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~ Abstract— This paper addresses the state estimation of two- ([2], [13]) requiring a linear transformation in order to
time scale nonlinear systems by designing an unknown input eliminate the fast dynamic components. In order to be able
multi-observer (UIMO). In order to design such an observer, to apply this method, the nonlinear system to be studied

the nonlinear system is transformed into an equivalent multiple has t t tructural traints. H hot al
model form and the fast dynamics are considered as unknown as 1o respect some structural constraints. However, hot a

inputs. An application to a model of Wastewater Treatment Nonlinear systems can be put under the proposed particular
Plants (WWTP) is considered and gives encouraging results. form, thus other methods of identification of the slow and

fast modes must be implemented.
By considering the standard singularly perturbed system,
Nonlinear models are often needed to represent real systewm equivalent MM can be written. The classical MM form
behaviors. As a consequence, there is a need to exteisdslightly modified in order to separate the slow and the
linear methods to nonlinear systems (such as the obserfast dynamics. The main contribution of this paper is to
synthesis), which is an a priori difficult problem. In order t estimate the state variables of a multiple time scale nealin
overcome this difficulty, the concept of multiple model (MM) system. Due to the limited number of sensors, this is done
has received much attention in the last two decades. The MW considering the fast varying state variables as unknown
structure gives the possibility to reduce the complexity oifnputs, thus an unknown input multi-observer (UIMO) can be
nonlinear systems, by constructing linear submodels aggréesigned by using the MM singularly perturbed form. Most
gated using weighting functions [12]. A MM form can beof the existing works are dedicated to MM with measurable
obtained by applying a method proposed in [8] to represertecision variables (inputs / outputs). Unfortunately, iany
nonlinear systems into an equivalent MM. Only the generairactical situations these variables are not accessilvily. ©
steps of these technique are given here. few works [5], [6] are devoted to the case of unmeasurable
Real systems can have multiple time scale dynamics. In ordeecision variables. This last case will be treated here. The
to deal with such systems, the singularly perturbed themry convergence conditions of the state and unknown input
often used to highlight the systematic decomposition of thestimation error are expressed through LMIs (Linear Matrix
system into various scales of time. Nevertheless, it is ndbequalities) by using the Lyapunov method and thé
obvious to model a process under the standard singuladpproach.
perturbed form. In the present paper, the MM structure and the singularly
Thefirst difficult point is the separation of the slow and fastperturbed theory are used in order to deal with the complexit
dynamics. In [2], [3] this separation is realized by compgri of an ASM1 (Activate Sludge Model 1)[10] describing a
the kinetic parameters of the biological process. But, in hiological degradation process, which is characterized by
general nonlinear case this comparison is difficult to aghei two-time scale dynamics. Most of the previous works using
So, more general methods to identify different time scaleiie MM representation and dedicated to activated sludge
were proposed in the literature ([11]). These methods amystems were based on linearization techniques despite the
based on the evaluation of the jacobian eigenvalues of tldgawbacks mentioned as follows: the loss of information
linearized system and will be used here. and the delicate choice of different operating points or
After the separation of the multiple-time scale dynamicdajectories. In addition to that, the choice of the decisio
the standard singularly perturbed form is obtained. In theariables expressing the nonlinearities of the systenh stil
limit case, this form has a dynamic part and a static paremains a delicate point.
expressed by an algebraic system. Thuseeonddifficult In section Il are given the essential tools for modeling
point is the resolution of the algebraic system which isionlinear systems, in section Ill is presented the observer
not always a ftrivial problem. The method mainly used talesign. Section IV proposes a real application to WWTP.
deal with this problem is based on a change of coordinates
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The measure equation is generally linear and time invariaby replacing the decision variableg in the matricesA and
since, in most practical situations, the sensors do notgtanB, with the scalars defined in (5):
according to the operating point.

The multiple model allows to represent nonlinear dynamic A= Az o) (8)
systems into a convex combination of linear submodels: B = B(zlygil, ...,zqﬂiq) 9)
X(t) = i i (%, ) [AX(t) + Biu(t)] B. Singularly perturbed systems
i=1 @ The standard form of the singularly perturbed systems with
y(t) =Cx(t) two-time scales can be expressed by the following system:
wherex € RN is the state vectoy € R™ is the input vector, exe(t) = fr(xs(t),x= (1), u(t), &) (10a)
y e R! the output vectorA;, Bj, C are constant matrices of ) ’ A
appropriate dimensions. The functiopgx, u) represent the *s(t) = fsxs(t),xe (1), u(t), £) (100)
weights of the submodelgA;, B;,C} in the global model and \here x5 € R" and xe € RP are respectively the slow and
they have the following properties: fast state variabledg (x,u,€) € RP, fs(x,u,€) € R" and¢ is
r a small and positive parameter, knownsasgular perturbed
S oHi(xu)=1;  pm(xu)>0Y(x,u) e RN xR™ parameter

In the limit casee — 0, the degree of the system (10)
In order to obtain the MM form, a method giving andegenerate from+ p to n, and the system is approximated
equivalent rewriting of the nonlinear system (1) is usee (sepy:

[8] for further details).

