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Abstract … Subspace identi� cation of switching model is
considered in this paper. Here the switching model is sup-
posed to be a sum of weighted linear models. The method
established uses recursive subspace identi� cation to estimate
the switching function and least squares method for local
model Markov parameters estimation. To perform the com-
putation of the weighting functions a two-steps algorithm
(switching times determination and model merging) is given.
Finally the local model parameter estimation is based on the
estimation of the Markov parameters.

Keywords… switching model, Markov parameters, least
squares, weighting function, recursive subspace identi� ca-
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I. Introduction

The objective of this paper is to identify switching mod-
els. Here a switching model structure is considered as a
sum of weighted linear systems (local models), but only
one model is active at any time. In this paper, we use a
weighting function which determines the active model. Our
goal is to estimate the weighting function and identify the
local model, using the knowledge of the inputs and outputs
only. Thus, knowing the weighting function allows to de-
termine which local model is active. The estimation of the
switching times is made by a recursive subspace identié ca-
tion method. The proposed method is not sensible to the
change in input dynamics because the recursive subspace
method proposed in [4] is not sensible to this fact. Then
the switching times correspond only to a change in the sys-
tem dynamic. To identify the local models, we use least
squares method. The parameter estimation is done by the
extraction of the Markov parameter matrix. The advan-
tage of the proposed method results in fact that there is
not any stage of nonlinear optimization, and the parameter
estimation is unbiased.

After the formulation of the problem, the notations are
introduced and the estimation of the Markov parameters
is achieved. In section 4 the determination of the weight-
ing function is performed. The identié cation of the local
models procedure is given. Finally an example illustrates
the performance of the proposed method.

II. Formulation of the model

The output of the switching model can be modeled as a
weighted sum of outputs of h linear models as follows:

yk =
hX

s=1

ωs,kys,k, (1)

where yk 2 R`, any weight ωs,k 2 f0, 1g and
hP

s=1
ωs,k =1,

8 k 2 [1, q] (if we have q measurements of the inputs and
outputs). ωs,k represents the weighting function and ys,k

the output of the sth local model.
Any local model is supposed linear of order ns and can

be described by the equation:

xs,k+1 = Asxs,k + Bsuk,
ys,k = Csxs,k + Dsuk + ek

(2)

Here the output error ek 2 R` is assumed to be a zero mean
white noise sequence and uncorrelated with uk 2 Rm and
has covariance matrix

Eeket =

¡
R > 0, k=t
0, otherwise.

We suppose each local model is stable.
The inputs uk and outputs yk of the switching model are

supposed to be known. The object is to determine:
-the weighting function ωs,k for each model,
-the order ns and the h linear local model parameters.

The parameters to be determined are As, Bs, C s and Ds.
Note that, to obtain the gth weighting outputs, it is suf-

é cient to make the product of the global outputs yk by the
gth weighting function:

ωg,kyk = ωg,k

hX

s=1

ωs,kys,k = ωg,kyg,k, 8k 2 [1, q] (3)

because

(ωg,k)2 = ωg,k and ωg,k ¢ ωs,k = 0, (if g 6= s), 8k 2 [1, q]
(4)
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In the following we use a recursive subspace identié cation
technique to obtain the weighting function ωs,k. In order
to obtain local Markov parameters, least squares tools will
be used. In the next section the matrices used later are
deé ned.

III. The system matrices

For the sth model, we can set the following deé nitions
(note that, for simplicity we use i instead of is in this arti-
cle).

Output weighted block Hankel matrix of the sth model
is deé ned as (i>ns):

Y i
s,ω =

¢
ωs,iys,i ωs,i+1ys,i+1 ... ωs,i+j£ 1ys,i+j£ 1

³
(5)

Input block Hankel matrix is deé ned as:

U =

0
BBB@

u1 u2 ... uj

u2 u3 ... uj+1

...
...

...
...

ui ui+1 ... ui+j£ 1

1
CCCA (6)

The same deé nition is made for the Hankel block matrix E
for the noise ek.

