du compresseur régime de rotation instantané et celui corrigé du compresseur débits d'air instantané et corrigé traversant le compresseur pression et température de référence pour le celevil de f

Compresseur

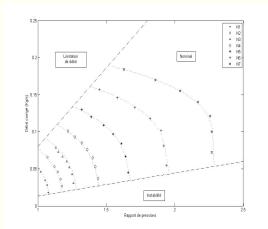


FIG.: Domaine de fonctionnement du compresseur à différents régimes de fonctionnement.

$$Q_{1cor} = \left(a_2 \left(\frac{P_2}{P_2}\right)^2 + a_1 \frac{P_2}{P_2} + a_0\right) \left(b_2 \omega_{1cor}^2 + b_1 \omega_{1cor} + b_0\right)$$

Recalage des paramètres du modèle

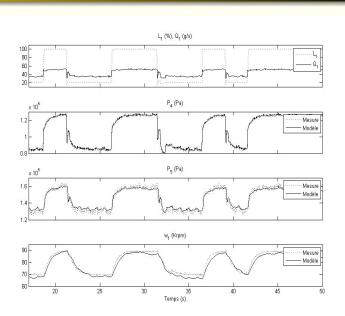
- Le but de cette phase de développement du modèle est de faire correspondre au mieux le comportement du modèle simulé à celui du système réel, à savoir la boucle des gaz du moteur.
- Pour cela, nous avons utilisé des données expérimentales provenant de différents types d'essais effectués à l'aide du véhicule de recherche.
- Une partie de ces données (jeu de données d'identification),
 correspondant aux variables d'entrée du modèle, a été injectée dans le simulateur déjà présenté pour établir la simulation.
- Quant à la deuxième partie des données (jeu de données de validation), elle a servi à évaluer l'erreur entre les valeurs des sorties simulées et celles issues du système réel en vue du recalage du modèle.

Recalage des paramètres du modèle

Par.	Description
	Description
C_1	Coefficient de décharge du filtre à air
f_{Q1cor}	Cartographie de débit corrigé du compresseur
f_{η_1}	Cartographie de rendement du compresseur
C_2	Coefficient de décharge de l'échangeur d'air comprimé
f_{η_2}	Cartographie d'efficacité de l'échangeur d'air comprimé
f_{Athr}	Cartographie de section effective passage volet d'admission
f_{η_4}	Cartographie de rendement volumique du moteur
f_{η_5}	Cartographie de rendement à l'échappement
f_{η_6}	Cartographie d'efficacité du conduit de retour d'EGR
f_{Aegr}	Cartographie de section effective de passage de la vanne d'EGR
f_{η_7}	Cartographie d'efficacité de l'échangeur d'EGR
f_{Q5cor}	Cartographie de débit corrigé de la turbine
f_{η}	Cartographie de rapport optimal de vitesse des ailettes de la turbine
f_{Cuop}	Cartographie de rendement aérodynamique maximum de la turbine
f_{η_8}	Cartographie d'efficacité de la structure métallique du turbocompresseur
C_{13}	Section effective équivalente de passage du système d'échappement
T	Paramètras du modèla statique de la boucle des gaz du moteur diesel

Paramètres du modèle statique de la boucle des gaz du moteur diesel.

Recalage des paramètres influant sur le comportement dynamique


- Le modèle de la boucle des gaz contient plusieurs volumes intermédiaires, non nécessairement bien connus a priori, dont le remplissage et l'évacuation constituent la dynamique des pressions formées dans ces volumes.
- De plus, le moment d'inertie de l'arbre turbocompresseur vient déterminer la dynamique de ce dernier tout en affectant la dynamique globale de la boucle des gaz.
- Le recalage dynamique consiste donc à ajuster les paramètres intervenant dans la partie dynamique du modèle à l'aide de données expérimentales afin d'approcher au mieux le comportement dynamique global du système réel. Le tableau résume les paramètres du modèle de la boucle des gaz visés par ce recalage dynamique.

Recalage des paramètres influant sur le comportement dynamique

Par.	Description
C_0	Volume du filtre à air et de son raccord au compresseur
C_{16}	Volume entre le compresseur et son échangeur de refroidissement
C_{17}	Volume entre l'échangeur de refroidissement et le volet d'admission
C_{18}	Volume du collecteur d'admission
C_{21}	Volume du collecteur d'échappement
C_{22}	Volume situé entre la turbine et le système d'échappement
C_{12}	Moment d'inertie de l'arbre turbo.
C_{24}	Constante de temps de la réponse du volet d'admission
C_{25}	Constante de temps de la réponse de la vanne EGR
C_{26}	Constante de temps de la réponse des ailettes de la turbine
Danas	altered de mandèle demantique de la bassala des anada materia OM646

Paramètres du modèle dynamique de la boucle des gaz du moteur OM646.

