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Abstract: This paper deals with the problem of state estimation for hybrid systems modelled
via multiple models and subject to delayed measurements. In contrast to the most popular
results found in the multiple model literature, we consider heterogeneous multiple models, also
known as decoupled multiple model, which allow to use submodels whose state space dimension
can be different. On the basis of this multiple model a proportional-integral observer (PIO) is
designed in order to cope with the robust state estimation with respect to disturbances. Sufficient
delay-independent conditions for ensuring robust performances (attenuation level) and dynamic
performances (exponential convergence) of the estimation error are provided in terms of LMIs
using the Lyapunov-Krasovskii method. The validity of the proposed methodology is illustrated

by an academic example.
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1. INTRODUCTION

Context. Time-delay, also known as dead-time, appears
frequently in several real-world processes, such as chemical
and thermal processes, electrical and communications net-
works, etc. Consequently, in many industrial applications
time-delays must unavoidably be considered as an inherent
part of the system and they must be accounted for in
the mathematical model of the system under investigation
(Smith and Corripio, 1985). Therefore, considerable atten-
tion has been paid in the past decades to systems with de-
lays and appropriate theoretical tools, in the frequency and
in the time domain, for the analysis, control and state esti-
mation are well established (Bliman, 2001; Sename, 2001;
Richard, 2003). Among them, the well known Lyapunov-
Krasovskii functional method is largely adopted for the
stability analysis of linear or nonlinear delayed systems.
This method provides generally sufficient conditions in
a LMI form which can be solved in polynomial-time us-
ing appropriated standard convex optimization algorithms
(Boyd et al., 1994).

On the other hand, complex industrial systems generally
present a nonlinear dynamic behaviour in particular when
the whole operating range (global behaviour) must be
considered instead of a reduced operating range in the
neighbourhood of an operating point (local behaviour).
This situation is commonly encountered in the state es-
timation problem where all admissible trajectories of the
system must be taken into consideration. Hence, adequate
nonlinear model representations must be used to cope

effectively with the global modelling and the state estima-
tion of these systems. A number of quite diverse similar
modelling frameworks such as hybrid systems, fuzzy sys-
tems, switched systems, multiple models, etc. are proposed
to dealing with the modelling of systems that evolves
according to different dynamics in the operating space.

Tools and proposed method. The nonlinear behaviour of
a system can accurately be represented using the multi-
ple model approach (Murray-Smith and Johansen, 1997;
Boukhris et al., 1999). Multiple models have been rec-
ognized as a popular and a powerful modelling tool of
complex nonlinear systems. In this approach the operating
space of the system under investigation is decomposed
into a number of operating zones, each of them being
characterised by a submodel of reduced dimension. The
interpolation of submodels with the help of weighting
functions, associated to each operating zone, allows the
global representation of the nonlinear system. It should
be noted that the hybrid character of multiple models is
given by the interaction of a set of submodels according to
a dynamic law which can be smooth (interpolation law) as
well as crisp (switching law).

At this point, it is important to point out that the in-
terpolation of submodels can be operated using many ar-
chitectures (Filev, 1991; Gregorcic and Lightbody, 2008),
among them two main architectures can be distinguished:
via an interpolation of parameters (e.g. Piecewise Affine
Systems or Takagi-Sugeno multiple model) or via an inter-
polation of outputs (e.g. decoupled multiple model). Many



contributions concern the analysis, the control and the
state estimation of the first multiple model realisation
(with or without delays) (Murray-Smith and Johansen,
1997; Babuska, 1998; Tanaka and Wang, 2001; Lin et al.,
2007; Yan et al., 2008), much less are devoted to observer
design using decoupled multiple models. In this work, the
latter realisation will be employed for dealing with the
problem of state estimation for nonlinear hybrid systems
with delayed measurements as an extension of the ideas
proposed previously (Orjuela et al., 2007, 2008).