The state sequence matrix Xs and the weighting matrix
of the sth model ¡ s are deé ned as:

Xs =
¢

xT
s,1 xT

s,2 ... xT
s,j

³T
(7)

and

¡ s =

0
BBB@

ωs,i 0 0 0
0 ωs,i+1 0 0
...

...
...

...
0 0 0 ωs,i+j£ 1

1
CCCA (8)

Then we have:

Y i
s,ω =

¢
ys,i ys,i+1 ... ys,i+j£ 1

³
| {z }

Y i
s

¡ s (9)

The extended observability matrix © i,s of the sth model is
deé ned as:

© i,s =

0
BBB@

Cs

CsAs

...
CsA

i£ 1
s

1
CCCA 2 R`i¤ns (10)

The extended controllability matrix Ci,s of the sth model is
deé ned as :

Ci,s =
¢

Bs AsBs ¡¡¡ Ai£ 1
s Bs

³
(11)

The Markov parameter matrix for the deterministic part
Hd

i and for the stochastic part Hst
i of the system are deé ned

as1 :

Hd
s,i =

¢
CsA

i£ 2
s Bs CsA

i£ 3
s Bs ... CsBs Ds

³
(12)

Hst
s,i =

¢
0 0 ... 0 I

³
(13)

IV. Estimation of the Markov parameter matrix
for the local model

Local matrix input-output equation

It is essential to write the matrix input-output relation,
that allows the extraction of the Markov parameter matrix.
The following theorem summarizes this relation.

Theorem 1:

Y i
s,ω = CsA

i£ 1
s Xs¡ s + Hd

s,iU ¡ s + Hst
s,iE¡ s (14)

The proof of the theorem is established in appendix 1.
Now, the objective is to eliminate the term depending

on the state Xs and the noise E, in order to obtain the
Toeplitz matrix

Hd
s,i. The proposed method uses least squares and may

be summarize in the next theorem.

Theorem 2: Under the assumptions that:
1. the sth local model is stable,
2. the matrix U¡ s has full rank,
3. with an adequate value of i, Ai£ 1 is neglected,
we have:

Y i
s,ω(U ¡ s)

T (U ¡ s(U¡ s)
T )£ 1 !

j!1
Hd

s,i (15)

The proof of the theorem can be found in appendix 2.
Now, from equation 15, we have an estimation of the

Markov parameter matrix Hd
s,i.

Remark 1 : to estimate the Markov parameter matrix
Hd

s,i by equation 15, we need the knowledge of the weight-
ing function ¡ s. We use recursive subspace identié cation
to compute this weighting function in the next section.

V. Determination of the weighting function

It is important to note that the previous result involves
the state matrix of the system which depends on the active
local model.

The recursive subspace approach is used to determine
the switching time between local models. As the local mod-
els are stable, the recursive subspace identié cation can be
applied. This identié cation method does not allow to de-
tect the change in inputs dynamics; therefore if a change

1The superscript d̂ˆand ŝtˆ stand for d̂eterministicˆand ŝtochas-
ticˆ respectively.
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is detected it corresponds only to change in the system dy-
namics. We recommend to the reader, to refer to [4] for the
details of the recursive subspace identié cation procedure.

To begin with, we make a é rst computation of the
weighting function with the recursive subspace algorithm.
Then we merge the models which are closed to each other,
and we recompute the new weighting functions.

A. The ’ rst computation of the weighting functions

The switching time is determined by the recursive sub-
space identié cation algorithm. Here we summarize the
main stages of the algorithm of Oku and al.[4].

Let us deé ne:

£ j =
¢

ϕi(1) ϕi(2) ... ϕi(j Ã i)
³

(16)

ϕi(k) = ui(k) =

0
B@

uk

...
ui+k£ 1

1
CA , k 2 [1, j Ã i]. (17)

Uj =
¢

ui(i) ui(i + 1) ... ui(j)
³

(18)

Yj is deé ned similarly to ( 18).
¦j which is the product of the extended observability

matrix and the extended controllability matrix, can be es-
timated by the formula:

¦̂j = Yjª U?
j
£ T

j ¹j with ¹j =
´
£ jª U?

j
£ T

j

µ£ 1

and

ª F? = I Ã FT (FFT )(£ )F, where I is the identity matrix
with the appropriate size and F is a matrix.