Extrait des signaux mesurés ayant servi au recalage dynamique du modèle de la boucle des gaz

Profil de la vitesse du véhicule durant le test NEDC.

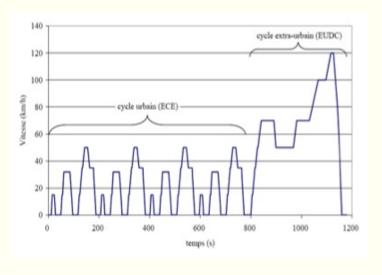
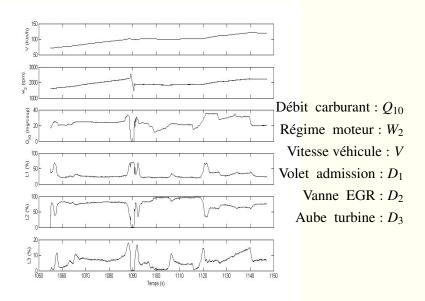
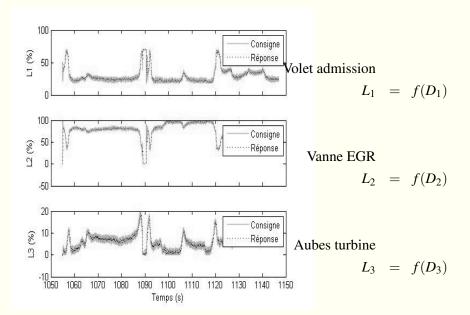
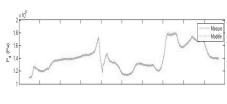
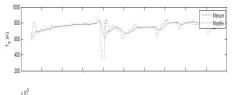
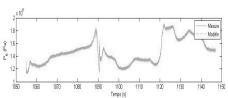




FIG.: Profil de la vitesse du véhicule durant le test standard NEDC.

Signaux d'entrées Q_{10} , W_2 , V, D_1 , D_2 , D_3


Angles d'ouverture L_i en fonction des consignes D_i




Sorties Q_1, P_1, T_3

Sorties P_4 , T_5 , P_5

Pression collecteur admission

$$P_4 = f(Q_3, T_3, Q_4, T_4, Q_6, T_8)$$

Température collecteur échappement

$$T_5 = f(P_5, m_{exh}, m_{ig})$$

Pression collecteur échappement

$$P_5 = f(Q_5, T_5, Q_6, Q_7, T_{12})$$

Précisions du modèle de la boucle des gaz.

Var.	Q_1	P_1	T_3	P_4	T_5	P_5	L_1	L_2	L_3				
E_{moy}	3.2	0.5	2	1.3	1.7	2.3	1.1	1.4	1.2				
E_{max}	4.8	1.1	2.7	2.2	2.5	2.5	1.5	1.8	1.3				
Précisions du modèle de la houcle des gaz													

Précisions du modèle de la boucle des gaz

Table d'occurrence des variables dans les modèles

	P_0	P_1	T_0	Q_0	T_1	Q_1	P_2	ω_1	T_2	Q_2	\overline{W}_1	P_3	T_3	\overline{V}	T_0	Q_3	P_4	L_1	m_a	m_e	Q_4	R_4	T_4	T_8	ρ_4	ω_2	Q_5	T_5
m.	1	1	0	0	1	1	1	1	1	0	0	0	1	1	1	0	1	1	0	0	0	0	1	1	0	1	0	1
1	X	X	X	X																								
2			X		X																							
3		X		X	X	X																						
4		X			X	X	X	X																				
5		X			X	X	X	X	X																			
6						X	X		X	X																		
7					X	X			X		X																	
8							X		X	X		X																
9			X						X	X			X	X	X													
10										X		X	X			X												
11												X				X	X	X										
12																X			X	X	X							
15																												
16																												
																											X	

Conclusion

Les points importants de l'étude

- Identifier les composants d'un système complexe et les variables explicatives
- Concevoir un modèle de chaque composant
- identifier les paramètres de chaque modèle
- Valider chaque modèle
- Valider le modèle d'ensemble

Hypothèses et contraintes

- Fonctionnement moyen par cycle
- On utilise les capteurs équipant un véhicule de série
- On dispose de données à différents régimes de fonctionnement

Travaux en cours et futurs

- Détection de défauts de capteurs
- Détection de fuites