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Abstract

Parameter or state estimation plays an important role in numerous engineering fields
such as function estimation, system identification, controler design, data validation, diagno-
sis. Classical estimation methods compute the parameters so that the mean-squared error
between the model output and the observed response is minimized. A robust approach to the
estimation problem may be used when the error is bounded. This approach, called parameter
set estimation, aims to find the feasible set of parameters consistent with all observed data
and error bounds. State and parameter estimation problems are usually solved by statisti-
cal approaches, which are relevant when an explicit characterization of the perturbances is
available. Unfortunately, it is often difficult to get this information and, in some cases, it
is more natural to assume that all perturbations (measurement and modelling errors, model
uncertainty), belong to a known set. In this case, guaranteed estimation, also known as
bounded-error estimation, allows the characterization of the whole set of state or parameter
vectors that are compatible with the measured data, the model of the process and the error
bounds. This paper deals with model based data validation and fault detection-isolation
considering the effect of model uncertainty, these uncertainties being represented by interval
values.

1 Introduction and historical point of view

The parameter estimation using the set-membership approach started in the eighties, where

the strategy initially consists in circumscribing the domain describing model uncertainties by

a simple form. This approach was originally designed to deal with a model linear in uncertain

parameters and characterised by a bounded equation error. The problem of parameter estima-

tion amounts to the determination of the set of constant parameter values called the Feasible

Parameter Set (FPS). This set is compatible with all the available observations which are

consistent with the bounds of the equation error and the model structure.

For models linear in their parameters, the FPS is a convex polytope which can be approx-

imated by ellipsoids [31], [55], or orthotopes [45] containing it. The work in [73] on the one

hand, and [47] on the other, used polytopic domains. The main results are presented in the

book published by Milanese et al. [46].

For models nonlinear in their parameters, various methods exist for determining an approx-

imation of the FPS, linear techniques have been extended to the nonlinear case using multiple

linearisation of the model [17]. More recent results have been obtained [37] in order to solve

the problem of nonlinear bounded-error estimation using set inversion techniques and based on

interval analysis, there make it possible to characterise the FPS by enclosing it between internal

and external unions of boxes.

For specific model structures, it is possible to obtain sets of linear inequalities describing a

domain approximating the FPS [50], [27].
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In the field of diagnosis, one common approach is the so-called model-based diagnosis. The

model represents the behavior of the system to be diagnosed. If the behavior of the observed

system differs from the estimation given by its model, we conclude that a fault has occurred.

However, an accurate and complete model of a system is difficult to obtain and almost never

available. Moreover, the parameters of a system may vary with time in an uncertain manner,

and the magnitude of disturbances and noise are partially unknown so that they cannot be

exactly modelled. An alternative approach is to represent uncertainty in models with interval

parameters; moreover, the noise affecting the measurement or the dynamic of the system may

also be given as intervals. One of the first work on that subject is presented in [23]. Later [21]

and [61] propose a technique based on interval for the detection et isolation of faults of sensors

in the case of static linear models while [14] treats the dynamic linear model.

As it will be further explain, interval representation may be used either for parameter of a model

or state of a system. Thus, there are strong links between parameter and state estimation; for

that reason, in our paper, the same tools are used.

In what follows, section 2 presents the estimation of parameters in the context of bounded-

error data. Section 3 gives a general formulation of the linear regression. State estimation using

observer formalism is exposed in section 4. Section 5 and 6 are devoted to data validation and

reconciliation for static and dynamic systems. A important list of references complete the apper,

but only some of them are addressed in the text.

2 Parameter set estimation from bounded-error data

Parameter set estimation allows to compute the feasible parameter set of a model using data

corrupted by errors, these errors being bounded. For example, consider the linear system f :

IRm → IR excited by x(k) ∈ IRm and whose output is parametrized on θ ∈ IRm:

y(k) = xT (k)θ, k = 1..N (1)

The objective of identification is to find the values of the parameters θ using available informa-

tions on the output:

ym(k) = y(k) + ε(k), k = 1..N (2)

where ε is an additive measurement noise. In the classical estimation methods, the parameters

are adjusted so as to minimize the mean-squared error between the model output y(k) and the

measurements ym(k). In the bounded error context, the approach is different. The measurement

error is supposed to be bounded:

| ε(k) |≤ δ (3)

Here for sake of brevity, the bound δ is constant all along the time. The error between the model

output and the observed output is therefore bounded and we have to satisfy the constraints:

| ym(k) − y(k) |≤ δ (4)

Thus, the set of parameters consistent with the kth data and the bound δ is defined by:

Θk = {θ : | ym(k) − x(k)T θ |≤ δ} (5)
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Θk corresponds to a hyper-strip in IRm defined by the intersection of two affine halfspaces:

H−

k = {θ ∈ IRm : x(k)T θ ≤ ym(k) − δ} (6a)

H+
k = {θ ∈ IRm : x(k)T θ ≥ ym(k) + δ} (6b)

and thus:

Θk = H−

k ∩ H+
k (7)

The set of parameters consistent with all observations is the feasible set defined by:

DN = ∩N
k=1 Θk (8)

where DN can be easily computed using the recursion:

Dk = Dk−1 ∩ Θk, k = 1..N (9a)

D0 = IRm (9b)

However, DN may have a complicated shape and an exact description of the FPS may be

intractable. Therefore, it is a common practice to restrict the exact FPS to a more simpler

domain such as ellipsöıds, orthotopes, axis-aligned orthotopes (or boxes).

Such approach for calculating bounds for the FPS has been investigated in several works

with : ellipsöıd representation [27], [31], [55], exact description [47], [51], [73], [74], bouding

parallelotope [25], [26], [72], inner boxes [52], [1], [63], outer bounding orthotopes [17].

The developed algorithms are based on some desirable properties:

- they involve a minimal number of assumptions in respect to the distribution of the mea-

surement errors or the model errors ; indeed there are no need to fix a particular probability

density function on the measurement errors.

- the approach may be used for model validation and thus for diagnosis purpose. For a

particular set of measurements, if the computed bounds for the parameters become the null set,

then the data are not compatible with the model.

- there is a possibility to appreciate globally the uncertainty of the parameters. When

uncertainties affecting parameters are small, then the volume of the solution set will be also

small.