Firstly the system (1) is transformed in a quasi-Linear 0 = fr(xs(t),xe(t),ut),0) (11a)
Parameter Varying (quasi-LPV) form: xs(t) = fs(xs(t),xe(t),u(t),0) (11b)

X(t) = A(X(t),u(t)) x(t) + B(x(t),u(t)) u(t) 3) By solving all the algebraic equations (11a) the solution
y(t) =Cx(t) Xe (1) = ¢ (xs(t),u(t)) is obtained and used in (11b) to derive
the reduced system.

_ I _ . _ .. Remark 2. The fast variables cannot always be explicitly
are considered as "decision variables”, or "premise V&€& o, resqed from (11a). The most popular method used to deal
and denotedzj (x,u)(j = 1,...,q). Several choices of these i this problem is based on a change of coordinates [2],

premise variables are possible. (for detail§ in the selgcticllS]’ requiring a linear transformation in order to elintiea
procedure see [9]) due to the existence of different eqemtal . 45t dynamics. So, this method can only be applied to

quasi-LPV forms. _ o systems (e.g. biochemical processes) for which this linear
Thirdly, a convex polytopic transformation is performed fortransformation can be founded.
all premise variablesj(= 1,...,q), as follows: By taking into account the previous drawbacks, no change
of coordinates will be considered; the unreduced standard
singularly perturbed form (10) is taken into account in this
where study.
zj1 = max{zj(x,u)} In order to obtain the standard singularly perturbed fohe, t
70— r:“L;] {z- (x u)} (5) identification and separation of slow and fast dynamics is
T the keypoint. This is realized by using the mathematical ho-
motopy method for the linearized system [11]. This method

Secondlysome nonlinear entries of the matricgand / orB

zj(x,u) =Fja(zj(x,u)) - z1+Fj2(zj(x,u)) - zj2  (4)

Zj(X,U) — Zj 2 allows to link each state variable with an eigenvalue. By
Fia(zj(x,u)) = ﬁ (6a) comparing the eigenvalues, the biggest (resp. smallest) on
s ’i 5 (;zu) will be associated with the slowest (resp. fastest) dynamic

Fi2(zj(x,u)) = o FE e A (6b) Remark 3. It is important to note that the linearized system
41—42 is only used to identify the slow and fast dynamics, but not

Remark 1. For q decision variables; = 29 submodels will 0 design the multi-observer in order to estimate the state
be obtained. By multiplying the functiorEJ ,; the weighting variables. An equivalent MM representation will be used for
i

functions are obtained: this purpose. ) ) ) )
Let us present in the following the multi-observer design.

r
Hi(x,u) = I_LFLUH(Z](X’U)) (7) I1l. STATE ESTIMATION
=

. In [7] is presented a state estimation method for singu-
The indexesoiJ (i=1,..,29andj=1,...,q) are equal to 1 lar MM affected by unknown inputs and with measurable
or 2 and indicates which partition of tH& decision variable decision variables. The proposed observer is not a singular
(Fj,1 or Fj2) is involved in theit" submodel. system, but in a usual form in order to simplify the imple-
The constant matriced; andB; (i = 1,...,29) are obtained mentation. We suggest to keep the idea of a classical olyserve



form, but to propose an extension to MM affected bywherex'the estimated state of the system aod) plays the
unknown inputs and with unmeasurable decision variablegle of a disturbance:

The nonlinear system is under the singularly perturbed form r A _

with two time scales and the MM depends on unmeasurable ®(t) = ,;(“i (x,U) = k(% W) - [AX(t) + Biu(t) + Eid(t)]  (19)
decision variables. The fast dynamic state of the systein wil _

be considered as unknown inputs and will be thus estimated:€t Us note the equivalence between the models (17) and
Let us start with a general nonlinear system with two timé18)- An observer with unknown inputs can be built [5], [6]

