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Abstract: Analysing the behaviour of physical systems often leads to realise that a 
natural representation consists in building mixed continuous / discrete models. Multi- 
models or hybrid models are adapted representations for complex physical systems by 
introducing transitions (smooth or not) between local behaviours. This paper presents 
some technical points dealing with the determination of the time transition from one 
local model to another one. More generally, our purpose is to estimate, at each time, 
the state of the associated process. Copyright © 2003 IFAC 
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1. INTRODUCTION 

The problem of finding a model representing the 
behaviour of an unknown system by observing a set of 
input-output data has received a lot of attention since 
several decades (Johansen, 1995). It is clear that the 
principle of "simplicity" often applies and leads to use 
local models (with the most simple structure as 
possible) which are linked either by a switching 
procedure or by an interpolation mechanism. This 
model involves multiple structures that can 
characterise the time series behaviours in different 
regimes ; by permitting switching between these 
structures the model is able to capture more complex 
dynamical patterns. Moreover, the natural behaviour of 
a physical system may naturally differ from one 
operating region to another one. This fact is a strong 
motivation to build as many local models as there are 
operating conditions. Moreover many industrial 
processes naturally exhibit a hybrid behaviour because 
they are constituted by dynamical components at a low 
level and by logical components at an upper level. The 
consequence of this is that multiple models have to be 
employed and model switching has to be managed to 
execute control tasks such as diagnosis, monitoring, 
identification (Bemporad, 2001), regulator calibration, 
control (Banerjee, 1995), etc. Therefore, and this 
constitutes a true difficulty, the hybrid nature of the 
models requires new forms of analysis (stability, 
observability, identifiability (Hiskens, 2000) ...) 
because discrete changes are not handled well by 
continuous algorithms. Taking into account our field 
of interest which is process diagnosis, our purpose is 
to estimate the state of the system under consideration. 

State estimation is understand as three complementary 
aspects" at each time instant determination of the 
active local model, estimation of the time switching 
between two local models, estimation of the current 
state of the system (this task is easy to achieve since 
the two first have been solved). 

Several authors investigated for years the design of 
observers in the discrete and continuous domain. 
Probably, Ackerson (1970) was the first who 
introduced the state estimation for switching systems. 
Recently (Alessandri, 2001), Alessandri considered the 
case where continuous evolution is linear assuming 
knowledge of the discrete state at each time. Balluchi 
(2000) tries to remove this assumption on state 
knowledge and designs an hybrid observer that 
estimates the state from the knowledge of the hybrid 
plant inputs and outputs. Our presentation has the 
same objective, the way for designing the observer 
being quite different. 

The paper starts in section 2 with introductive 
examples allowing to present some typical problems 
about multi-models. Then section 3 is dedicated to 
our main results about the design of an observer based 
on parity state space equations. Finally, numerical 
results are discussed. 

2. MODEL OF SWITCHING SYSTEMS 

A simple two regimes case may be described as 

x(k + 1)= Alx(k ) + Bu(k) 
x(k + 1)= A2x(k ) + Bu(k) 

1 st regime (1 a) 
2nd regime (lb) 

699 



y(k) = Cx(k) (lc) 

The choice between the two regimes (which can be 
easily extended to more than two) is operated by a 
transition function ~t(z(k),O) (depending on a 
decision variable z and on parameters 0) which values 
are chosen between zero and one. Thus, the global 
model may be written: 

x(k + 1)= ( (1 -p , ( z (k ) ,O) )A ,  + p,(z(k),O)A2)x(k) 
(Ca) 

+ Bu(k) 
y(k) - Cx(k) (2b) 

This representation may be modified by taking into 
account additive noises or errors on the dynamic part 
(2a) of the system and also on the measurement 
equation (2b). The model often represents a transition 
regression model or a regression model with several 
regimes where the change from one regime to another 
one depends on the value of a linear combination of 
the elements of z(k) ; for example z may be a 
combination of the past input u and output y. In 
some situations z(k) may be an unobservable 
variable. A very similar structure may be proposed 
dealing with the case where the transition is modelled 
as a random variable (Hamilton, 1989): 

x(k + 1) = "'/(1- ,u,(k))A 1 + ,u,(k)A 2 )x(k) + Bu(k) (3a) 
y(k) = Cx(k) (3b) 

where, for example, ~t(.) is a Bernoulli random 
variable being one with probability p and zero with 
probability 1 -  p. 