- the true parameters are contained in the FPS and thus are within the computed bounds

(this is important in the non linear case where classical approach do not always guarantees

obtaining the global optimal estimate).

Example 1. A linear regression.

Let us consider the data of table 1, with N = 3 and m = 2. The underlying model is y(k) =

x1(k)θ1 + x2(k)θ2 and thus the problem to solve is the estimation of θ =
(

θ1 θ2

)

using the

three given measurements. In the plan (θ1, θ2) the following straight lines may be drawn (x2(k)

is supposed to be non zero):

∆−

k : θ2 = (ym(k) − δ − x1(k)θ1)/x2(k) (10a)

∆+
k : θ2 = (ym(k) + δ − x2(k)θ1)/x2(k) (10b)
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k ym(k) x1(k) x2(k)

1 2.5 1.1 0.1
2 1.8 0.2 1.2
3 3.4 1.3 0.8

Table 1: Measurements

for k = 1..3 and using measurements gathered in table 1. Three cases have been considered

according to possible values of the measurement error bound δ. The figure 1 relates the situation

where δ = 0 and thus it is desired that all the data be compatible with the model (with the

assumption of free noise measurement). Indeed, no solution appears for θ1 and θ2 since the three

lines do not intercept at the same point. We conclude that the data are not compatible with

the data unless with taking into account the measurement noise. The symbol o on the figure

locates the least square solution satisfying approximatively the inequalities (4).

1.6 1.8 2 2.2 2.4 2.6
0

0.5

1

1.5

2

o

Figure 1: θ domain for the free noise case (δ = 0)

Figures 2 concerns the case δ = 0.05 and no solution exists since D3 = ∅. With δ = 0.18,

figure 3 shows the set of admissible solutions. Thus, the given model and the measurement

errors are compatible with the data only when a sufficient magnitude of the errors is used. It

should be notice that the shape of the domain containing the parameter solutions needs three

inequalities in order to be described:

2.68 − 1.1θ1 − 0.1θ2 ≤ 0 (11a)

1.98 − 0.2θ1 − 1.2θ2 ≤ 0 (11b)

3.22 − 1.3θ1 − 0.8θ2 ≥ 0 (11c)

which is not a very convenient way to define the admissible parameter values. For future use,

that explains the interest to approximate the true domain by a more simpler description such

as a box. For example, the box:
{

2.02 ≤ θ1 ≤ 2.08
1.02 ≤ θ2 ≤ 1.08

(12)
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Figure 2: θ domain δ = 0.05
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Figure 3: θ domain δ = 0.18

belongs to the domain described by (11) and figure 4 visualises this box and its position in

respect to the exact set of solutions. �

1.8 2 2.2 2.4 2.6
0.5

1

1.5

Figure 4: θ approximate domain δ = 0.18

Example 2. Estimation of the offset bounds of a sensor.

Let us consider a sensor with ideal gain equal to unity and with a variable but bounded offset

a(k). The problem concerns the estimation of the bounds of this offset using a set of measurement

(x(k), y(k), k = 1..N) which are, here, free of noise. The model of the sensor expresses its

output y in respect to the variable x to be measured:

y(k) = x(k) + a(k) (13)

For convenience, the offset a(k) is expressed using the interval form with the center ac and the
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radius δ:

a(k) = ac + δν(k), δ > 0 (14a)

| ν(k) |≤ 1 (14b)

ν(k) explaining the time variation of the offset value. The bounds ac − δ, ac + δ of the offset

have to be consistent with (13). Thus, the measurements are consistent with the sensor model

if:

| y(k) − x(k) − ac |≤ δ, k = 1..N (15)

or more explicitely:
{

y(k) − x(k) − ac − δ ≤ 0, k = 1..N
−y(k) + x(k) + ac − δ ≤ 0, k = 1..N

(16)

Identifying the bounds δ of the offset consists in solving linear inequalities (16) in respect to ac

and δ. In fact, there are an infinity of solutions due to the fact that increasing δ always make

it possible to satisfy the whole set of inequalities (16). Additional constraint may be added

and among them it is realistic to exhibit the most precise model, i.e. those characterized with

smallest offset range. This may be performed by using classical tools in the field of Linear Matrix

Inequality (LMI) by solving the problem in respect to δ and ac:

min δ
δ, ac (17)

with respect to the constraints:

y(k) − x(k) − ac − δ ≤ 0, k = 1..N (18a)

−y(k) + x(k) + ac − δ ≤ 0, k = 1..N (18b)

Since the model description is limited here with two parameters ac and δ, a geometrical inter-

pretation may be used in the plan (ac, δ). Figure 5 shows the set of solutions obtained from

inequalities (16). The lines ac = −δ + y(k) − x(k) and ac = δ + y(k) − x(k) have been drawn

to visualize the shape of the domain of solutions (in gray). Moreover, it is easy to express the

optimal solution (δ̂, âc) in the sense of the most precise model, i.e. the model whose parameter

ak has a limited range of variation (marked with the symbol ’o’ on the figure). The analytical

solution is expressed

S :























âc = 1
2 (ǫmax + ǫmin)

δ̂ = 1
2 (ǫmax − ǫmin)

ǫ(k) = y(k) − x(k)
ǫmin = infk(ǫ(k))
ǫmax = supk(ǫ(k))

(19)

�

3 The linear regression

In order to generalise the representation given by (1), let us consider an uncertain model of a

system with several (n) outputs, linear in parameters and observations, and represented by the

following structure:

Ỹ (k) = X̃(k)θ(k) + E(k) k = 1..N (20)
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Figure 5: parameter domain in the plan (ac, δ)

where Ỹ (k) ∈ IRn, X̃(k) ∈ IRn.p are the known variables at the time k and θ(k) ∈ IRp defines

model parameters. The bounded vector E(k) ∈ IRn defines the error taking into account the

uncertainties due to the measuring process and to modelling errors at the same time. This type

of model includes the particular case of MISO systems and that of MIMO systems.