scale dynamics: by using the second structure (18), as follows:
. 1 S = S 1 (R . . ‘
Xe(t) =~ fr(xs(t).xe (), u(t).€) (12a) { f(t) = 2 KOO N2 +Gub) + LDl o0
%s(t) = fs(xs(t), e (1), u(t), ) (12b) X(t) =2(t) —Hy(t)
y(t) = Cx(t) (12c) The state estimation error is given by:
Let us consider the multiple model form of (12) as follows: et) = x(t)—xX(t) B
r _ _ _ = X(t) —z(t) + HCsx(t) + HCed(t)
Xe(t) = _Zui (X(t),u(t)) [ArrXe (t) + Apsxs(t) + Bru(t)] = Px(t)—z(t) + HCed(t) (21)
. r . . . h :
o) = 3 HX0:u) [Aspre (0 +Asgalt) +BRu)] b4 HEs 22
yt) = [Cr Cglx(t) 13)  The dynamic of the state estimation error is:
where the matricesr, Ars, Asg, Asg B, B, Cr andCs et) = Px(t)—z(t)+HCrd(t)
are block matrices with appropriate dimensions correspond r _
ing to slow and fast dynamics identified in the matriées = Zui (X(1))[PAX(t) + PBiu(t) + PEd(t)
B; andC: = .
o | + Pw(t) — Niz(t) - Gu(t) — Liy(t)] + HCed(t)
A= [ AN } B = [ o ] (14) (23)
SF s S

hbgter reorganization of the terms in the right side of (23)

This approach allows to decouple both time scales and tand by using the definitions oft) andz(t), we obtain:

estimation of the slow dynamicg is made independently

of the value ofxg. If the fast dynamic states are considered r . — —
as the unknown inputsi(t) = x=(t) then the state vector &1 = _Z“i (X(O)[(PA —Ni —KiCs)x(t)
. i=
becomes: g +  (PB —Gj)u(t) + (PE — KiCg )d(t) + Paw(t)
)= { xs(t) } (15) + Nie(t)] + HCrd(t) (24)
With the following partitioned matrices: with Kij = NiH + L.
) ] If the following conditions hold:
A — Arr AIFS 16
A = 0 AL (16a) HCE = 0 (25)
0 N = PA-KCs (26)
E = i 16b
B [ Ask } (160) PB = G (27)
Cs = [ 0 Cs ] (16c) PE = KCg (28)
the system (13) is equivalently written as follows: Li = Ki—NH (29)
. r _ then the dynamic of the state estimation error reduces to:
X(t) = -z1ui (x(t),u(t)) - [AX(t) +Bju(t) + Ed(t)] an
i=

;
J18) = Gax(t)+ Ce A1) &) = 3 W) (Ne() + o) (30)
Without any loss of information, the MM with unmeasurableshowing that the dynamic of the state estimation error is
decision variables (17) can be written as a disturbed MMnly disturbed bycw(t). To synthesize the matrices of the
with measurable decision variables: observer (20), several methods are proposed [5], [6], based
r on Lipschitz conditions or on theZ approach. Here, the
Zﬂi (X(t),u(t)) - [AX(t) +Biu(t) + Eid(t) + w(t)] second method is used and presented@linorem 1 But let

i= us recall firstly some tools that lead to this result.

y(t) = Csx(t)+Ced(t) (18) In conformity with [1], the state estimation erreft) tends

x-
A~

—
N

Il



towards zero and th&% gain fromw(t) to e(t) is bounded
by y if the following inequality holds:

NTX+XN+1  XP

PTX —Al

By using the expression dfi from (26) and the notations

A=y and M = XK; Vi =1,....r, the inequality (31)
becomes for all =1,....r:

{ ATPTX +XPA —CIMT —MCs+1 XP

}<o i=1..r (31)

PTX —Al

By multiplying the condition (28) with the matriX and by
using the notation$/; = XK; and (22) we obtain:

(X + SCs)Ei = MiCr

} <0 (32)

(33)

The notationS= XH is made in order to deal with the
nonlinear term.

By using the conditions from (25) to (29) and the previous

recalls, the following result is obtained.

Theorem 1. An unknown input observer can be constructed

for (17) if there exist a symmetric matrix X, matrices &hd
S and a positive scalak such that the following conditions
holds for all i=1,...,r:

Jout = Qin + Or. IN generalgr and gy represent fractions of
input flow Qjn:

ar(t) fROin(t),
aw(t) fw Gin(t),

The polluted water resulting from an external source circu-
lates in the basin of aeration in which the bacterial biomass
degrades the organic matter. Micro-organisms gatherheget

in colonial structures called flocs and produce sludges. The
mixed liqueur is then sent to the clarifier where the badteria
separation of the purified water and the flocs is made by
gravity. A fraction of settled sludges is recycled towards
the ventilator to maintain its capacity of purification. The
purified water is thrown back in the natural environment.

