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Abstract
Real-life processes are mostly characterized by several operating regimes or modes. Each oper-
ating mode corresponds to particular operating conditions and may require the use of a specific
control strategy. Therefore, the task of identifying or determining continuously the current op-
erating mode of the process is of a great value as it allows to implement the control strategy
that is in accordance with the current operating mode of the process. The use of an unscented
Kalman filter is considered here for the purpose of tracking the active operating mode of the
process at every time instant and consequently detecting when a change occurs in the process
operating mode.

Introduction
The modelling of processes or systems exhibiting several operating regimes or modes has

always been a subject of interest in various research areas like economics [3], finances [6],
climatology [11], and engineering sciences [2]. The development of such models comes from
the extension of the underlying principles of the classical linear regression theory, leading to
the birth of different generalizations known as switched regression models or switched models.
The work of [1], among others, has paved the way to the first principles of this appealing
modelling technique. Since then, many major contributions [7] has specified and strengthened
this formalism which has the potential to be of a practical use as soon a process or system
displays several operating modes and can eventually “switch”, in a forced or natural manner,
between these operating modes. The determination of the active operating mode for a process
exhibiting several operating modes is a crucial task for the implementation of the appropriate
control strategy in regard to the current operating mode. It is also a key to achieve safety
and profitability objectives for the process by the means of appropriate control actions. When
the changes in the process operating modes are triggered by known variables or conditions
(for example a process operator pushing a button), the active operating mode determination is
facilitated. In the other situation where the reason why the process switches from one operating
mode to another is not well mastered, it has to be inferred by using the measured process
variables. In this scenario, there is a need to provide a way to estimate at each time instant
the active operating mode of the process so that a change in the operating modes can be easily
detected when it occurs. In [5], the proposed procedure is based on the generation of analytical
redundancy equations between the process input and output variables. The feasibility of the
method is conditioned by the existence of the analytical redundancy equations.

In the rest of this paper, the focus is on a particular class of multiple operating regime
processes or systems known as PWA (Piece-Wise Affine) systems [14] and their extension to
dynamic systems PWARX (Piece-Wise Auto-Regressive eXogeneous). The presented problem



is the task of determining at each time instant the active operating mode by using the measure-
ments of the system’s input and output variables. The problem is investigated in a supervised
detection framework, i.e. assuming that the different operating modes have been previously
listed and identified. This problem is explored for several years by researchers from the contin-
uous systems community and simultaneously by those related to the area of hybrid systems [9].
The original point of the proposed approach is the use of a particular Kalman filter that is well
suited for the joint estimation of the system’s state and the current operating regime (equiva-
lently the operating regime switching time instants).
Position of the problem
Introductory example
Consider the second order system described by the following equation:

x1,k+1 = −a0,kx2,k + b0,kuk
x2,k+1 = x1,k − a1,kx2,k + b1,kuk

yk = x2,k

(1)

with the time-varying parameters being described by the equations:
a0,k = µka01 + (1− µk)a02

a1,k = µka11 + (1− µk)a12

b0,k = µkb01 + (1− µk)b02

b1,k = µkb11 + (1− µk)b12

(2)

The variable µk is a time-varying variable that can depend on an exogenous variable. In the
case of µ taking only the values 1 or 0, the model of equation (1) shows that the represented
system has two operating modes M1 and M2 that are described by the equations:

M1


x1,k+1 = −a01x2,k + b01uk

x2,k+1 = x11 − a11x2,k + b11uk

yk = x2,k

M2


x1,k+1 = −a02x2,k + b02uk

x2,k+1 = x11 − a12x2,k + b12uk

yk = x2,k

(3)

Knowing the input u and the output y, the diagnosis problem involves the determination at each
time instant of the system’s active operating mode, i.e. say which of the two models M1 and
M2 is compatible with the input/output measurements. To answer this question, note first that
the model (1) can be expressed independently of the unknown state variable x:

µ1,k+2yk+2 + µ1,k+1a11yk+1 + µ1,kao1yk − µ1,k+1b11uk+1 − µ1,kb01uk+

µ2,k+2yk+2 + µ2,k+1a12yk+1 + µ2,kao2yk − µ2,k+1b12uk+1 − µ2,kb02uk = 0
(4)

where, for the sake of simplicity in the notation, one has the following change of variable:
µ1 = µ and µ2 = 1− µ. In this form, an estimation of the active mode indicator is obtained by
resolving equation (4) in regard to µ :