The problem involved with parameter estimation is to characterise the unknown parameters

of a model using experimental data X̃(k) and Ỹ (k). In other words, the aim is to determine

the parameter domain containing all possible values consistent with data for bounds Emin and

Emax, such that:

Θ = {θ(k) ∈ IRp : Ỹ (k) ∈ X̃(k)θ(k) + [Emin Emax]} (21)

In the case of time varying parameters, an outer-bounding of Θ noted Pθ, such that Pθ is a

parallelotope which some properties will be described in the following paragraph. Before that,

some details about the description of the uncertainties are given.

Additive uncertainties are represented in model (20) by the vector E(k) assumed to belong

to the domain noted PE(δ):

PE(δ) = {Z(δ)u, ‖ u ‖∞≤ 1} (22)

with δ = (δ1 . . . δn)T , u = (u1 . . . un)T and Z(δ) ∈ IRn.n. The vector δ defines the magni-

tude of additive uncertainties which are considered bounded. When these uncertainties affect

independently each output, Z(δ) has the following diagonal structure:

Z(δ) =







δ1 . . . 0
...

. . .
...

0 . . . δn







Multiplicative uncertainties are represented by the parameter vector θ(k) ∈ IRp which fluc-

tuates in an invariant domain denoted Pθ(λ, θc), defined by:

Pθ(λ, θc) = {θ(k) = θc + M(λ)ν(k), ‖ ν(k) ‖∞≤ 1} (23)
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The vector ν(k) is varying inside an unit hypercube noted Hq (Hq = {ν ∈ IRq/ ‖ ν ‖∞≤

1}). It allows to represent the uncertain nature of model parameters. These uncertainties are

distributed on the various components of the vector θ via a full row rank matrix M(λ) ∈ IRp.q

(in general q ≥ p) depending on the vector λ = (λ1 . . . λq)
T . In fact, the matrix M(λ) defines

the volume and the shape of Pθ(λ, θc). The vector θc indicates both the geometrical centre

of Pθ(λ, θc) and the nominal value of the parameter vector. Equation (22), also shows that

Pθ(λ, θc) is the image of the hypercube Hq under an affine map µθc,M(λ) defined as:

µθc,M(λ) : IRq → IRp (24)

ν(k) 7→ θ(k) = θc + M(λ)ν(k)

The domain Pθ(λ, θc) = µθc,M(λ)(Hq) is a parallelotope (called also a zonotope). In the rest

of the paper, for sake of simplicity, the matrix M(λ) is supposed having the following structure:

M(λ) = MDiag(λ) (25)

According to these definitions of the uncertainties, the parameter estimation problem consists

in finding the values of the vectors θc, λ and δ which define the parameter domain Pθ(λ, θc) (22)

and the measurement error domain PE(δ) (21), so that the available data Ỹ (k) are compatible

with the model (20) in the most precise way:

Ỹ (k) ∈ PY (λ, δ, θc) k = 1..N (26)

with (using 20, 22, 23):

PY (λ, δ, θc) = {Y (k) ∈ IRn : Y (k) = X̃(k)θc + X̃(k)M(λ)ν(k) + Z(δ)u(k),

‖ u(k) ‖∞≤ 1, ‖ ν(k) ‖∞≤ 1} (27)

In other words, PY (λ, δ, θc) defines all possible values of the variables Y (k) consistent with

variables X̃(k) and the model uncertainties description given by the vectors λ and δ. So,

PY (λ, δ, θc) is an interval estimation of measurements Ỹ (k). The expression which generates the

domain PY (λ, δ, θc), parametrized by λ, δ and θc, can also be expressed as:

Ỹ (k) ∈ PY (λ, δ, θc) ⇔ Ỹ (k) = X̃(k)θc + T (k, λ, δ)w(k) : w(k) ∈ Hq+n (28)

with:

T (k, λ, δ) = (X̃(k)M(λ) Z(δ))

w(k) =

(

ν(k)
u(k)

)

(29)

The matrix T (k, λ, δ), defined in (29), has the form:

T (k, λ, δ) = (λ1t1(k)...λqtq(k) δ1e1...δnen) (30)

with ti(k) = X̃(k)mi, for i = 1..n, mi being the columns of the matrix M , and In = (e1 . . . en)

being the identity matrix in IRn×n.
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Knowing that w(k) varies in Hq+n (‖ w(k) ‖∞≤ 1), it is possible to calculate the lower and

upper bounds of each component of Ỹ . Indeed, from (28), one obtains:

Ỹ (k) ≤ X̃(k)θc+ | T (k, λ, δ) | Iq+n (31a)

Ỹ (k) ≥ X̃(k)θc− | T (k, λ, δ) | Iq+n (31b)

where | . | denotes the absolute value operator and Iq+n is a unity vector in IRq+n (all its

elements are equal to 1). In order to point out the role played by the parameters δ and λ in

(31), let us define:

α =

(

λ
δ

)

(32a)

T̃ (k) = [X̃(k)m1 . . . X̃(k)mq In] (32b)

Then PY (λ, δ, θc) and d(k, λ, δ, θc) become respectively PY (α, θc) and d(k, α, θc). Using def-

initions (32), relations (31) become:

Ỹ (k) ≤ X̃(k)θc+ | T̃ (k) | α (33a)

Ỹ (k) ≥ X̃(k)θc− | T̃ (k) | α (33b)

As a conclusion of the model characterization, we have to estimate the parameters θc of the

regression, its bounds λ and the bounds δ of the additive errors, using inequalities (33) expressed

for the whole set of available observations X̃(k) and Ỹ (k). Indeed, pilling all the inequalities

(33) give the system:

















X(1) | T (1) |
. . .

X(N) | T (N) |
−X(1) | T (1) |

. . .
−X(N) | T (N) |





















θc

λ
δ



 ≥

















Y (1)
. . .

Y (N)
−Y (1)

. . .
−Y (N)

















(34)

which may be solved, in respect to θc, λ, δ using standard linear matrix inequality algorithms.

Example 3.Model structure arrangement.