Related work on decoupled multiple model. Uppal et al.
(2006) have shown a successful implementation of this
structure in order to cope with the state estimation for
fault detection and isolation. However, only a note of
the convergence estimation error is proposed in this work
and neither any analytic proof of the convergence of the
estimation error is given, nor the time delay is taken into
account. On the other hand, the state estimation in pres-
ence of delayed measurements is investigated in Orjuela
et al. (2007). Sufficient conditions, under a LMI form, are
given for ensuring the state estimation error convergence
towards zero. However, the robust state estimation with
respect to disturbances (e.g. noise) acting on the outputs
has not been addressed in this work.

In order to cope with this problem, we introduce the so-
called proportional-integral observer (PIO) which provides
very interesting robustness properties with respect to
perturbations (Beale and Shafai, 1989; Weinmann, 1991;
Busawon and Kabore, 2001). This observer is characterised
by the use of two corrective injection terms, proportional
and integral, instead of the conventional proportional
correction frequently employed in the Luenberger observer
and/or in its classical extensions. The PIO has also been
successfully employed in the synchronization of chaotic
systems (Hua and Guan, 2005). The extension of the PIO
design, based on dissipativity framework, to a particular
nonlinear system whose non linearity is assumed to satisfy
a sector bounded constraint, has been recently proposed in
Jung et al. (2007). However, the PIO design for standard
delayed linear systems and for delayed multiple models
(Takagi-Sugeno and/or decoupled multiple models) seems
poorly investigated in the literature.

Contribution and paper organisation. In this communica-
tion, the robust PIO design for decoupled multiple models
with delayed measurements is investigated. The outline
of this paper is as follows. A brief description of the
decoupled multiple model is presented in section 2. The
state estimation problem is presented in section 3 and suf-
ficient conditions, on the basis of the Lyapunov-Krasovskii
method, are established in order to ensure the stability
of the PIO. Finally, in section 4, an academic example
illustrates the state estimation of a decoupled multiple
model.

Notations: The following standard notations will be used
throughout the paper: P > 0 (P < 0) denotes a positive
(negative) definite matrix P; X7 denotes the transpose of
matrix X; I is the identity matrix of appropriate dimension
and diag{} is a block diagonal matrix of appropriate
dimension. The Lo—norm of a signal, quantifying its
energy is denoted and defined by |e||3 = [;° e (t)e(t)dt.

We shall simply write u;(€(t)) = pi(t) and z(t — 7(¢)) =
x(V) where 7(t) > 0 is a variable time-delay.

2. DECOUPLED MULTIPLE MODEL

The structure of the decoupled multiple model can be
viewed as a parallel interconnection of several submodels
via a weighted sum of their outputs (Gatzke and Doyle I11,
1999). In other words, as a particular class of hybrid
heterogeneous models. By considering a state space repre-
sentation, this structure takes the following form (Orjuela
et al., 2008):

Zi(t) = Ajz;(t) + Byu(t) + Dyw(t)

(1) = Z i (§()yi(t) (Lc)
y(t)=z(t —7(t)) + Ww(t) . (1d)

where x; € R™ and y; € RP are respectively the state
vector and the output of the i*" submodel; u € R™ is the
multiple model input, z € RP is the multiple model output
and y € RP the measured output subject to a variable
time-delay 7(t) and a perturbation w € R". The matrices
A; € RWxni By e R%*™ D, € R"*" C; € RP*™ and
W € RP*" are known and constant.

Assumption 1. The perturbation is bounded energy sig-
nal, i.e. [[w||3 < oco.

The variable time-delay 7(¢) acting on the output is known
and modelled by a continuous function that satisfies the
following conditions (Wu et al., 2004):

0<7(t) < Timae and 7(t) < B < 1 (2)
where T,,.. and (3 are constant. This time-delay can be
due for example to the inherent nature of the system, the
sensor reactivity or the transmission data time-delay.