Returning to (1), there is a various choice to specify 
the transition function la(.) and the switching 
variables contained in z(.). As a first possibility, 
~t(.) can be a step function which means that the 
transition between two regimes occurs abruptly (fig. 
l a). Second, the transition may be selected more 
smoothly (fig. lb). 
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Figures 1 a et 1 b 

Concerning the switching variables g(.), it can 
simply contains a time index and a constant which 
consists to compare k to an unknown date z (the 
switching is said exogenous and occurs at a single 
point of time): 

{~ if k>'c 
la(k - z) - if k < "c 

The time index itself may be a continuous variable 
where the value of an endogenous or exogenous 
variable is compared to a known threshold: 

~(z(k),A) = (~ ifif z rzr(k)0 > A ( k ) 0  < A 

Instead of a step transition function, a smooth 
transition may also be considered" 

kt(z(k), A) - -~ 1 + tanh 
z~(k)O-A) 

where the parameters A and y specify the shape of 
the smoothing. There are a lot of interesting problems 
associated with multimodels analysis: determining the 
number of local models, identifying the parameters of 
the local models (Bemporad, 2001), identifying the 
transition functions (Verdult, 2001) and its active 
parameters, estimating the switching time, identifying 
a basis for the multimodel representation, finding 
pattern in time series, controling system operating in 
multiple regimes (Banerjee, 1995), diagnosing the 
process functionning (Simani, 2000). Among all these 
questions, our main interest is concerned here with the 
state estimation of the system. 

3. EXAMPLE OF SWITCHING SYSTEM 

Let us consider an academic example that would 
illustrate some typical problems concerning the 
switching systems. This example deals with a first 
order AR system: 

x(k + 1)= (a 1 (1-  la(k))+ a2~(k))x(k) 

y(k)=x(k)  
{~ if z ( k ) - 0 . 5 > O  

~(k) = if z (k ) -0 .5  < 0 

where z(k) is an exogenous variable generated from a 
random distribution). 

Let us consider a given sequence y(k) which is 
provided by a perfect measurement device. Figure (2a) 
shows the measurements and reveals the switching 
from one model to the other. A very simple and 
systematically way to point out the switching consists 
in using one of the following estimates: 

g ( k ) = l - - - ~ ( y ( k + l )  ) 
a 2 - a 1 y (k '~  - al (4a) 

a(k) y(k + 1) (1 )) + = ~ = a 1 - ~t(k az~t (k) (4b) y(k) 

It is clear that (4b) is less demanding than (4a), since 
only the measurement sequence is needed, whereas (4a) 
is based on the knowledge of the parameters of the 
system. Figure 2b shows the evolution of the ratio 
(4b) and more precisely explains that the system has a 
time constant taking one of the two values 
{a 1 = 0. 95, a 2 =-0 .  90} (the phase portrait of figure 
2c also confirms this result) ; moreover, it is possible 
to estimate accurately the switching time by 
considering the different jumps from a 1 to a 2 or 
conversely. Indeed, comparing (4a) and (4b) leads to: 
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~x(k) - a(k) - a 1 (5) 
a 2 - a 1 

Without other knowledge, it is however impossible to 
explain the origin of the switching and particularly the 
variable which causes the different switches. However, 
in some cases, if it is assumed that the switch is due 
to a known variable, one may try to express this 
dependency and to fit la with the input for example. 
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Figure 2d. Estimation of g(k) 

This academic example was mainly used to introduce 
the different points of interest: the estimation of the 
parameters of the local models, the estimation of the 
switching function, the determination of the switching 
instants. In the rest of the paper, a general approach 
allowing the characterisation of switching systems is 
considered. 