The following example clarify the structure of the model and its uncertainty. It allows also

to express more clearly the identification problem. The model is characterized by two outputs

yi, two varying parameters θi, three uncertainties λi affecting the parameters and two additive

uncertainties:
{

ỹ1(k) = x̃1(k)θ1(k) + x̃2(k)θ2(k) + e1(k)
ỹ2(k) = x̃1(k)θ2(k) + x̃3(k)θ2(k) + e1(k)

(35)

{

θ1(k) = θc,1 + λ1ν1(k) + λ3ν3(k)
θ2(k) = θc,2 + λ1ν1(k) + λ2ν2(k)

(36)
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Thus, we have:






























X̃(k) =

(

x̃1(k) x̃2(k)
0 x̃1(k) + x̃3(k)

)

M =

(

1 0 1
1 1 0

)

T (k) =

(

x̃1(k) + x̃2(k) x̃2(k) x̃1(k) 1 0
x̃1(k) + x̃3(k) x̃1(k) + x̃3(k) 0 0 1

)

(37)

These definitions allow to construct and to solve the inequality system (34). �

4 Observer

The problem of state estimation, in the context of bounded state noise and measurement error,

is to characterize the set of all state vectors of a given model that are compatible with the

measured inputs and outputs and the assumed errors bounds. Because of uncertainty and noise

influence, it is not possible to estimate the state exactly. However, it seems reasonable to

estimate a domain in which the real state of the system is contained. In the scientific literature,

the problem is adressed as the set-valued state estimation [41], [53], [69], [73], [74]. The basic

formulation of such observer may be summarized as follows. Consider a dynamical system:

S :

{

x(k + 1) = f(x(k), u(k), v(k)), x(0) = x0

y(k) = h(x(k)) + w(k)
(38)

where the state x ∈ IRn, y ∈ IRp is the output or observation of the state and v and w are

bounded disturbances or uncertainties. Given bounds on the uncertainties, we want to estimate

the bounds (x−, x+) of the state. The evaluation of the interval [x− x+] will be done by means

of a worst-case observation. At time k + 1, it consists in computing a confidence domain Dx,k+1

for system state based on the confidence domain of the uncertainties v and w. With a recursive

point of view, Dx,k+1 will be constructed by using the successive process confidence domains

Dx,k . . . Dx,0.

In order to obtain a guaranteed state estimator, we need a priori bounds of uncertainties v

and w. Then, the set of states has to be compatible or consistent with these a priori bounds and

the current measurements [41], [21], [69]. For non-linear systems, it is difficult to get an explicit

equation defining the bounds of the estimate; however it is easy to define an ideal algorithm

that constructs progressively the set of possible states Dx,k which is consistent with the current

trajectory and the uncertainty bounds. For linear system, the situation is more simpler, since

the set of possible states may take the form of polytope. Thus, the following subsections present

the general idea for set-valued observer, a particular situation where the bounds can be described

with an explicit expression and, finally, the case of linear systems.

4.1 Ideal interval observer

The initial state x0 of system (38) is assumed to belong to some prior compact set D0 ⊂ IRn.

The unknown state and measurement noises are bounded and for sake of simplicity their bounds

are time constant:

| v(k) |≤ δv , | w(k) |≤ δw (39)
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At time k, let Dx,k the set containing the values of x(k) compatible with the available informa-

tions {D0, {u(i), y(i), | v(i) |≤ δv, | w(i) |≤ δw}
k
i=0} and the model (38). Let us also define Dy,k

the set of values of the output knowing its measured values y(k):

Dy,k = {y : | y − y(k) | < δy} (40)

At time k + 1, two informations about the state are available: the prediction x+(k) of the state

using the system model, the measurement y(k + 1) which depends on the state x(k + 1). Thus

we define the two sets:

D+
x,k = {f(x, u(k), v(k)) : x ∈ Dx,k, | vk |≤ δv} (41a)

Dy
x,k = {x ∈ IRn : h(x) ∈ Dy,k} (41b)

Thus, at time k + 1, the set Dx,k+1 is given by:

Dx,k+1 = D+
x,k ∩ Dy

x,k+1 (42)

Summarizing, as for an observer used for certain system, there are two steps for the state esti-

mation: first, a prediction using the model of the system and the previous estimate, second a

correction using the information contained in the output measurement.

Example 4. State prediction of a scalar system.

For example, let us consider the system:

x(k + 1) = [0.5 0.6]x(k) + 0.5, x0 ∈ [0.2 0.3] (43a)

y(k) = x(k) + w(k) (43b)

with the measurement : y(1) ∈ [0.55 0.65]. With Dx,0 = [0.2 0.3], the state prediction at time

(1) yields:

D+
x,0 = [0.5 0.6][0.2 0.3] + 0.5

= [0.60 0.68]

Output at time 1 gives the state estimation:

Dy
x,1 = [0.55 0.65]

and thus the correction step leads to:

Dx,1 = [0.60 0.65] �

4.2 Analytical description of bounds

The ideal observer defined with (40), (41a) and (42) allows the construction, on a numerical point

of view, of the set of estimates. Generally, this is a tedious task, and no analytical expression

of the bounds may be exhibited. However, for some specific structures [33], [18], [70], the state

observer may be described with a state representation. For that let us define a pair of systems

S− and S+:
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S− :

{

z−(k + 1) = g−(z−(k), y(k))

x−(k + 1) = ℓ−(z−(k), z+(k), y(k))
(44)

S+ :

{

z+(k + 1) = g−(z+(k), y(k))

x+(k + 1) = ℓ−(z−(k), z+(k), y(k))
(45)

where the functions g−, g+, ℓ−, ℓ+ have to be defined. Then (S−, S+) is an interval estimator

for system S, if for any compact set X0 ⊂ IRm there exists initial conditions (z−(0), z+(0)) such

that the system (S, S−, S+) verify for any initial condition x(0) ∈ X0 [33], [60]:

x−(k) ≤ x(k) ≤ x+(k) (46)

where the operator ≤ applied to vector understanding as inequalities applied to their compo-

nents. Equations (44) and (45) allows to compute two estimates x− and x+ that bound the

unknown state of the system. Of course we are looking for the best estimate, i.e. the interval

[x−(k) x+(k)] has to be as small as possible at each time instant. As a particular case, let us

examine the conception of this interval observer for the system described by:

S :

{

x(k + 1) = Ax(k) + f(y(k), v(k))
y(k) = Cx(k)

(47)

where the function f has bounds f− and f+:

f−(y) ≤ f(y, v) ≤ f+(y)

The interval observer is written:

S∓ :

{

x−(k + 1) = Ax−(k) + f−(y(k)) + L(y(k) − Cx−(k))

x+(k + 1) = Ax+(k) + f+(y(k)) + L(y(k) − Cx+(k))
(48)

The matrix L must be adjusted in order that (46) will be satisfied. The estimation error is

defined using the two bounds:

e−(k) = x(k) − x−(k) (49a)

e+(k) = x+(k) − x(k) (49b)

With definitions (47) and (48), derivative according to time leads to:

e+(k + 1) = (A − LC)e+(k) + f+(y) − f(y) (50)

Lemma 1 : the system x(k + 1) = f(x(k)) is cooperative if ∂fi

∂xj
≥ 0, ∀i, ∀j. It implies that if

x(0) ≥ 0, then x(k) ≥ 0, ∀k ≥ 0.