The current operating point of the system is taken into
account by means of the so-called decision variable £(t)
which is a real-time accessible variable of the system
(e.g. inputs, outputs and/or other measured variable).
The relative contribution of each submodel to the global
model according to the current operating point of the
system is quantified by the weighting functions u;(£(t))
(i.e. the interpolation mechanism). They are associated to
each operating zone and satisfy the following convex sum
properties:

L
D wi(g(t) = Tand 0 < pi(§(t) <1,Vi = 1..L, V. (3)
i=1

In this multiple model the contribution of each submodel
is taken into account via a weighted sum of the submodel
outputs. Consequently, heterogeneous submodels (i.e. sub-
models of different dimensions) can be considered in the
modelling stage as a supplementary degree of flexibility
and generality. Therefore, this structure is well suited
for modelling nonlinear hybrid systems whose structure
varies with the operating regime, for example when the
complexity of the dynamic behaviour is not uniform across
the operating space (Gregorcic and Lightbody, 2008).



Notice that the multiple model approach is an efficient
way to deal with hybrid systems: no assumption is made
on the continuity of the weighting functions blending the
submodel outputs. Consequently, switches between sub-
models can be considered with the help of discontinuous
and even non differentiable weighting functions taking
boolean values in the set [0, 1].

3. STATE ESTIMATION PROBLEM

In a previous work (Orjuela et al., 2007), the state esti-
mation of a decoupled multiple model subject to delayed
measurements has been investigated on the basis of a
proportional observer given by:

i(t) = A (t) + Biu(t) + Ki(y(t) — 9(t)) ,  (4a)
L

2= mi(&(t)Cidi(t) (4b)
i—1

g(t) = 2(t —7(t)) , (4c)

where K; € R™*P is the gain associated to the i*®
observer. Sufficient conditions for ensuring the exponential
convergence towards zero of the estimation errors e;(t) =
x;(t) — 2;(t) have previously been established (Orjuela
et al., 2007). Note however that disturbances acting on
the system are not taken into consideration. Consequently,
the sensitivity problem of the state estimation with respect
to disturbances has not been addressed in this work. On
the other hand, the proportional observer (4) offers only
one degree of freedom K for reducing the influence of the
disturbance and providing at the same time good dynamic
performances (two antagonist design goals).

In this paper, the proportional observer (4) is replaced by
a more general observer, known as proportional-integral
observer (PIO), which provides very interesting robustness
properties with respect to disturbances. In particular, a
good trade-off between dynamic and robust performances
of the observer can be obtained with the PIO because two
degrees of freedom are available for the observer design.

3.1 Preliminaries

For the simplicity of manipulations, the decoupled multi-
ple model (1) is rewritten in the following compact form
(Orjuela et al., 2007, 2008):

i(t) = Az(t) + Bu(t) + Dw(t) , (5a)
2(t) = C(t)x(t) | (5b)
y(t)=2(V) + Wuw(t) , (5¢)

L
e(t)=[27(t) -2l (t)---2E @) eR n=" n;, (6a)

=1
A=diag{A, --- A; --- AL} e R (6b)
B=[B" ... BT ... B,T]" eRO>m (6¢)
D=[D," - DT ... DT eRO>N (6d)
C(t)=[m(t)Cy -+ pi(t)Ci -+ pr(t)Cr) € RP*™  (Ge)

The matrix C'(t) is time-varying because the weighting
functions are taken into consideration in this matrix.

3.2 Proportional-integral observer structure

In a PIO, the classic used proportional action given by the
gains K; in (4) is replaced by the use of two correction
actions: proportional and integral. For this purpose, a
supplementary integral variable y;(t) = fg y(n)dn must
be taken into consideration in the PIO architecture. Note
however that this integration can be replaced by a more
general action, for example, by considering the filtered
output signal as follows:

91(t) = Nyi(t) +y(t) (7)
where the matrix N is a fading effect coeflicient matrix
that regulates the transient response of y;(t) (Jung et al.,
2007).