If we deé ne Pj as Pj = (UjUT
j )£ 1, ¦̂j can be obtained

also by a usual formulation of the recursive least squares
method with a forgetting factor γ (γ<1, see [4]):

¦̂j = ¦̂j£ 1 Ã βj(ej + ¦̂j£ 1qj)q
T
j ¹j£ 1, (19)

¹j =
1

γ
(¹j£ 1 Ã βj¹j£ 1qjq

T
j ¹j£ 1), (20)

Pj =
1

γ
(Pj£ 1 Ã αjPj£ 1ui(j)u

T
i (j)Pj£ 1), (21)

YjU
T
j = γYj£ 1U

T
j£ 1 + yi(j)ui(j)

T , (22)

£ jU
T
j = γ£ j£ 1U

T
j£ 1 + ϕi(j Ã i)ui(j)

T , (23)

αj =
¢
γ + ui(j)

T Pj£ 1ui(j)
³£ 1

, (24)

βj =

¶
1

αj
+ qT

j ¹j£ 1qj

£ £ 1

, (25)

ej = yi(j) Ã Yj£ 1U
T
j£ 1Pj£ 1ui(j)

T , (26)

qj = £ j£ 1U
T
j£ 1Pj£ 1ui(j)

T Ã ϕi(j Ã i), (27)

Let λ be a threshold designed according to the χ2-
distribution with `i degrees of freedom. The distance from
the estimated parameter ¦̂j to the true parameter ¦j ,
D(¦̂j ,¦j) is deé ned as:

D(¦̂j ,¦j) =

Trace
´
¦̂j Ã §¦j

µ 1

σ2
2 i

´
£ jª U?

j
£ T

j

µ´
¦̂j Ã §¦j

µT

, (28)

where 2j=YjÃ ¢Yj , ¢Yj is an estimation of Yj . An estima-
tion of the variance of the modeling error σ2

2 is given by (
[4]):

σ̂2
2 j =

1

i[(j Ã i + 1) Ã 2mi)]
¢

Trace (Yj Ã ¦̂j£ j)ª U?
j

(Yj Ã ¦̂j£ j)
T (29)

The change test is deé ned as (see [4]):
if D(¦̂j ,¦j)<λ: no change has occurred,
if D(¦̂j ,¦j)>λ: a change has occurred.
Note that in the implementation, the true parameter ¦j

is replaced by an approximation: §¦j (see [4]) computed as
a least squares estimation of ¦j over a sliding window:

§¦j = arg
min

Trace (§Y Ã ¦§£ j)ª U?
j

(§Y Ã ¦§£ j)
T , (30)

with

§Yj =
¢

yi(j Ã L + 2i) ... yi(j)
³

(31)

§£ j =
¢

ϕi(j Ã L + i) ... ϕi(j Ã i)
³

(32)

Once a change at time instant t is detected, the recursive
update equation are re-initialized at time instant t, the re-
initialization technique is proposed in [4].

The é rst computation of the weighting functions is de-
scribed by the algorithm 1 exposed below.

Algorithm 1 (é rst computation of the weighting func-
tions):

Step1: (initial conditions)
set s¸ 1 and k¸ 0, where s is the local model index and

k is the time index2 .
Step 2: (change has not occurred)
if change doesn t̂ occur (i.e. D(¦̂j, §¦j)<λ) then:
k¸ k+1, go to step 4.
Step 3: (change has occurred)
if change occurs (i.e. D(¦̂j , §¦j)>λ) then:
s¸ s+1 and k¸ k+1.
Step 4: (computation of the weighting function)
model "s" is active: ωs,k ¸ 1 and ωr,k ¸ 0, 8 r 6= s.
Step 5: (test of stop)
h¸ s (h is the number of identié ed models)
if k<q then go to step 2,
if k=q then stop.