Noticing that f+ − f ≥ 0, if it is possible to adjust the gain L of the observer such that

(A−LC) is cooperative; then e+(0) ≥ 0 implies e+(k) ≥ 0 all along the time. Similar conclusion

may be obtained for e−(k).
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4.3 The linear case

Let us consider the simple case of the scalar equation:

x(k + 1) = a(k)x(k), x(0) ∈ [x−

0 , x+
0 ], a(k) ∈ [a−, a+] (51a)

y(k) = c(k)x(k), c(k) ∈ [c−, c+] (51b)

According to the arithmetic operators, the bounds of the state x may be constructed. If [a] is

positive:
{

x−(k + 1) = 1
2x−(k)((a− + a+) − (a+ − a−)sgn(x−(k))

x+(k + 1) = 1
2x+(k)((a− + a+) + (a+ − a−)sgn(x+(k))

If [a] is negative:

{

x−(k + 1) = 1
2x+(k)((a− + a+) − (a+ − a−)sgn(x+(k))

x+(k + 1) = 1
2x−(k)((a− + a+) + (a+ − a−)sgn(x−(k))

Summarizing the two situations, we obtain:

{

x−(k + 1) = 1
2(x−(k)(ma − δasgn(x−(k))(1 + sgn(a)) + x+(k)(ma − δasgn(x+(k))(1 − sgn(a)))

x+(k + 1) = 1
2(x+(k)(ma + δasgn(x+(k))(1 + sgn(a)) + x−(k)(ma + δasgn(x+(k))(1 − sgn(a)))

(52)

with the definitions:
{

2δa = a+ − a−

2ma = a+ + a−

Thus (52) allows the computation of the bounds of the state. As explained in section 4.1, the

construction of an observer may be achieved by combining the prediction given by the previous

state equation and the observation of the state expression given by the output equation.

We consider now the more general case of a linear uncertain model with n states:

x(k + 1) = Akx(k) + Bu(k) (53a)

y(k) = Cx(k) (53b)

where the state matrix is expressed:

Ak = A + ∆k (54a)

∆k = (δij(k))i,j=1:n, | δij(k) |≤ δij , ∆ = (δij)i,j=1,n (54b)

For sake of simplicity, B is supposed to be constant, but extension to an interval matrix is

straightforward. Using state equation (53) and definition (54), direct calculation of product and

sum of intervals leads to the following expression for the lower bound x−(k) and upper bound

x+(k) of the state [24]:

(

x−(k + 1)
x+(k + 1)

)

= M

(

x−(k)
x+(k)

)

+ N

(

| x−(k) |
| x+(k) |

)

+ Eu(k) (55)
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with the definitions:

M =
1

2

(

A+ | A | A− | A |
A− | A | A+ | A |

)

(56a)

N =
1

2

(

−∆ − ∆ ⊗ SA −∆ + ∆ ⊗ SA

∆ − ∆ ⊗ SA ∆ + ∆ ⊗ SA

)

(56b)

SA = sgn(A), E =

(

B
B

)

(56c)

As explained in section 4.1, the state obtained with (55) may be compared with those deduced

from the measurement equation (53).

Example 5. A second order system.

The system (53) has been simulated with the following definition:

A =

(

0.5 −0.1
−0.1 0.75

)

B =

(

0.4 0
0.01 0.4

)

∆ =

(

0.02 0.01
0.01 0.02

)
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Figure 6: Inputs
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State 1

Figure 7: State interval

Figure (6) and (7) respectively show the inputs and the state interval of the system. �

4.4 Worst-case observation

Uncertain linear systems, as (53), are characterized by parameters whose time evolution is not

a priori known; however, the range of variation of these parameters may be known. Thus the

state estimation has to take into account that the uncertain parameters are varying at each time

step. On the contrary, with a time-invariant approach, the uncertain parameters are supposed

unknown, constant and bounded. Here, we are involved with the case of time varying parameters.

The best way to take account of these variations is to express the state at time k in respect to

the initial state at time 0 and after to analyse the influence of the uncertainties on the whole
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state trajectory:

x(k) = A(η(k − 1)) . . . A(η(0))x(0) + B(η(k − 1))u(k − 1)+

k−1
∑

i=1

A(η(k − 1)) . . . A(η(i))B(η(i − 1))u(i − 1)

where | η(i) |≤ 1, i = 1, . . . , k − 1. At any time instant k, the system state domaine Dx,k will be

bounded by its interval hull �S:

�Sx,k = [x−(k), x+(k)] (57)

where:
{

x+(k) = maxη x(k)

x−(k) = minη x(k)
(58)

with η =
(

η(0) . . . η(k − 1)
)

. This approach allows to determine the worst-case simulation with

the only conservatism due to the fact that optimization for the bounds are achieved indepen-

dently although there are common uncertainties between the components of x. A main drawback

of the proposed procedure is the dimension of the optimization problems, since x(k) is a poly-

nomial which degree increases with time k. That is the reason why one can suggest to estimate

the bounds on the state using a sliding window of length L + 1. Indeed, the state at time k + L

is expressed in respect to the initial conditions at time k according to:

x(k + L) = A(η(k + L − 1)) . . . A(η(0))x(k) + B(η(k + L − 1))u(k − 1)+ (59)

k−1
∑

i=1

A(η(k + L − 1)) . . . A(η(i))B(η(i − 1))u(i − 1), ‖ η(.) ‖∞≤ 1

The interval hull has been already defined with (57) for the window [0 k]. Now the window

[k k +L] is considered, but the number of parameters η is constant when the window is moving.