Let us notice that the equations (5) and (7) can be
gathered as follows:

Folt) = (afxéf + @N@T) Za(t) + CoC(V) T 224 (V)

+C1Bu(t) + (@W + 61[)) w(t) (8a)

y(t) = C(V)C) 2a(V) + Wu(t) (8b)

—T
y1(t) = Ca wa(t) (8¢)
where the augmented vector z, € R(™*P) and the constant
bloc matrices C';y and Cs of appropriate dimensions are
respectively given by:

1= )0 = i) =] - o

The structure of the proposed PIO can be obtained on the
basis of the augmented form (8):

Galt) = (afxéf + 52NU§) o) + CoC(V) T (V)
+Kp(y(t) — 9(t) + Ki(yr(t) — 91(t)) + C1Bu(t) ,(10a)

j(t) = C(V)C1 #(V) (10b)
(10c¢)

Gr(t) = Cy ta(t) -
where the gains Kp and K; must be designed and the
matrices A, B and C(t) have been previously defined
in (6). Let us notice that an additional injection term,
given by the filtered (or integral) output estimation error
yr(t) — gr(t), is included in the dynamic equation of the
observer. Hence some degrees of freedom are in this way
introduced for the observer design. The use of the two

gains Kp (proportional action) and K (integral action) is
at the origin of the name Proportional-Integral Observer.

3.8 Problem formulation

The dynamics of the estimation error

ea(t) =x4(t) — Za(t) (11)
can be easily established by considering the gathered forms
of the decoupled multiple model (8) and the PIO (10):

ea(t) = Area(t) + Aa(V)ea(V) + Asw(t) ,  (12)

where



A 261146{ +62N€Z — K]ég R (13&)
As(V) = (Co — Kp) C(V) T (13b)
As=(Co— Kp)W+C1D . (13c)

Let us remark, from equations (13a) and (13c), that
the proportional gain Kp can be used to modulate the
influence of the disturbances on the estimation error e, ()
and the observer dynamics can be improved with the help
of the integral gain K.

Remark 1. Note, from equation (13c), that the distur-
bance w(t) can be totally decoupled (i.e. its influence is
null) if and only if KpW = Cy,W + C1D. Notice that

D Kp;
] o =[] w
if rank(W) = p, the gain Kp; can be computed as Kp; =
DWT(WWT)~!. In the other case total decoupling cannot
be achieved. Note however that the total disturbance
decoupling case reduce inevitably the freedom degrees to
adjust the dynamic performances of the observer.

(14)

The robust PIO design problem can thus be formulated as
finding the matrices Kp and K; such that the influence
of w(t) on the estimation error (11) is attenuated on the
one hand and the state estimation error remains globally
bounded for any blend between the submodels on the other
hand. To this end, the following objective signal v(t) which
only depends on the estimation error e, (¢) is introduced:

v(t)=Heq(t) , (15)

where H is a matrix of appropriate dimension chosen by
the designer. The matrix H in (15) can be selected for
totally or partially taking into consideration the transfer
from w(t) to eq(t).

Finally, the expected robust performances of the PIO can
be formulated by the following constraints:

tlim eq(t) =0 for w(t) =0 , (16a)

[V[I3 < +*[[wl]3 for w(t) # 0 and v(0) =0 ,  (16b)

where v is the £5 gain from w(t) to v(t) to be minimized.
Notice that condition (16a) ensures convergence towards
zero of the estimation error in the perturbation free case.
On the other hand, condition (16b) guarantees attenuation
level on the estimation error with respect to perturbations.
In the following, we will investigate the exponential con-
vergence of the estimation error. Indeed, the exponential
convergence is a strong form of convergence that guar-
antees dynamic performances of the estimation error, in
particular a convergence velocity via a decay rate.

3.4 Computation of the gains Kp and K

This section focuses on the computation of the PIO gains
Kp and Kj. For this purpose, the Lyapunov-Krasovskii
functional method is employed in order to provide delay-
independent sufficient conditions, in LMIs terms (Boyd
et al., 1994), for ensuring the robust performances (16).

Theorem 1. Consider the decoupled multiple model (1),
the time-delay conditions (2) and assumption 1. There
exists a PIO (10) ensuring the objectives (16) if there exists
two symmetric, positive definite matrices P and @Q, two
matrices Gp and G; and a positive scalar 7 solution of
the constrained optimisation problem:

min%y subject to
HTH+K1TP+PK1 +Q Ao As
Ry ~(1=B)e Q0 | <0
A, 0 —A1

for i =1---L where

K =CiAC, +CoNTy —GiCy +al |
Ay =(PCy—Gp) G T,
As=(PCy—Gp)W + PC1D ,

@i:[o e Gy e 0]

for a given decay rate a and for prescribed matrices H
and N. The observer gains are given by Kp = P~ 1Gp
and K; = P~1Gy; the L5 gain from w(t) to v(t) is given
by v = /7.