4. OBSERVER DESIGN 

In the following, the plant is characterized by inputs 
(u,z), output (y) and state (x,q) in which (u,x) 
denote the variables associated to the continuous part 
of the process and (z,q) the variables associated to the 
changing regime. The discrete variables {ql ..... qr} 
constitutes the set of locations, each location being 
associated with a particular regime and a local model: 

x(k + 1)= Aq(k)X(k ) + Bu(k) 

y(k)= Cx(k) 

Aq(k) e {Ao , reel} I-{1,2 .... r} (6) 

The particular mode q at any given time instant may 
be the result of a decision-making process. Here, such 
process is represented by a switching law of the form: 

q(k + 1) = 8(z(k), q(k)) 

x e ~  n, u e ~  p, y e ~  m 

Thus at each time k the model assumed to be in effect 
throughout the plant is one of r possible models (the 
plant is in one of r modes). It should be noted (but 
this is not a strong restriction) that only the matrix A 
changes according to the functioning point of the 
process and B remains unchanged. ~i(.) is the 
switching law that describes the logical events system 
dynamics. 

As explained in the introductive section, the observer 
of a multi-model mainly consists of two parts: a 
location observer and a continuous observer. On a 
practical point of view, the two parts may be mixed in 
a whole procedure ; however, the presentation will be 
more clear by using this hierarchical analysis. 
The location observer is devoted to the identification 
of the current local plant, i.e. those of the local plan 
which is active. It receives as inputs the plan input (u)  
and output (y)  and provides the estimate of the 
discrete location of the local plant at the current time. 
The continuous observer produces an estimation of the 
state continuous variables of the system under 
consideration. For that, it uses the location 
information given by the first level and constructs an 
estimate J of the plant continuous state that converges 
to x. The figure 3 gives the structure of the observer 
associated to the plant. In our approach, it is important 
to note that the discrete decision variable z is not 
directly used in the observer (however, its effects are 
taken into account through the output y). 

=,J Plant 
~1 (hybrid system) r ,q 

 iiliiilIIIii 

Continuous 

iii!iii!l!!iiiiliii illiii!i!t i 

Figure 3. Observer structure 

4.1 The location observer 

The location observer received as inputs the 
continuous input and output of the plant. The idea is 
to design a sensitive residual in a set of known ones. 
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For that purpose, both discrete and continuous 
techniques will be employed. The continuous part uses 
a parity space equation generator while the discrete part 
is a selection procedure based on the analysis of the 
parity vector magnitude. Indeed, let us consider the 
state evolution on a time sliding window [ k - h ,  k]. 
Let us define the observability, the controllability and 
the Toeplitz matrices: 

C 

0 = CA. C = ( A h B  ... B) 

C:AIt 

0 0 ... 0 

CB 0 
T =  

• 

cA  h-I B cA  h-2 B ... 

Thus, the initial state verifies: 

O x ( k -  h) = q)(y,u) (7a) 

with the definitions: 

/ q0( y, u) - " - " (7b) 

y (k )  ) ~. u ( k -  1) 

That allows to estimate the initial state x ( k - h ) ,  
uniquely, if and only if: 

r a n k ( O ) = r a n k ( O  q)(y,u)) (8) 

In fact, the situation is more complicated, matrix A 
taking different values as explained in definition (6). 
Considering a possible switching sequence of matrices 
(denoted by the subscript l which will be more clearly 
defined later), the previous matrices express as: 

C 

CAik-h'l  Tlkl h -- 

O~l "h : CAik_l, iAik_?,l  .. Aik_h,l 

h 

0 0 .. 0 

CB 0 

CAik_l,l..  Aik_h+l,l B CAik_l,k.. Aik_h+2,1B .. CB 

tt ~ 1 h - 2 

In order to clarify the notations of the sequences of 
matrices let us define the /-th mode history (or 
sequence of models) through time k by the successive 
indexes taking by the matrix A: 

~ , h  _ {ik_h,l, ik_h+l,l . . . . .  ik_l,l } 

1<i8, l <r,  8 = k - h  .....  k - 1  

(9a) 

where 1 is the index of a particular sequence. 
Considering all the possible sequences (with 
eventually h switching on the time window k -  h: k 
and r possible matrices A ), the set of model histories 
is defined by the indexes: 

,k,h = { i f .h}  l =  l . . . . .  r h (9b) 

