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ABSTRACT
This paper presents an image transmission as an application
of a chaotic cryptosystem. The underlying problem concerns
nonlinear state estimation and unknown input recovery. The
proposed communication scheme consists of two steps: the
first one assures the transmitter/receiver synchronization while
the second step focuses on the encryption/decryption proce-
dure. The synchronization is performed through a nonlinear
state observer design, driven by the transmitted signal. The
encryption is realized through phase modulation of a second
chaotic signal, depending on the message. Efficiency of the
proposed approach is shown through an image transmission.

1. INTRODUCTION

Chaotic systems belong to a particular class of nonlinear sys-
tems, known for its high complexity. The American mathe-
matician Edward Lorenz discovered in 1970 that some non-
linear phenomena are so sensible to initial conditions -even if
they are governed by deterministic rules- that their behavior
is simply unpredictable. Chaotic systems are characterized by
some properties:
. they are deterministic systems ;
. they have an extreme sensibility to initial conditions (also
known as the butterfly effect) ;
. their asymptotic behavior is aperiodic.

Besides, synchronization phenomena have been reported
since the XVIth century, when the Dutch mathematician Huy-
gens observed the synchronization of two pendulum clocks
placed against the same wall. In spite of this intrinsic long-
term unpredictability which seems a priori very far from the
definition of synchronization, Pecora and Carroll addressed
the synchronization of chaotic systems in their pioneering pa-
per [1], and established the drive-response principle. Then the
issue of synchronization has been linked to a standard non-
linear state estimation problem. For a global view on chaos
synchronization, the reader is referred to [2]. Among the po-
tential applications of chaotic synchronization, chaotic cryp-
tosystems seem rather promising, and became an intensive re-
search field. Chaotic cryptosystems, also called secure com-
munication systems, take advantage of intrinsic properties of
chaotic systems and their ability to synchronize. A chaotic
communication scheme follows the principle below:

. at the transmitter side, random-like chaotic signals (i.e. the
transmitter’s states) can be used to drown information ;
. an encrypted signal is then sent to the receiver ;
. at the receiver side, synchronization is achieved, which means
that the receiver has estimated the states of the transmitter ;
. the decryption process uses the estimated states to recover
the clear message.

Several methods of encryption have been designed, such
as chaotic additive masking, chaotic shift keying, chaotic mod-
ulation. . . . Some techniques also use classical cryptography
to elaborate more complicated cryptosystems. For an overview
on the different methods developed in the literature, see refer-
ence [3]. We underline that chaos based encryption/decryption
is a special issue belonging to unknown input recovery. In
our previous paper [4] we proposed a cryptosystem based on
chaotic synchronization and on a new masking method, illus-
trated by Fig. 1.
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Fig. 1. Proposed cryptosystem

The layout of this paper is as follows. Section 2 is de-
voted to the description of the transmitter and the design of
an observer allowing exponential synchronization. Section 3
details the encryption/decryption process, and section 4 illus-
trates the efficiency of the proposed cryptosystem through an
image transmission.



2. SYNCHRONIZATION SCHEME

2.1. The chaotic transmitter

The transmitter is a chaotic system, whose dynamics involves
a nonlinear delayed feedback: ẋ1(t) = −αx1(t) + αx2(t)− αδ tanh(x1(t))

ẋ2(t) = x1(t)− x2(t) + x3(t)
ẋ3(t) = −βx2(t)− γx3(t) + ε sin(σx1τ (t))

(1)

This model can be rewritten in a more compact form as

ẋ(t) = Ax(t) + F (x(t)) + H(x(t− τ) (2)

where

A =

 −α α 0
1 −1 1
0 −β −γ

 (3)

F (x(t)) =

 −αδ tanh(x1(t))
0
0

 (4)

H(xτ (t)) =

 0
0

ε sin(σx1(t− τ))

 (5)

The presence of the time delay ensures a very complex chaotic
behavior [5], which is highly desirable from a security point
of view. The figure 2 shows one particular attractor of system
(1), corresponding to the parameters values given in table 1.