Proof. The exponential convergence of the estimation
error (11) is investigated via a Lyapunov-Krasovskii func-
tional as proposed by Mondié and Kharitonov (2005):

0
V() = epea + [ | R0 Qa1+ )08

(17)

where P and () are symmetric, positive definite matrices.
Notice that Mondié and Kharitonov (2005) propose this
functional in order to provide sufficient delay-independent
conditions for the exponential stability of linear systems
with constant time-delay (i.e. 7(t) = 7). Here, we will use
the same functional but a time-varying delay is considered.

It should be noted that the Lyapunov-Krasovskii func-
tional (17) can be rewritten as follows:

vo= @] [59]e9)

0
+ / el (t +60)e*Qe, (t + 0)df .
(1)

(18)

On the other hand, the robust state estimation objectives
(16) are guaranteed if there exists a Lyapunov-Krasovskii
functional (17) such that (Boyd et al., 1994):

V(t) + 2oV (t) < v2wT (t)w(t) — v (#)v(t) (19)

where « is the so-called decay rate for convergence velocity
and + is the attenuation level from w(t) to v(t) for robust
estimation. So, inequality (19) must be ensured in order to
provide a solution of the robust state estimation problem.

Let us consider initially the time-derivative of the func-
tional (17) evaluated via the Leibniz-Newton formula:



V(t) = ég (1) Pea(t) + g (1) Péa(t) + e (1)Qealt)

— (1= ()27 T (V) Qe (V) (20)
0
9 / T (t + 0)e2* Qe, (¢ + 0)do
(1)

that can be upper bounded, using the a priori knowledge
(2) of the time-delay as follows:

V() < ég (1)Pea(t) + e (1) Péa(t) + g (1)Qealt)
— (1= p)e e eq (V)Qea(V)

0
- 2a/ el (t +0)e**Qe, (t + 0)df |
7(t)

(21)

which becomes finally by considering the dynamics of the
estimation error (12):

0
V(t) < 7201/
—7(t)

+wT (£)AL Pey(t) + el (1) PAzw(t)

+[ea(t)}T{A1TP+PA1+Q PA3(V) Hea(t)}
ea(V) AT (V)P —(1-B)e 2 ™mazQ | | ea(V)

el (t +0)e2*%Qe(t + 0)do

(22)

Hence using (22), the left-hand side of the inequality (19)
is bounded as follows:

T
. ea(t) 2aP 0 PAg
V+2aV < |eql(V) {[ 9 00 ] (23)
w(t) Az PO O
ATP+PA+Q PA5(V) 0 €a(t)
+ { AT(V)P  —(1-B)e 20TmazQ o]} ea(V)
0 0 0 w(t)

Now, by considering (23) then the inequality (19) is
guaranteed if the following inequality holds:

T
ea(t) ATP+PA+Q PA5(V) 0
ea(V) { { AT(VIP  —(1—B)e~207maz Q 0]
w(t) 0 0 0
2aP+HTH 0 PA €a(t)
+{ 0 0 03]} e(V)| <0 . (24)
ATP 0971 w(t)

Let us notice that the above inequality is a quadratic form
in [ea(t) ea(V) w(t)]T. Consequently, the inequality (19) for
ensuring robust objectives (16) is finally guaranteed if the
following inequality holds:

2aP+HT H+AT P+PA1+Q PA2(V) PAs
AF (V)P —(1-B)e ez 0 | <0 .
ATP 0 !

(25)
Note that a time-varying matrix Ay(V), given by (13b),

appears in this inequality and therefore its resolution
cannot be computed using standard LMI algorithms.