For example, with r = 2, k = 4 and h = 3 one has the 

f o l l o w i n g  r h - 8 possible sequences: 

l 1 2 3 4 5 6 7 8 

il, t 1 1 1 1 2 2 2 2 
i2, t 1 2 2 2 1 1 2 2 
i3, t 1 2 1 2 1 2 1 2 

The particular sequence 14,5 = {2,1,1} resumes that at 
time k = 1 the state matrix takes the value A2, then a 
switch occurs and the matrix takes the value A 1 for 
k = 2  and k = 3 .  
In fact, among all the possible regimes (9b) only one 
has occurred on the given horizon [ k - h : k ] .  Let us 
note I,  k'h this particular sequence ; our problem is to 
recognise this sequence among all the set I k'h 
knowing the input-output data of the process. 

For example, if the system operates on the following 
way: 

f Xk_ - AlXk_ 3 + BUk_ 3 

Xk_ 1 - AlXk_ 2 + Buk_ 2 

x k = A2xk_ 1 + Buk_ 1 

Yk-3 = Cxk-3 

Yk-2 = Cxk-2 

Yk-1 = CXk-1 

Yk = Cxk 

and knowing the data {Yk-3:Yk  . . . .  .} Uk 3"Uk 1 , the 
realised sequence {A 1, A 1, A 2 ~ has to be recognized. 

The problem now consists in finding the initial state 
x ( k -  h) and the sequence of state matrices which are 
compatible with the input output set of data. Thus this 
may be considered as a mixed estimation problem 
involving the estimation of a sequence of integers and 
a vector of real values. 

Assumption. All the local systems are observable: 

r a n k ( ~ ' h )  = dim(x) = n, Vh _> n (10) 

Lemma. (Fredholm altemative) 
Givenx ~ A ~ 0~ mxn and b ~ 9t m, there~ exists, )an_l_. 

9l n such that A x = b  i ff  b Ker (AT  

Moreover this condition may be expressed by the 
condition: 

I - A A + ) b = O  (11) 

where A + is the (Moore-Penrose) pseudo-inverse of A 
such that AA + A = A . 

T h e o r e m .  The time sequence Ik, 'h is the one 
satisfying the condition 

(12) 
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4.2 The continuous observer 

The true sequence being identified, let us remember 
that, on the horizon [k -h :k ] ,  we have: 

= ~'~k,h u 
Yk-h:h O~*'h Xk-h + * k-h:k-1 

where Yk-h:k and Uk_h:k_ 1 are respective 
concatenation of the given output and input. The 
initial state will be estimated using the data available 
on the horizon [k - h: k -  1] and for that a least square 
technique is used: 

(13) 

with p,~,h =((O~,,h) r O~,,h) -1 

Clearly, this estimate corresponds to those established 
is the context of finite memory observer (Medvedev, 
1998), (Bousghiri, 1994). Using the state equation, (6) 
allows to give the estimation of the state at the end of 
the time window: 

-~k = (Aik_ l , , ' "Aik_h , ,  )fCk-t, + ~'Uk-h'k-1 (14) 

It should be noted, that at the next sampling instant 
k + l  (13) and (14) allows to express the new 
estimated. Indeed, considering the expressions Jk (or 
"~k-h) may be a temptation to compute the current 
estimate Jk+l based on the previous estimate Jk" 
This can be easily be performed for linear systems 
(Bousghiri, 1994), but, in the present case the 
switching of the state matrix does not allow to 
establish such recursive solution. 

4.3 Some comments 

Initial window and moving constant length window: 
considering definition (9) we have to note that the 
number of histories increases exponentially with time 
(r h possible sequences). Thus, for the first time 
window [l:h + 1] the identification consists in testing 
the existence of one sequence among r h sequences. 
However, the situation is more simpler for the next 
window [2: h + 2]. Indeed, more generally the realised 
sequence on [k - h + 1: k + 1] depends on those realised 
on [ k - h : k ] :  

ik+l,h = {ik,h-1 

1 < Or/+ 1 < r 

, CYk+l } 
(15) 

where Cyk+ 1 is the index of the state matrix at time 
k + 1. Thus, on the new window only the index ~k+l 
has to be identified. 