B. The fusion of model

After the é rst computation of the weighting function by
the preceding algorithm, we estimate the Markov param-
eter matrix Hd

s,i (for the h local models ). Then, we seek
the models which are ŝimilar .̂ Firstly, we estimate the
covariance of the Markov parameter matrix Hd

s,i.

2The left arrow "� " denote the replacement of the value of the
left hand side, by the right hand side.
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B.1 Covariance estimate

The variance of the estimate error σy can be unbiasely
estimated by:

σ̂2
y =

1

i (j Ã im)
trace (εεT ), (33)

where:
ε=Y i

s,ω Ã Ŷ i
s,ω (see 9), Ŷ i

s,ω is an estimation of Y i
s,ω.

The variance � Hd
s , i

of the output estimated Markov pa-

rameter matrix Hd
s,i is estimated by the following lemma.

Lemma 1:
Unbiased estimation of � Hd

s , i
is given by the formula:

�̂ Hd
s , i

= iσ̂2
y[U ¡ s(U¡ s)

T ]£ 1, (34)

Now we can make a test on the models to é nd the models
which are closed to each other.

B.2 The ŝimilarˆmodels

The aim is to é nd the models close to each other (or
"similar"). For that purpose, we deé ne the distance from
the estimated Markov parameters of model s to the param-
eters of the model r as:

d(Ĥd
s,i, Ĥ

d
r,i) = Trace

´
(Ĥd

s,i Ã Ĥd
r,i)�̂

£ 1
Hs , r

(Ĥd
s,i Ã Ĥd

r,i)
T
µ

.

(35)
with:

�̂ Hs , r =
Ns

Ns + Nr
�̂ Hd

s , i
+

Nr

Ns + Nr
�̂ Hd

r , i
,

where Ns=
Pq

k=1 ωs,k and Nr=
Pq

k=1 ωr,k.
If δ is a threshold designed according to the χ2-

distribution with `i degrees of freedom, then we perform
the following ŝimilarity testˆ

B.21 ¤similarity test¤

The models s and r are similar if:
if d(Ĥd

s,i, Ĥ
d
r,i)·δ: the model s and the model r are not

ŝimilar ,̂
if d(Ĥd

s,i, Ĥ
d
r,i) � δ: the model s and the model r are

ŝimilar .̂

B.3 Model merging

If Es0 is the set of models which are "similar" to s0, the
models belonging to this set are replaced by the new model
s0². The new weighting function for the new model s0² is:
ω²s0,k =

X

s2Es 0

ωs,k for k=1,...,q; moreover we estimate the

Markov parameters of the new model s0².

Remark 2 : It is necessary to make a new "similarity test"
(see B.21) for the merging of the new model (after a é rst
merging), because it can exist two "similar" local models
which have not been detected in the é rst step, because of

the insu–ciency of data used to identify the local models.
But, by the new computation of the weighting functions
and Markov parameters, the number of measurements used
to identify the new local models is greater than those which
are used to estimate the previous local models.

The merging of the local models is described by algo-
rithm 2.

Algorithm 2 (models merging):
Step 1: (initialization)
st¸ 0;
Step 2: (computation of Markov parameters)
compute the Markov parameters (by theorem 2)
Step 3: (test)
Check the "similarity test" (see B.21), and construct the

set of models which are "similar".
Step 4: (replacement of the weighting functions)
For each set of models Es , if cardinal of Es is greater

than 1 then:
1) st¸ 1;
2) ωs,k ¸ ω²s,k, and cancel the model r, r 2 Es and r6= s.
Step 5: (renumber the local models)
Reorganize local model index.
step 6: (stop test)
If st=1 then go to 1,
If st=0 then stop.

Now we have the é nal weighting function, we estimate
the order and the parameters of each local model. The
estimation procedure is described in next section.