However, the time-delayed varying matrix C'(V) in Ay(V)
can be rewritten as a weighted sum of constant matrices
as follows:

(26)

where C; is a constant block matrix given by:

Ci=1[0- Cy- - 0 (27)

such that the term C; is found on the i* block column of

C};. By considering (26) then the inequality (25) becomes

L 2aP+HTH+AT P+PA+Q PAa, PAs
Z wi(V) AT, P —(1=B)e~20™mazQ 0
i=1 ATP 0 421
where the constant matrices ]\2’1- are given by:
i ol = =T
Ay =(C2—Kp)CiC} . (29)

According to the properties (3) of the weighting functions,
the above matrix inequality (28) can be satisfied by con-
sidering the simultaneous solution of the set of inequalities
expressed for each upper bound of p;(V). On the other
hand, the linearisation of the matrix inequality (28) can be
achieved by the standard change of variables Gp = PKp,
G; = PK; and 42 = 7. Hence, sufficient conditions for
ensuring the robust performances (16) are obtained under
a LMI form which can be solved via classical LMI tools.
The proof of theorem 1 is completed. O

4. SIMULATION EXAMPLE
Let us consider the state estimation of a hybrid het-

erogeneous multiple model with L. = 2 submodels. The
parameters of the submodels are:

—2 05 06
A= |-03 -09 0 |, Ay = {_0052 __Oﬂ ,
~1.3 06 —038 :
Bi=[10205]", By=[-05 08]",
Dy = [0.1 0.2 —0.3]T, Dy = [—0.1 0.1]T,
1 08 05 0.7 0.3
Cr= [0.2 0.3 —0.5} ’ Co = {0.2 —0.5] ’

w=[02 —03]" .

The weighting functions are obtained from normalised
Gaussian functions given by:

wile®) =exp (—(€(t) —c)*/0?) . (30)

L
(€)= wi€(1)/Y_wi(E®)) (31)
j=1
with ¢ = 0.4, ¢; = —0.3 and ¢ = 0.3. The decision
variable £(t) is the input signal u(t) € [—1,1]. Here, a
sinusoidal input u(t) = sin(t) is considered in order to
explore the operating space of each submodel.

The time-delay function appearing in the output of the
systems is given by 7(t) = 0.5+ 0.45sin(0.5¢) with T, =
0.95. The upper bound of its derivative is § = 0.225.

For H =1, N = —0.3 and for a decay rate a = 0.2, a
solution that satisfies the theorem 1, is given by:

K _ [ 0.075 0.144 —0.220 —0.074 0.075 0.999 O.OOQ]T
P = [ -0.237 —0.444 0.678 0.225 —0.238 0.002 0.992 )
f( _ [—0.431 0.139 —0.068 —0.054 0.046 2.269 —0.045]T

I = [ -0.141 —0.434 —0.114 —0.022 0.011 0.042 2.252 )



with a minimal attenuation level 42 = 0.5.

In the simulation the disturbance acting on the output is a
normally distributed random signal. The state estimation
error is plotted in figure 1 (left) where e; is the i*" com-
ponent of the estimation error vector (11). The measured
and the estimated outputs are shown in figure 1 (right).
In both cases, the error around the origin time is due to
the differences between initial conditions of the multiple
model and the observer. The simulation results show the
effectiveness of the proposed observer.

1

()

‘ (t)
05 ‘ —es(t)
(t)

(t)

0 5 10 15 20 ) 5 10 15 20
time (<) time (s)

Figure 1. State estimation errors e; (left). Actual and
estimated outputs (right).

5. CONCLUSION

A proportional-integral observer (PIO), on the basis of a
decoupled multiple model, is proposed in this contribution
in order to cope with the state estimation problem of a
nonlinear hybrid system in presence of delayed and per-
turbed measurements. The decoupled multiple model is an
interesting structure for modelling nonlinear systems with
variable structure because the dimensions of the employed
submodels can be different. On the other hand, the PIO
offers more degree of freedom for robust state estimation
with respect to the classic proportional observer previously
proposed. The robust stability problem of the estimation
error is investigated using the Lyapunov-Krasovskii func-
tional method and delay-independent sufficient conditions,
under a LMI form, are established.

Further research will be to investigate the conservatism
of the proposed LMI conditions on the one hand and the
state estimation by considering distributed delays in the
submodel dynamic equations on the other hand.
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