Noise influence: the test given in (8) or (12) is 
efficient only for a free noise system. When input and 
output signals are corrupted by noise, so is q~(u, y) 
and the condition (12) is never strictly satisfied. Under 
those circumstances, we propose to evaluate the 
"residual" of eq. (12): 

rl ~'h = ( l -- O~l 'h ( o~'h )+ )q)(u, y) / = 1  .... r h (16) 

Thus, the realised sequence correspond to the smaller 
residual and is determined by: 

, = arg min rl k'h (17) 
l=l .... r k 

Following (8), another solution is to analyse the rank 
of the matrix: 

R~'h=(o~ 'h (p(y,u)) /=1  .... r h (18) 

With free noise data, this matrix has a degenerate rank 
according its dimension, i.e. its minimum eigenvalue 
is zero. Therefore, with noisy data, this eigenvalue is 
not null, but a good test consists in computing the 
conditioning factor of his matrix: 

T,k'h-~,max(ek'h)[~,rrfin(ek'h ) / = 1  .... r h (19) 

and to select the sequence corresponding to the greater 
factor. 

5. EXAMPLE 

Consider the following numerical values for a second 
order system, with two locations 

A1 = 00 

(o. o / 
B= 0.40 

o0o3 
0. 40 A2 = 0. 04 0. 40 ) 

C = ( 2  1) 

The length time window is h = 2 and therefore the set 
of possible indexes is: 

I k'2={1,1} I k '2={1,2} I k '2={2,1} I k '2={2,2}  

For state estimation, the sets of matrices of interest are 

,21 y,2 c i Ri 1 ,i 2 = Yk-1 -- CBUk-2 fAi l  

Yk - C A i 2 B U k - 2  - CBu~-l C A i 2 A i l  

/ c / 
ok: 2 :  CAil 

CAi2Ai 1 

1<i  1 < 2  1<i  2 < 2  

Results are summarised in figure 4 (input, output, true 
state), 5 (true and estimated states) and 6 (estimated 
switches). The vertical dashed lines on figure 5 mark 
the time instants where switching occur. Figure 6 
shows that the true switching have been exactly 
determined ; the different sub-figures visualise the 
successive sequence patterns (A1,A1) , (A1,A2) , 
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-5 

10 

-10 

5 

(A2,A1) and (A2,A2). As it is understandable after 
sequence (A1,A1) there are two possible sequences: 
(A 1, A 1) or (A 1, A 2), the first one if the state matrix 
does not change and the second one if a switch occurs. 
Analogous comment deals with other sequences. 

j . . . . . . . . . . . . . . . .  I i .............................. I Input u(ti ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  

1; 2;  3; 4;  

1; 2;  3; 4;  50 
' I 1 ~ i ' l  

. . . . . . . . . .  tat 

I | 1 I 

' I ' I I ~ 

10 20 30 40 50 

Figure 4. Input, output and state 
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Figure 5. True and estimated states 
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t '  , ',4 ; .............. i ,i ................... I i . . . . . . . . . . . . . . . . . . . . . . . .  
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Figure 6. Switching 

6. CONCLUSION 

We have proposed, based on a residual analysis, the 
design an observer for a multi-model system. The two 
fundamental aspects of the design have been 
considered: the first part of the observer is dedicated to 
the location, while the second part is devoted to the 
state estimation. 
However, it is necessary to keep in mind, that hybrid 
estimation and other multi-model estimation schemes 
have in common that they require models that are 
'close' mathematical description of the system to 
diagnose. They can fail or be imprecise whenever 
unforeseen situations occur. As a consequence, models 
must be providedf or each situation or operational 
mode. Moreover, the parameters of the model have to 

be known or correctly estimated. Consequently a 
natural development of the proposed procedure would 
be: first, to analyse the sensitivity of the observer 
results in respect to model parameters, second, to 
improve the robustness of the observers. 
Furthermore, following some ideas given in 
(Narasimhan, 2000) and (McIIraith, 2000), application 
of such estimations would be developped in the field 
of process diagnosis. 
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