1<fr<2
O0<fw<1

(38)
(39)

Air
din  Feed * Qout Effluent
_> _»
Bioreactor Clarifier
gr
gr+qw
Sludge Recycling gr Wasted Sludge
p- A

A_‘iT X7 + )N()& - §£M|T - Mi63+| X Fig. 1. The diagram of activated sludge wastewater treatment
<T a1 | < 0 (34)
The ASM1 is a commonly used model to describe this pro-
SG = 0 (35) cess. Here, areduced form of the ASM1 model is considered,
SE — MG 36 the carbon pollution of an activated sludge reactor, witbeh
E = MCk (36)  state variablex = [Ss, So, Xan]":
where the notatiorX = X + SCs was used. The matrices of . B 1 1— )b b
the observer are given by: St) = *EHH¢1(t)+( — fp)b d2(t) +Dy(t)
. Yy—1
H = x!s D) =~ HHd0)+Da(t)
1 .
Kio= XM Xer(t) = Huéu(t) —buga(t) + Da(t) (40)
\; (I +HCs)A — KiCs (37) where:
Li = Ki—NH Gin(t)
G = (I+HCyB, Dult) = o [Ssin(®) —S5(0)]
Da(t) =~ [Soin(t) — So(t)] +Kda(t) [Sosa—So(t)]
Gin (t) 1—fw
IV. APPLICATION: WASTEWATER TREATMENT PLANT Ds(t) = =, Xarin(t) = Xen (1) + fr ——¢ - Xar(0)
A. Process description and nonlinear model o (41)
) ) ~The process kinetics are:
The wastewater treatment with activated sludge is widely
used in the last two centuries [10], [4]. It consists in mgti 1) = =0 Sel0) BH (1) (42)
in contact waste water with a mixture rich in bacteria to Ks+S5(t) Kow +So(t)
$2(t) = Xeu(t) (43)

degrade and eliminate the polluting constituents conthine
in the water, in suspension or dissolved. Various configuraThe variables involved aré’ the reactor volumeSs the
tions are possible: separated basins or single basinretitfe readily biodegradable substrat& the dissolved oxygen,
types of reactions (aerated or not-aerated). For economig, the active heterotrophic biomass. ThB’” "in” and
considerations, a configuration with a single basin (whereyut” indexes correspond respectively to the reactor recy-
both aerobic and anaerobic phases alternate) was developgifhg, input and output.

The functioning principle of the process is briefly desatibe We suppose that the dissolved oxygen concentration at the
after. The simplified diagram, given in figure 1, includes &eactor input & n) is null. Thus, the vector input is defined
basin of aeration (bioreactor) and a clarifier. In this figurgy:

gin represents the input flowge, the output flow,g, the air Ssin(t)
flow, gr, qw are respectively the recycled and the rejected Ta(t)
flow. The reactor volume is assumed to be constant and thus: XaH,in(t)

u(t) = (44)



The clarifier is supposed to be perfect i.e. with no internal -0.5F
dynamic process and no biomass in the effluent. In this case

we can write at each time instant: pg |
[ain(t) + aR()Xen (1) = [ar(t) + aw (D) Xenr(t)  (458) 3 e
Ssr(t) = Ss(t) @4sp) T ey
The following heterotrophic growth and decay kinetic élso, ]
parameters are considered [10ky = 3.7331/24h], g

Ks = 20[g/m°], Kon = 0.2[g/m?], by = 0.3[1/24h]. The
stoichiometric parameters arg; = 0.6[g cell formed], S
fp = 0.1 and the oxygen saturation concentration is

|
N
o
o
o

1

s %~

Sosat = 10[g/m?]. The following numerical values are 0 0 15 20 25 30 35 a0
considered here for the fractiorfg and fy: fr = 1.1 and Operating points index
fw = 0.04.

Fig. 2. The jacobian eigenvalues in various points of therajrey space

B. Slow and fast variables

. : o . decomposed in the following way:
Let us consider the linearization of the nonlinear system P g way

(40) around various equilibrium pointso, uo): Alt) = ,:2'::((;[)) Zi((tt)) ] B(t) = { I;,;((;[)) ] (48)
X(t) = Aox(t) + Bou(t) (46) )

af(x,u af(x,u where
whereAo = c(?x’ : |(x0.) @NABo = % |0) - Arr(t) = —z(t) - Yi HH Z2(t) (49)
If we considerA; < A; < ... < Ay the ordered eigenvalues H
of Ao, the biggest (resp. smallest) eigenvalue correspond to Aes(t) = [0 (1—Tp)by ] (50)
the slowest (resp. fastest) dynamic. This separation weill b
made by fixing a threshold of separation of both time scales, Be(t) = [z 0 0] (51)
T, such as:

A< <A T< A1 <...<A Yo —1

1S5 S ALK TS App1 £ .. S AN As(t) = [ i i Z(t) } 52)

For the considered model ASM1 (40), the slow and fast HH (1)

separation is confirmed by the eigenvalues of the jacobian

A, as we can notice on figure 2 where we represented thesgsg(t) _ —Kz(t) —a(t) a1 fuw) 0 (53)

eigenvalues for forty operating points. We notice that two 0 ( fwrfe —1)2(t) — by

eigenvalues), andAs3) are included betweer40 and—0.7

and that the otherAg) between—175 and—250. The math- Bs(t) = { 8 KSOQ"’“ z?t) } (54)

ematical method of homotopy (see [11] for details) requires 1

to consider a system, such that an obvious relation relateshe decomposition of the three premise variables (47) is

the eigenvalues to the state variables (e.g. the diagewhblizrealized by using the convex polytopic transformation, as

matrix of the jacobian matri¥d). By fixing a threshold of in (4) and by using the scalars defined4n (5) and the

separationt = —50, we can deduct that the system has onfunctionsF.. defined in (6).

fast dynamic $s) and two slow dynamicsXgy and o). By multiplying between themselves the functioks, we
obtain ther = 8 weighting functiongy;(z(t)):

C. Multiple model
A multiple model is built and used to design an observer k(2 = Fl.ail(xa U)Fz,ai2(x> U)Fs,aiS(K u)

allowing slow and fast state estimation. The constant matricegy and B; representing the 8 sub-

Cons@erlng t.h<.a process eq-ua'uons, itis natural to defiee trr]nodels are defined as in (14) by using the block matrices
following decision variables:

andB and the scalars (5):

A(ut) = Qi:/(t) (47a) AfFF =Arr (2612 62)
B 1 Sot) Aes=[0 (1-fo)by |
20) = TS Kon+ o e @) A5y = Ase(2, ) o5
z(ut) = dalt) (47c¢) Ass=AsdZ g1,%3.7)
We consider the quasi-LPV form of the model (40) character- Br =Br(z,51)

ized by matricesA(t) = A(x(t),u(t)) andB(t) = B(x(t), u(t)) Bs=Bs(z,41) i=1..8



The model (40) is thus written equivalently under the MMto highlight the fast dynamics as unknown inputs. Based
form (13) by using the separation into slow and fast statesn this equivalent MM representation, an unknown input
The output matrixC is taken under the form: observer is proposed. The simulation results show good stat

100 estimations for both slow and fast dynamics although a noise
S

010
D. State estimation results
As seen on figure 2 the fast state variable is the biodegra
able substraté&ss. This variable is considered as unknown

input in the observer proposed in section Ill. Let us alsi 52
consider the system output under the form (18), where: o
o} - a
ce - [é] G — [8(33} (56) 0 2 4 6 8 10
200
By applying theTheorem 1to the ASM1 model (40), which 150}
has the equivalent MM form build in the previous sectior -,

IV-C, the following state estimation results are obtained a
50

presented in figure 3. The estimation of the fast dynafic
(considered as unknown input in the global multiple model
is presented first and is followed by the estimation resuli
of the slow dynamics$s and Xgy. A noise measurement is
considered on the output as it can be remarked in figure 4.

200 T T T . . . . .
— S
150} s> 1
- = S,estimated [ [1]
E100F ]
(=]
50 1
[2]
0 ; ; ; ; ; ;
0 1 2 3 4 5 6 7 8 9
3 , , , , , : : : (3]
— SO
- 2t - SO,estimated g [4]
£
(=2}
1f ]
(5]
0 ~ ; ;
0 1 2 3 4 5 6 7 8 9
1200
[6]
1100
™
£1000 [7]
s X
900 BH,estimated
P
800 ; ; ; ; ; ; ; ;
8
0 1 2 %ime(h)s 8 9 [8]
Fig. 3. Estimation of the fast state considered as unknownti8p and [9]
of the slow stateXgy and S
V. CONCLUSION (10]

Nonlinear systems with two time scales are considered aifd]
they are represented using the standard singularly pedurb
form. The slow and fast dynamics are identified using thg
eigenvalues evaluation of the linearized system. The MM
form is obtained by equivalently rewrite the initial nordar 13]
system, thus no reduction is made. In the same time, tII1e
classical MM form is slightly modified in order to separate
the slow and the fast dynamics. This modification allows

measurement was considered on the outputs.

4

R yl

3r — vy, estimated |1

time (h)
Fig. 4. Estimated outputs
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