α β γ δ ε σ τ
9 14 5 −0.5 100 104 1

Table 1. Transmitter’s parameters

Fig. 2. Chaotic attractor

Once the transmitter has been chosen, the receiver has to
be designed, so as to synchronize with it. We propose now an
observer-based synchronization scheme, relying on nonlinear
control theory. Before focusing on the observer synthesis, we
need to transform the transmitter dynamic model. We precise
that the transmitted signal is expressed as:

y(t) = Cx(t) (6)

2.2. Transmitter model transformation

Owing to the fact that both nonlinear functions F and H , re-
spectively defined in eq. (4) and (5), satisfy the Lipschitz
condition with respective constants kF and kH , we intend to
manage big values of these constants.
We propose to choose the following matrix C:

C =
(

1 ζ 0
)

(7)

ζ being an arbitrary parameter. Then we deduce from (7):

x1(t) = y(t)− ζx2(t) (8)

If we replace x1 by its expression (8) in (??), we obtain the
equivalent dynamic model of the transmitter:{

ẋ(t) = Ãx(t) + B̃y(t) + F̃ (x(t), y(t)) + H̃(xτ (t), yτ (t))
y(t) = Cx(t)

(9)
where

Ã =

0@ 0 α(1 + ζ) 0
0 −(1 + ζ) 1
0 −β −γ

1A (10)

B̃ =

0@ −α
1
0

1A (11)

F̃ (x(t), y(t)) = F̃ =

0@ αδ tanh(y(t)− ζx2(t))
0
0

1A (12)

H̃(xτ (t), yτ (t)) = H̃ =

0@ 0
0

ε sin (σ(y(t− τ)− ζx2(t− τ)))

1A
(13)

Then we obtain upper bounds on Lipschitz constants kF̃ and
kH̃ of new nonlinear function F̃ and H̃: kF̃ ≤ |ζ|kF and
kH̃ ≤ |ζ|kH .

In the rest of the paper, we omit the time variable t when
unnecessary.

2.3. Nonlinear observer design

We choose a type of high-gain observer, whose dynamics is
given by:

˙̂x = Ãx̂ + B̃y + F̃ (x̂, y) + H̃(x̂τ , yτ ) + K(y − Cx̂) (14)

It can be rewritten as:

˙̂x = Ãx̂ + B̃y + ˆ̃F + ˆ̃H + K(y − Cx̂) (15)

where we have noted ˆ̃F = F − F̃ and ˆ̃H = H − H̃ . Now, it
is aimed at finding a convenient gain K such that x̂ converges
towards x.
The synchronization error vector is defined by e = x − x̂.
Using (9) and (15), its dynamics is expressed as:

ė = AKe + F̃ − ˆ̃F + H̃ − ˆ̃H (16)



where
AK = Ã−KC (17)

The following theorem gives a sufficient condition of expo-
nential synchronization of receiver (14) with transmitter (9).

Theorem 2.1. If there exist two matrices P and Q, respec-
tively symmetric positive-definite and positive definite, and a
strictly positive real η such that the following BMI is feasible: R(P,Q,K) 0 P

0 −e−2ητQ + ρI 0
P 0 − 1

λI3

 ≤ 0 (18)

with

R(P, Q, K) = (A−KC)T P+P (A−KC)+µI3+Q+2ηP (19)

and
µ = ζkF

ρ = ζkH

λ = µ + ρ
(20)

then the synchronization error vector converges exponentially
towards zero, according to the formula:

‖e(t)‖ ≤
√

α1

α2
e−ηt max

θ∈[−τ,0]
‖e(θ)‖ (21)

with
α1 = λM (P ) + τλM (Q)
α2 = λm(P ) (22)

Proof. We consider the following Lyapunov-Krasovskii func-
tional:

V (e, eτ ) = eT Pe +
∫ 0

−τ

eT (t + θ)e2ηθQe(t + θ)dθ (23)

where we have chosen P symmetric, positive-definite, Q positive-
definite, and η > 0.
The synchronization error vector norm converges exponen-
tially towards zero if there exists φ > 0 such that:

V (e, eτ ) > 0 (24a)
V̇ (e, eτ ) ≤ e−φt max

θ∈[−τ,0]
V ′(e(0), e(θ)) (24b)

Since P and Q are positive-definite, condition (24a) is veri-
fied on account of the following inequalities:

λm(P )‖e(t)‖2 ≤ V (e, eτ ) ≤ (λM (P ) + τλM (Q)) max
θ∈[−τ,0]

‖e(θ)‖2

(25)
The derivative of the functional V is obtained from (23):

V̇ = ėT Pe + eT P ė + eT Qe− e−2ητeT
τ Qeτ

−2η
∫ 0

−τ
eT (t + θ)e2ηθQe(t + θ)dθ

(26)

Making use of (16), it yields to:

ėT Pe + eT P ė = eT
(
AT

KP + PAK

)
e

+2eT P (F̃ − ˆ̃F ) + 2eT P (H̃ − ˆ̃H)
(27)

Cauchy-Schwarz’ and Young’s inequalities lead to the follow-
ing majoration of V̇ :

V̇ ≤
„

e
eτ

«T

M
„

e
eτ

«
− 2η

Z 0

−τ

eT (t + θ)e2ηθQe(t + θ)dθ

(28)
where

M =

„
AT

KP + PAK + λP 2 + µI + Q 0
0 −e−2ητQ + ρI

«
(29)

and µ, ρ, λ are defined by eq. (20).
Now, V is rewritten to reveal the same structure as in (28):

V =

„
e
eτ

«T

N
„

e
eτ

«
+

Z 0

−τ

eT (t+θ)e2ηθQe(t+θ)dθ (30)

where
N =

„
P 0
0 0

«
(31)

Then (28) and (30) lead to:

V̇ + 2ηV ≤
(

e
eτ

)T

(M+ 2ηN )
(

e
eτ

)
(32)

Using the Schur complement, the inequalityM+2ηN ≤ 0 is
equivalent to: (18), with R(P,Q,K) defined by (19). (18) is
a bilinear matrix inequality (we recall that AK = A −KC),
owing to the presence of terms PK and KT P . If this BMI is
verified, then we deduce from (32):

V̇ ≤ −2ηV (33)

By integration, it comes:

V (e, eτ ) ≤ e−2ηt max
θ∈[−τ,0]

V (e(0), e(θ)) (34)

Consequently, condition (24b) is fulfilled, with φ = 2η.
Besides, the left-hand side of inequality (25) gives:

‖e(t)‖ ≤

√
V (e, eτ )
λm(P )

(35)

Taking (25), (34) and (35) into account, we get:

‖e(t)‖ ≤
√

α1

α2
e−ηt max

θ∈[−τ,0]
‖e(θ)‖ (36)

with α1, α2 defined by (22), which ends the demonstration of
formula (21) and that of theorem 2.1.

Now we give the observer gain synthesis procedure.

1. First, the parameter η must be chosen arbitrarily in R∗
+.

2. The BMI (18) cannot be solved numerically. We pro-
ceed to a variable change, by setting L = PK. Then
using (19), R(P,Q,K) can be rewritten as:

R(P, Q, K) = R′(P, Q, L) =
AT P + PA− CT LT − LC + µI3 + Q + 2ηP

(37)



3. If we replace R(P,Q,K) by this expression (which is
linear in P , Q and L), the BMI (18) is equivalent to the
following LMI:0@ R′(P, Q, L) 0 P

0 −e−2ητQ + ρI 0
P 0 − 1

λ
I3

1A ≤ 0 (38)

4. Standard convex optimization algorithms [6] can now
be applied to find convenient matrices P , Q and L. If
no solution appears, then η must be reduced, and the
process goes back to step 1.

5. The observer gain is simply deduced from K = P−1L.

3. ENCRYPTION/DECRYPTION METHOD

We propose a new way to hide the clear message inside a
chaotic signal: the transmitter sends a second chaotic signal
to the receiver, defined as:

y2(t) = x3 (t− θ(u(t)))) (39)

The message u(t) is used to modulate the phase of x3(t). The
term θ(u(t)) is equivalent to a variable and unknown delay
that must be estimated to recover the clear message. In this
paper, we choose

θ(u(t)) = Tuu(t) (40)

where Tu is an arbitrary constant, very small w.r.t. the time
constant of system (1). After a first-order approximation of
the Taylor formula, we obtain the following decryption for-
mula (see [4] for more details):

û(t) =
x̂3(t)− y2(t)

Tu
˙̂x3(t)

(41)

4. APPLICATION TO IMAGE TRANSMISSION

The simulation consists of an image transmission through the
proposed cryptosystem. The picture is the famous Lena pho-
tography shown in Fig. 3. The images corresponding to the
encrypted and the decrypted signals are represented respec-
tively in Fig. 4 and 5.

Fig. 3. Lenna’s photography

Fig. 4. Encrypted image

Fig. 5. Decrypted image

5. CONCLUSION

The problem addressed in this paper concerns chaotic cryp-
tosystems. These communication processes use characteris-
tic properties of chaos and synchronization principle. Relying
on the transmission of two signals, the proposed cryptosys-
tem efficiency had been illustrated by an image transmission.
Further work can deal with the security level of our commu-
nication scheme.
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