µk+1 ((a11 − a10)yk+1 − (b11 − b12)uk) + µk ((a01 − a02)yk − (b01 − b02)uk) =

−yk+2 − a12yk+1 − a02yk + b12uk+1 + b02uk
(5)

The numerical integration of equation (4), with the initial conditions µ0 and µ1, can be used to
obtain the successive values of the mode indicator µk. An alternative can be proposed to this
computationally demanding solution. The sub-optimal solution is derived by formulating the
following assumption on the time window [k : k + 2]:

µk = µk+1 = µk+2 (6)



To justify this assumption, one can consider the situation where the operating regime changes
occur at low frequency and therefore the system stays in an operating mode for a period that far
exceeds its main time constant.

From equations (5) and (6), one has:
µk =

ε2

ε2 − ε1

, if ε2 − ε1 6= 0

ε1 = yk+2 + a11yk+1 + a01yk − b11uk+1 − b01uk

ε2 = yk+2 + a12yk+1 + a02yk − b12uk+1 − b02uk

(7)

An on-line estimate of the value of the mode indicator can then be obtained. From equation (7)),
one can notice that if the modeM1 is active then ε1 is equal to zero, which gives to µ the value 1.
Inversely, if ε2 takes the value zero then µ is equal to zero. Thus, the proposed estimator allows
the determination, at each time instant, at every moment, of the system’s active mode. In fact,
the presence of measurement errors on the input and output variables might make the estimated
values of µ vary around 0 or 1 instead of being exactly 0 or 1. The estimation procedure is also
ineffective if the two errors ε1 and ε2 are both close to zero. It will then be necessary to set a
threshold so as to decide the active mode.

The technique that has been proposed can hardly be generalized to systems with order
higher than two because the elimination of the state on the one hand and the extraction of
the mode change indicator on the other hand are not easily achievable. Therefore, it is more
convenient to rely on an estimation method of these two quantities through an observer. Here,
the usage of a Kalman filter has been adopted.
System’s Model
A switched system is generally described by:

xk+1 = fσk
(xk, uk) (8)

where σ : IR+ → I = 1, 2 . . . , N is a piece-wise constant function triggering the change from
one operating mode to another, xk ∈ IRn, uk ∈ IRm respectively stand for the system’s state and
input variables, fi(., .) are vector fields used to represent the operating modes of the system.

The model of equation (8) represents a system withN operating modes, where each mode is
described by a model, which is assumed to be known, and the change from one mode to another
is governed by external (or internal) conditions that are not known a priori. In practice, these
conditions may be modelled by a variable that causes the change in the operating mode when
its value satisfies certain conditions. This approach of system modelling can be compared with
the multi-model approach model that aggregates the models representing the operating modes
with weighting or transition functions. The difference between the case study considered here
and the multi-model one is precisely the fact that the variable that causes the transition from
one mode to another is not assumed to be known a priori. The proposed approach is directly
applicable to the case of non-linear models.

To take into account the presence of modelling errors or disturbances, the system’s model,
for the operating mode i, is written as:{

xk = fi(xk−1, uk−1) + qk−1

yk = h(xk) + rk
(9)

where xk ∈ IRn, uk ∈ IRp, yk ∈ IRm, qk ∈ IRn, rk ∈ IRm with the statistical assumptions
of normal distribution for the process and measurement noises: qk ∼ N (0, Qk) and rk ∼
N (0, Rk).



To describe all the operating modes, let us introduce a parameter that reflects the change
from one operating mode to another. This parameter can have an inner dynamical behaviour
reflecting the rate at which the change of operating mode is performed. Here, this dynamic
is modelled as a random walk process depending on a variable sk ∈ IRns and the model of
equation (9) is then modified in the form:

xk = f(xk−1, uk−1, µi,k−1) + qk−1

µi,k = µi,k−1 + sk−1, sk ∼ N (0, Sk)

yk = h(xk) + rk

(10)