A more simpler solution consists in using an ”almost time invariant” approach. For that purpose

one supposes a constant value for the uncertainty inside the time window:

x(k + L) = AL(η)x(L) +

k
∑

i=1

Ak−1−L(η)B(η)u(i − 1) (60)

and thus the number of uncertainties is fixed and does not depend on the size of the sliding

window. The main problem is to determine the size of the window and some results on that

subject are given in [59].

4.5 Application to diagnosis

In the previous section, the structure of the interval observer is based both on the state equation

which gives a prediction of the state and on the measurements used to correct the prediction.

When applying the strategy, it is assumed that measurements are free of fault, otherless the

correction step may be incompatible with the prediction step. In fact, for diagnosis, the objective

does not concern the state estimation but the fault detection and isolation. Thus, we need to
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generate residual or indicator sensitive to the fault. One way to perform that is to compare the

measured output and its prediction thanks to the model, both outputs being intervals. The set

D+
y,k of the predicted output is only deduced from the set D+

x,k:

D+
y,k = {y = h(x+)+w(k+1) : x+ = f(x, u(k), v(k)), x ∈ Dx,k, : v(k) |≤ δv , | w(k) |≤ δw} (61)

In order to take into account the uncertainties associated to the measuring procedure, the set

of values of the output knowing its measured value y(k) has been already defined in (40).

Consequently, an interval residual may be defined as follows:

rk+1 = D+
y,k ∩ Dy,k+1 (62)

A fault is detected if rk+1 = ∅. It should be noticed that at each time, we have to compute limits

of two domains which usually needs a important effort. For that reason, it is often preferable to

use approximate bounds. For example, considering (62), let us define the modified residual:

rk+1 = D+
yex,k ∩Dy,k+1 (63)

D+
yex,k being an external estimate of D+

y,k, i.e.:

D+
y,k ⊆ D+

yex,k (64)

If D+
yex,k is much easier to obtain than D+

y,k, then residual (63) is easier to compute than (62);

however D+
yex,k detects less faults than D+

y,k. Indeed, if D+
yex,k∩Dy,k+1 6= ∅ and D+

y,k∩Dy,k+1 = ∅,

then a fault has occurred but is not detected [12].

5 Data validation: steady state system

The problem of obtaining reliable estimates of the state of a process is a fundamental objective in

process control and supervision, these estimates being used to understand the process behaviour.

For that purpose, a wide variety of techniques has been developed to perform what is currently

known as data reconciliation. Data reconciliation, which is sometimes referred too as mass and

energy balance equilibration, is the adjustment of a set of data so the quantities derived from

the data obey physical laws such as material and energy conservation.

The structural information in a plant can be conveniently represented by a direct graph, the

nodes of which represent the process units as reactors, tanks, distillation columns, whilst the

arcs represent streams of circulating matter. The mathematical model originated from mass

conservation laws and assuming linear relationships, is written under the exact structural form:

Mx = 0 (65)

where M ∈ IRn.v is the incidence matrix of the process graph with n the number of nodes and

v the number of arcs, x ∈ IRv is the vector of ”true” values (unreachable to the measure).

Classical approaches for data validation use the assumption of an underlying normal distri-

bution for the measurement error. This is not very realistic and can be criticized in regard to the

fact that it extends to infinity. In the common practice, the probability of variation of more than

five standard deviations is very small and enough to be considered as negligible. Moreover, for
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a value around zero, a significant probability of a negative value could occur against all physical

sense. Thus, the use of a log-normal distribution or other adapted distribution could avoid this

kind of difficulty. That may justify an approach for data reconciliation which does not assume

the hypothesis of normal distribution. There is a few work published in this area. In [35], the

use of bounds for the estimation with an interval formulation is called to mind and developed on

a example. More recently, in [43] and [61] the using of LMI approach (Linear Matrix Inequality)

allows to formulate more generally the bounded estimation problem and an admissible solution

is proposed.

According to the precision of the measurement devices, the available measurement x̃ are

expressed as intervals:

x− ≤ x̃ ≤ x+ (66)

where x− and x+ are respectively the upper and lower bounds of process variables. Indeed,

a measurement x̃ is represented by an interval [x− x+] whose length is directly related to the

measurement precision.

Considering now the model (65) and the measurement (66), it is desired to give an estimation

x̂ of the flowrates. The proposed strategy consists of two steps. First, taking into account the

model constraint (65), we reduce the number of variables to be estimated. Second, we choose

to express the estimations of the true values with an interval representation.

First step: data reduction

As the different equations of the model (represented by the rows of the matrix M) are indepen-

dent, the matrix M has full row rank. Therefore, the following partition always holds:

M = (Mb Mh) (67)

with Mb being a n.n regular matrix. That allows to express the model (65) as:

x = Axb, xb ∈ Rv−n (68a)

A =

(

H
I

)

(68b)

H = −M−1
b Mh (68c)

In other words, the process was initially described by v variables; however redundancy ex-

pressed by the model of the process allows to reduce the number of variables to v−n. Therefore

reconciliation will be performed using only a subset of variables.

Second step: interval estimation

According to the previous decomposition, the state x has to be estimated taking into account

the measurement intervals (66). As explain with the example of section 2, the estimate is chosen

to belong to a box described by:

x̂b = xc + λ ⊗ xr xc ∈ Rv−n xr ∈ Rv−n λ ∈ Rv−n (69a)

‖ λ ‖∞≤ 1 (69b)
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where the operator ⊗ performs element-by-element product of two vectors. Indeed, the estima-

tion x̂b is chosen as a box, the center of which being xc, the width being 2xr. In definition (69a),

the variable λ allows to consider all the values inside the box and consequently, for the state

estimation problem, we consider a set of admissible solutions. Gathering equations (66), (68a)

and (69a) gives:

x− ≤ A(xc + λ ⊗ xr) ≤ x+ (70a)

‖ λ ‖∞≤ 1 (70b)

Then (70a) has to be solved in respect to the center xc and the radius xr; moreover we suggest

to maximise the ”size” of the box characterized by the components xr,i of xr, for example its

volume. Then, we have to solve the optimisation problem:

max
xc,xr

v−n
∏

i=1

xr,i

Axc+ | A | xr − x+ ≤ 0
−Axc+ | A | xr + x− ≤ 0



















(71)

This classical problem may be solved by using constraint optimization techniques, see for

example [19].