VI. Estimation of the system parameters

The goal of this section is to estimate the system order
ns and matrices As, Bs, C s and Ds for each local model.
� The system matrix Ds is directly obtained from the
Markov parameter matrix Hd

s,i (see 12).
Having the Markov parameters (by theorem 2), one can
use the algorithm of Kung [3], Ho and Kalman [1], Era [2],
Zeiger and McEwen [6] to estimate the system matrices As,
Bs and C s.
In this paper we set i>2(ns +1). Let3 ν =integer(i/2).
Following we summarize the Era algorithm (minimal and
balanced realization [2]).
� Build the Hankel matrices H0

ν,s and H1
ν,s which contains

the Markov parameters and are deé ned by:

Hk
ν,s =

0
BBB@

CsA
k
sBs CsA

k+1
s Bs ¡¡¡ CsA

k+ν£ 1
s Bs

CsA
k+1
s Bs CsA

k+2
s Bs ¡¡¡ CsA

k+ν
s Bs

...
...

...
...

CsA
k+ν£ 1
s Bs CsA

k+ν+1
s Bs ¡¡¡ CsA

k+2ν£ 2
s Bs

1
CCCA

(36)
� Make a singular values decomposition of the matrix H0

ν,s :

3Integer(i) is the integer part of i.
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H0
ν,s =

¶
U1

U2

£ ¶
S1 0
0 S2

£ ¶
V T

1

V T
2

£

' U1S1V
T
1 (37)

where S2 contains the neglected singular values.

� The system order is equal to the number of singular val-
ues in S1.
� The extended observability matrix © ν,s =U1S

1/2
1 , and the

controllability matrix Cν,s =S1/2
1 VT

1 are computed. Note
that:
H0

ν,s = © ν,sCν,s ,
The matrix C s can be determined from the é rst ` rows of
© ν,s .
� The matrix Bs is equal to the é rst m columns of Cν,s .
� The matrix As is given by the formula:
As=S-1/2

1 UT
1 H1

ν,sV1S
-1/2
1 .

VII. The simulation example

We consider a third order system described as:
xk+1 = Asxk + Bsuk

yk = Csxk + Dsuk + Kek

where s take the value 1 on the intervals [1, 999] and
[1800, 2499] and the value 2 on the intervals [1000, 1799]
and [2500, 3500]; and we have:

A1 =

0
@

0.32 0.31 0
-0.32 0.31 0

0 0 -0.18

1
A , B1 =

0
@

0.9 -0.7
0.71 -0.5
0.8 0.47

1
A

C1 =

¶
-0.55 0.2 0.8
0.45 0.3 0.58

£
,D1 =

¶
0.97 0.63
-0.32 0.95

£

A2 =

0
@

-0.1 -0.4 0
0.5 -0.4 0
0 0 0.26

1
A , B2 =

0
@

0.1 -0.6
0.32 -0.66
0.3 0.82

1
A

C2 =

¶
-0.8 -0.1 0.7
0.3 0.48 0.9

£
,D2 =

¶
0.5 0.3
-0.2 -0.5

£
.

Moreover uk 2 R2 , and yk 2 R2 , the noise ek 2 R2 is a zero
mean white noise and K= 1p

5
¢ I2 .

We suppose that we have i+j-1=3500 measurements of
the inputs and outputs. The inputs uk are white noises.

A. The ’ rst computation of the weights (use algorithm 1)

For the implementation of the recursive subspace
method, we adopt i=15. Since the dimension of the out-
puts is `=2, the degree of freedom of the χ2 distribution is
`i=30. The exponential forgetting factor γ is taken as 0.98
(see [4]).

� � : threshold (99.999%, χ2 distribution); ¤ : D(¡̂ j , §¡ j)
Figure 1: the switching times estimated by the recur-

sive subspace algorithm

The recursive subspace algorithm determines the switch-
ing times and shows four local models. The é rst is ac-
tive in time window [1:999], the second in time window
[1000:1799], the third in time window [1800:2499] and the
fourth in time window [2500:3500]. The switching time is
correctly detected.

To compute the parameters for each local model, we set
the index i equal to 15 (for each local model identié cation).

From the parameters obtained with the proposed
method, we now estimate the poles for each local model
(see é gure 2).

100 Monte Carlo realizations are done in each case.

Figure 2: the poles of the four local models according
to ω1,k, ω2,k, ω3,k and ω4,k respectively.