Problem statement
The problem statement is the following one: assuming that input/output measurements of the
system are available and knowing the system’s model (10), provide an estimation of the gener-
alized state (x and µ ) at each time instant.
Principle of the estimation of the operating mode changes
As mentioned above, the joint estimation of the system’s state and switching parameters must
be obtained by the means of the input/output measurements. Given the structure of the system’s
model, this estimation cannot be achieved through a linear filter due to the linkage between
the system’s state and switching parameters. The estimation methods that can be considered
to tackle this task belong to the family of iterative estimation methods or model equations lin-
earisation methods. It is well known that functions linearisation in the EKF (Extended Kalman
Filter) leads to the conservation of the Gaussian nature of the estimation errors. However, the
resulting Gaussian distribution, which is an approximation of the true distribution, does not
necessarily have the same first and second order statistical moments as the true distribution.
The UKF filter proposed in [8] uses a Gaussian approximation of the a posteriori distribution.
The propagation of this distribution then simply requires the calculation of the mean and co-
variance, which is carried out through a a deterministic sampling technique known as unscented
transformation.

The improvement brought by the UKF in comparison to the EKF is that the statistical mo-
ments are exactly calculated [15], [13], [4]. The UKF relies on the use of a finite number of
sample points (2n + 1), n being the size of the system’s state vector, selected around the mean
value of the distribution to be propagated. These points known as sigma-points in the literature
have the property to capture the mean and the variance of the distribution.

The unscented Kalman filter (UKF)
Without limiting the generality of the foregoing, the model of equations (4), (5) and (6) can be
rewritten as: {

Xk = F (Xk−1, uk−1) + ηk−1

yk = h(Xk) + rk
(11)

This equation describes the dynamics of the augmented state vector:

Xk =
(
xk µ1,k . . . µN,k

)T
, ηk =

(
qk s1,k . . . sN,k

)T (12)

One can then apply to the model (11) the previously presented estimation procedure with the
following assumptions: ηk ∼ N (0, Qk) and rk ∼ N (0, Rk).
• Prediction of the state mean m−

k ant its covariance matrix P−
k :




Xk−1 =

(
mk−1 . . . mk−1

)
+
√
c
(
0
√
Pk−1 −

√
Pk−1

)
X̂k = f(Xk−1)

m−
k = X̂kwm

P−
k = X̂kWX̂T

k +Qk−1

(13)

• Update of the output mean and its covariance matrix:

X−
k =

(
m−
k . . . m−

k

)
+
√
c
(
0
√
P−
k −

√
P−
k

)
Y −
k = h(X−

k )

µk = Y −
k wm

Sk = Y −
k WY −T

k +Rk

Ck = X−
k WY −T

k

(14)

• Computation of the filter gain
Kk = CkS

−1
k (15)

• Update of the state mean and its covariance matrix:{
mk = m−

k +Kk(yk − µk)
Pk = P−

k −KkSkK
T
k

(16)

Numerical results
Consider a second order system represented by equation (17):

xk+1 = akxk + buk

ak = µka1 + (1− µk)a2

yk = xk

(17)

Simulation results (with operating mode changes at the time instants 20, 50, 80, 130 and 140)
are presented in figures 1 through 3. The figures successively show the time evolution of:

• The system’s input u and its output y. Note that the system’s input and output are cor-
rupted by measurement noise.

• The state estimation provided by the UKF.

• The estimation of the indicator of operating mode change µ, the filtered value of the
indicator µ, and the true mode indicator.

The results illustrated by figure 4 have been obtained with the same system (equation (17)),
input sequence and noise, except the only difference that the model of ak is rewritten as ak =
tanh(µka1 + (1 − µk)a2). For this example, It can be noticed that there is a perfect match
between the estimated active mode and the true one.
Conclusion
The proposed method in this paper addressed the issue of the determination of the active oper-
ating mode of a system that may exhibit several operating modes or regimes. This problem is of
a great importance for monitoring procedures where there is a mandatory need to have on-line
information on the current behaviour of the system. From a practical point of view, the various
operating modes can be healthy operating modes as well as a mix between healthy and faulty



Figure 1: System’s input and output Figure 2: State estimation

Figure 3: Estimation of the active mode Figure 4: Estimation of the active mode

ones. In the first situation, the goal of the monitoring procedure is to determine the active oper-
ating mode in order to eventually adapt the control strategy. In the later situation, the detection
of a change from a healthy operating mode to a faulty one helps to redefine the control strategy
in order to compensate the effects of faults on the system if possible or to completely shut down
the system if required.
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