Example 6. Mass balance reconciliation.

Figure 8 shows the flowsheet of the process used for data validation. There are a total of fiveteen

streams with eight unit operations: all the flowrates are measured, otherwise, when measurement

are missing, preliminary decomposition and variable classification have to be performed. The

method described in the previous section is applied to this flowsheet with data obtained by

simulation.

1 2 3 4 5

6

8

7

1 4 5 3 10

72

8
15

9

14

6

11 13

12

Figure 8: Flowsheet

In table 2, columns 2 and 3 contain the bounds x− and x+ of the measurements from which

one can also evaluate the center xc and the radius xr. Before data reconciliation, a preliminary

test may be performed in order to appreciate the coherence of the measurements. For that,

interval mass balance residuals are computed according to the formula [r] = M [x]. Numerical

computation shows that all the interval residuals contain the value 0. Thus, no gross error affect
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the measurements and that allows to reconcile the measurements. Analysing results shows that

the widths of the estimates are smaller than those of the measurements; this interval reduction is

explained by the model constraints which allow to better estimate the true data. This approach

may be extended to systems where only a part of the variables are measured. �

flow x− x+ x̂− x̂+

1 42.9 50.9 44.718 45.718
2 6.1 13.8 8.1 9.1
3 23.9 27 25.218 26.218
4 40 48 42.809 43.809
5 28.1 40.2 31.909 32.909
6 4.2 8.2 6.191 7.191
7 8.9 12.9 11.4 11.4
8 16 24 19 20
9 8.2 12.2 9.527 10.527

10 14.7 18.7 15.191 16.191
11 4 8 4.836 5.836
12 8.7 12.7 9.855 10.855
13 11.2 14 12.2 13.2
14 1.5 4.5 2.164 3.164
15 18 29 21.664 22.664

Table 2: Measurements and reconciled data

6 Data reconciliation: dynamic system

We consider now the class of dynamic systems represented by linear discrete state equation.

The uncertainties are described by bounded and normalized variables, which modify the values

of the coefficients of matrices A, B and C all along the time. The system is described by the

following model:

x(k + 1) = A(η(k)x(k) + B(η(k)u(k) (72a)

y(k) = C(η(k)x(k) (72b)

where x ∈ IRn is the state vector, u ∈ IRq the vector of inputs and y ∈ IRm the vector of the

output η(k) are bounded and normalized variables.
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First, considering the observation window [k, k + s], let us define the matrices:

A(η(k, s)) =









A(η(k)) −I . . . 0 0
0 A(η(k + 1)) . . . 0 0
. . .
0 0 . . . A(η(k + s + 1)) −I









∈ IRs.n×(s+1).n (73a)

B(η(k, s)) =









−B(η(k)) 0 . . . 0
0 −B(η(k + 1)) . . . 0
. . .
0 0 . . . −B(η(k + s + 1))









∈ IRs.n×s.q (73b)

C(η(k, s)) =





C(η(k)) 0 0
0 . . . 0
0 0 C(η(k + s))



 ∈ IRm.(s+1)×n.(s+1) (73c)

and the vectors:

x(k, s) =
(

xT (k) . . . xT (k + s)
)T

∈ R(s+1).n (74a)

y(k, s) =
(

yT (k) . . . yT (k + s)
)T

∈ R(s+1).m (74b)

u(k, s) =
(

uT (k) . . . uT (k + s − 1)
)T

∈ Rs.q (74c)

By agregation of the state equations on the window [k, k + s], we represent the model in the

following static form:

M(η(k, s))x(k, s) = h(η(k, s)) (75)

M(η(k, s)) =

(

A(η(k, s))

C(η(k, s))

)

h(η(k, s)) =

(

B(η(k, s)) 0
0 I

)(

u(k, s)
y(k, s)

)

(76)

There are several methods to calculate, by using equation (73) an estimate of x(k, s) [49].

Unfortunately no method can be considered in general better than the others. However, the

widths of the interval estimation can constitute an evaluation criterion. Mainly, three methods

can be adapted to the model of the considered system: Gauss elimination, Gauss-Seidel iteration,

Krawczyk iteration [8]. Thus (75) is a linear interval system, but with generally more equations

than unknown variables x(k, s) (see indicated dimensions). Based on algorithm allowing the

resolution of square linear interval system (see appendix B) [6] proposes the following stategy:

• Step 1: choose the first rows of [M ] in order to form a regular matrix [M1]; [h1] denotes the

corresponding subvector extracted from [h]. The subsystem [M1] = [h1]x is then solved in

respect to the state x and the solution is noted x̂1(k, s).

• Step 2: choose a second square matrix [M2] by replacing the last row of [M2] by the

first row in [M ] which has not been selected. The same modification is achieved for

generating [h2] from [h1]. The solution of system [M2] = [h2]x is noted x2(k, s). This step

is repeated by generating successives interval subsystems [M i] = [hi]x whose solutions are

noted xi(k, s); q estimates are thus obtained.
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• Step 3: to have an estimation with the finest possible bounds, the final estimation of

x(k, s) is calculated by:

[x̂(k, s)] =

q
⋂

i=1

[xi(k, s)]

7 Conclusion

The paper presents some works about the application of interval analysis applied to state es-

timation and data validation. Thanks to the characteristics of intervals, interval computations

open a wide variety of new opportunities in many fields in process analysis such as modelisa-

tion, parameter estimation, state estimation, control, data validation and diagnosis. Interval

approach allows to handle the uncertainty in data and model; moreover, real problems may be

solved for obtaining validated solutions with guaranteed confidence.

References

[1] Adrot O., Ploix S. and Ragot J. Détection de défauts appliquée à des modèles statistiques
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[18] Bernard O. and Gouzé J.L. Interval observers bundle for a class of bioprocess models. 2nd

IFAC Symposium on System Structure and Control, SSSC’04, Oaxaca, Mexico, December

8-10, 2000.
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atteignant la consistance globale. Conférence Internationale Francophone d’Automatique,

CIFA 2004, 22 - 24 novembre 2004, Douz, Tunisie.