B. The fusion of the weighting functions (algorithm 2)

The estimated poles show that the local models 1 and
3 are "similar" (é gure 2). The same remark hold for lo-
cal models 2 and 4. That is coné rmed by the "similarity
test". The distance d(Ĥd

s,i, Ĥ
d
r,i) of ŝimilarity testˆallows

to merge the models without ambiguity. For, hundred ex-
periments we carried out the distance and we have:

I d(Ĥd
1,i, Ĥ

d
2,i)2 [2300, 2800],
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I d(Ĥd
1,i, Ĥ

d
3,i)2 [0.5, 4],

I d(Ĥd
1,i, Ĥ

d
4,i)2 [2000, 2800],

I d(Ĥd
2,i, Ĥ

d
4,i)2 [1, 4],

-The threshold (99.999%, χ2 distribution), δ =59. Then
we propose to merge models 1 and 3, that allow to deé ned
a new weight ω²1,k = ω1,k +ω3,k. We also merge the models
2 and 4 and deé ne the new weight: ω²2,k = ω2,k + ω4,k.

Figure 3: the estimated poles of the 1st and 2nd new
local models according to ω²1,k and ω²2,k respectively.

The é gure 3 shows the 100 Monte Carlo realizations for
the estimated poles of the new models obtained with ω²1,k

and ω²2,k. As we can see, the new weighting functions ω²1,k

and ω²2,k improve the variance of the estimated poles in
each case. The estimated poles are unbiased.

VIII. Conclusion

Switching model identié cation is considered in this pa-
per. The technique is based on subspace formulation and
uses least squares method for the parameter estimation.
The switching model is supposed to be a weighted sum of a
local models. A recursive subspace identié cation technique
is used to determine the switching time and a merging al-
gorithm is given to estimate the é nal weighting function.
Finally we estimate the local systems order and parame-
ters from the new estimation of the local models Markov
parameters. An illustrating example shows the application
of the method.
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IX. Appendix 1

Proof: The proof of theorem 1 is established in free
noise case, the stochastic case is obtained easily.

Form equation 5 we have:

Y i
s,ω =

¤
ωs,iys,i ωs,i+1ys,i+1 ... ωs,i+j£ 1ys,i+j£ 1

�

) Y i
s,ω =

¤
ωs,i(CsA

i£ 1
s xs,1 + CsA

i£ 2
s Bsu1 + ... + Dsui) ...

ωs,i+j£ 1(CsA
i£ 1
s xs,j+CsA

i£ 2
s Bsuj + ... + Dsui+j£ 1)

��

) Y i
s,ω =

¤
ωs,iCsA

i£ 1
s xs,1 ... ωs,i+j£ 1CsA

i£ 1
s xs,j

�
+

¤
ωs,i(CsA

i£ 2
s Bsu1 + ... + Dsui) ...

ωs,i+j£ 1(CsA
i£ 2
s Bsuj + ... + Dsui+j£ 1)

�

) Y i
s,ω = CsA

i£ 1
s Xs¡ s+

Hd
s,i

0
BBB@

ωs,iu1 ... ωs,i+j£ 1uj

ωs,iu2 ... ωs,i+j£ 1uj+1

...
...

...
ωs,iui ... ωs,i+j£ 1ui+j£ 1

1
CCCA

Finally we obtain :

Y i
s,ω = CsA

i£ 1
s Xs¡ s + Hd

s,iU ¡ s

X. Appendix 2

Proof:

Y i
s,ω = CsA

i£ 1
s Xs¡ s + Hd

s,iU ¡ s + Hst
s,iE¡ s

if Ai£ 1 is neglected then:

Y i
s,ω ' Hd

s,iU ¡ s + Hst
s,iE¡ s

since As is assumed to be asymptotically stable, the covari-

ance matrix of the state sequence ( lim
j!1

´
1
j (Xs¡ s)(Xs¡ s)

T
µ
)

is bounded. Note that, the elements of the weighting ma-
trix ¡ s take the values 0 and 1.

By the least squares method we can estimate the Markov
parameter matrix Hd

s,i:

Y i
s,ω(U ¡ s)

T (U ¡ s(U ¡ s)
T )£ 1 ' Hd

s,i