[30] Fagarasan I., Ploix S. et al. Bounding approach for fault detection and diagnosis. 9th IFAC

Symposium Large Scale Systems, Bucharest, Romania, July 18-20, 2001.

[31] Fogel E., Huang Y. F. On the value of information in system identification-bounded noise

case. Automatica, 18, pp. 229-238, 1982.
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APPENDIX A: Review of interval arithmetic operators

This section reviews basic interval arithmetic operations and algorithms for interval computa-

tions used in the paper. Only real intervals are considered; as a definition, a real interval is a

segment on the real number line and an interval vector of IRv is an v-dimensional rectangle or

”box” and is the Cartesian product of intervals. It should be noted that all continuous basic

functions such as sin, cos, exp . . . extend easily to intervals.

Interval arithmetic takes into consideration the uncertainty of all of the parameters of a

system and is able to provide strict bounds of the variables that are to be estimated. Initially,

interval computation was developed to quantify the uncertainty of results calculated with a

computer using a floating point number representation [48].

Definition or Operation Formulation

Interval number x ∈ [x, x̄] x : lowerbound, x : upperbound
x = [x, x̄]

Center xc = (x + x̄)/2
Radius xr = (x̄ − x)/2

x = xc + µxr, | µ |≤ 1

Interval addition z = x + y = [x + y, x̄ + ȳ]

z = x− y = [x − y, x̄ − y]

Interval multiplication z = xy

z = [min(xy, xȳ, x̄y, x̄ȳ),max(xy, xȳ, x̄y, x̄ȳ]

Scalar multiplication if a > 0, z = ax = [ax, ax̄]
if a < 0, z = ax = [ax̄, ax]

Interval division z = x : y = [x, x̄][ 1
ȳ
, 1

y
]

unless 0 ∈ [y, ȳ] in which case

the result of division is undefined

Table 3: Interval arithmetic operations

An interval [x] is a closed and connected subset of R. A box [x] of Rn is a Cartesien

product of intervals. The set of all boxes of Rn is denote IRn. As real arithmetic operator,

functions are extended to intervals. Given a function f : IR → IR, a function F : IIR → IIR

is an inclusion function of f if ∀x ∈ [x], f(x) ∈ F ([x]). It is clear that inclusion function is

not unique; the natural inclusion function is obtained by substituting all real arguments and

elementary functions (log, exp ...) by their extension to intervals. Often, interval computations

overestimate the range of an expression. For example, [38], consider three formal expressions of

the same function:














f1(x) = x(x + 2)
f2(x) = x2 + 2x
f3(x) = x × x + 2x
f4(x) = (x + 1)2 − 1

(77)
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On [x] = [−1, 1], we have:















[f1][x] = [x]([x] + 2) = [−3, 3]
[f2][x] = [x]2 + 2 × [x] = [−2, 3]
[f3][x] = [x] × [x] + 2 × [x] = [−3, 3]
[f4][x] = ([x] + 1)2 − 1 = [−1, 3]

(78)

APPENDIX B: System of interval equations. Interval Gaus-

Seidel iteration

Interval methods have been developed to solve a system of interval equations, i.e. equations in

which the coefficients are uncertain but bounded. Consider a linear system of equations:

Ax = b (79)

where A ∈ IRn×n, b ∈ IRn are bounded. Replacing the point valued coefficients in A and b with

intervals results in non-parametric interval linear system:

[A]x = [b] (80)

where [A] ∈ IIRn×n, b ∈ IIRn. The set of all possible solution to (48) is:

Sx = {x ∈ IRn : ∀b ∈ [b],∀A ∈ [A], Ax = b} (81)

At the kth iteration, compute for i = 1..n:

[y
(k)
i ] =

[bi] −
∑i−1

j=1[aij ][x
(k)
j ] −

∑n
j=i+1[aij ][x

(k−1)
j ]

[aii]
(82a)

[x
(k)
i ] = [y

(k)
i ] ∩ [x

(k−1)
i ] (82b)

To start the iteration, we require an initial solution x(0), choice of which seriously influences the

convergence of the algorithm. The iterations can be terminated if the radii of the components

of x(k) are no longer rapidly decresasing.

As an example, let us consider the particular case: A =

(

2 1
1 2

)

b =

(

[5.8 6.2]
[2.8 3.2]

)

Applying

the recursion (82) gives the results gathered in table 4, x1 and x2 being the two components of

x. The bounds x− and x+ are obtained iteratively starting with the arbitrary values −1 and

1. Less than 10 iterations are needed to obtain the stabilisation of the sequence of iterates. We

have also indicated the bounds y− and y+ of y. Here, the example is simple and allows a hand

computation. The solution x is represented on figure 9 where are shown the interval solution

(the rectangle shape) and the exact solution (the diamond shape). It is clear that the interval

solution is an outer approximation of the true solution. Here the interval solution is:

x ∈ [2.8 3.2], y ∈ [−0.2 0.2]

There are several possibilities allowing a better approximation. The subpaving approach consists

in splitting the intervals into smaller intervals. For the given example, let us consider the
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following partition:

b =

(

[5.8 6.0]
[2.8 3.0]

)

, b =

(

[5.8 6.0]
[3.0 3.2]

)

, b =

(

[6.0 6.2]
[2.8 3.0]

)

, b =

(

[6.0 6.2]
[3.0 3.2]

)

,

The results are indicated on figure 10 which clearly shows how the solution has been significantly

improved. In fact, it is possible to increase the quality of the approximation by increasing the

splitting of b.

k x−

1 x+
1 x−

2 x+
2

1 -1.00 -1.00 1.00 1.00
2 2.40 2.60 0.10 0.40
3 2.70 3.05 -0.12 0.25
4 2.77 3.16 -0.18 0.21
5 2.79 3.19 -0.19 0.20
6 2.79 3.19 -0.19 0.20
7 2.80 3.19 -0.20 0.20
8 2.80 3.20 -0.20 0.20

Table 4: Interval arithmetic operations
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Interval solution
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Figure 9: Interval linear system
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Figure 10: Interval linear system

30


