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The problem of obtaining reliable estimates of the state of
a process is a fundamental objective, these estimates being
Abstract used to understand the process behaviour. For that purpose,
a wide variety of techniques has been developed to perform

On-line optimisation provides a means for maintaining #1at is currently known as data reconciliation [Mah, 76],
process around its optimum operating plant. An importdaquin, 91]. Data reconciliation, which is sometimes
component of optimisation relies in data reconciliatidi¢ferred too as mass and energy balance equilibratiorgis th
which is used for obtaining consistent data. On a mattRdjustment of a set of data so the quantities derived from the
matical point of view, the formulation is generally based d#fita obey physical laws such as material and energy con-
the assumption that the measurement errors have normgfijration. Since the pionner works devoted to the so-called
pdf with zero mean. Unfortunately, in the presence of groddt@ rectification, the scope of research has expanded to
errors, all of the adjustments are greatly affected by suepver other fields such as data redundancy analysis, system
biases and would not be considered as reliable indicat8Rservability, optimal sensor positionning, sensor by,

of the state of the process. This paper proposes a dif®rs characterization, measurement variance estimatio
reconciliation strategy that deals with the presence ohsU¥any applications are related in scientific papers invavin
gross errors. Application to size flowrates and conceminatvarious fields in process engineering [Yi, 02], [Singh, 01],
data in mineral processing is provided. [Heyen, 99].

Unfortunately, the measurement collected on the process

T,y process variables may be unknowingly corrupted by gross errors. As a result,
z,7 process measurements the data reconciliation procedure can give rise to absurd
Z,9 estimates results and, in particular, the estimated variables will be
o standard deviation corrupted by this bias. Several schemes have been suggested
p probability density function to cope with the corruption of normal assumption of the
A incidence matrix errors, for static system [Narasimhan, 89], [Arora, 01] and
v number of streams also for dynamic systems [Abu-el-zeet, 01]. Methods to
n number of nodes include bounds in process variables to improve gross errors
q number of concentrations detection have been developed. One major disadvantage
Wa, Wy, weighting matrix of these methods is that they give rise to situations that it
w balancing factor may impossible to estimate all the variable by using only
1% variance matrix a subset of the remaining free gross errors measurements.
A\, Lagrange parameters Alternative approach using constraints both on the eséimat
and the balance residual equations has been developped
Table 1: List of symbols for linear system [Ragot, 99], [Maquin, 04]. There is also

an important class of robust estimators whose influence
function are bounded and finit allowing to reject outliers



[Huber, 81], [Hampel, 86]. Another approach is to tak@?], [Ghosh, 03]. Thus, for each observation we define
into account the non ideality of the measurement ernbe two following pdf and the so-called contaminated pdf:
distribution by using an objective function constructed on

contaminated error distribution. In the following, we atlop . 1 1 (a—d\°

and develop this idea for the data reconciliation problem. piilwi | &3 01) = \/2_—7“,].6@ <_§ ( o; ) ) ®)

Secti_qn 2 will be deyoted to recall the backgr_olur?d o_f data p(z; | #i,0) =wpri + (1 —w)pe; 0<w<1  (4)
reconciliation. In section 3, robust data reconciliatismlé- . ] o _
velopped and will be illustrated through an academic exafloWing to dfafme the log-likelihood function of the mea-
ple in section 4. surement set:

¢ =1 i | Ti, 0 5
2 Datareconciliation background 09HP<$ | &, 6) (5)

The classical general data reconciliation problem [Maf, 7§inimising (5) in respect ta: gives the estimate:
[Hodouin, 89] [Crowe, 96], deals with a weighted least

s (T T T\—1 g\~
squares minimisation of the measurement adjustments sub- &= (I - Wo A" (AWLAT) T A)2 (6a)
jectto the model constraints. Indeed the model process equa ~ Ypri + 2 pa
i taken as linear for sake of simplicity : wit= 4 - - (6b)

ions are taken as linear for sake of simplicity : w i=10 \ wpra+ (1= w)pas

Az =0, AcR™, zeR’ (1) R 1 1 /& —a:\°
Dji = —=—=—exp | —5 ( ) (6¢)

. . \2mos; 2 o;
wherex, with components; is the state of the process. noi !

The measurement devices give the information : where the diag operator allow to define a diagonal matrix
from the elements (pointed hy of a vector. Thus system
(6) is clearly non linear and we suggest the following direct
rative scheme:

T=x+e ple) x N(0,V) 2

wheree € R" is a vector of random errors characterised B
variance matrixd” andp is the normal probability distribu- O
tion (pdf). In the least square sense, the well-known smfuti

of this problem ist = (I — VAT (AV AT)~! A)z [Maquin, * 1
1991]. In fact, the method doesn’t work in any situation, the  P;; = f%’p B
main drawback being the contamination of all estimated val-

(7a)

T
® _;
<L — ) (7b)
gj

ues by the outliers. For that reason robust estimators could ) %ﬁ(k) + 1—_2wﬁ(k)
be preferred, robustness being the ability to ignore the con (17 (0=t — i“ig ”1k 1t o Q’lk (7¢)
tribution of extreme data i.e. such as gross errors. There ar e wﬁg_j) + (1 - w)ﬁ;i)

two approaches to deal with outliers. The first one consist to (h1) (k) AT () AT~—1 4\ =
sequentially detect, localise and suppress the datawhicha = (I - W, AT (AWM A7) A) z  (7d)
contaminated and after to reconcile the remaining data. The

second approach is global and reconcile the data withou} #/0PPing criterion must be chosen for implementing the
preliminary classification; in fact, weights in the recdiasi algorithm. For sake of simplicity, the proof for the local
tion procedure are automatically adjust in order to minemi§onvergence of the algorithm is omitted.

the influence of the abnormal data. In the rest of the paper, . ) )
we only focuse on this last strategy. In order to appreciate how the weidht, which should be

compared to an influence function as explained in [Hampel,
86], are able to reject the data contaminated by gross errors

3 Robust data validation. The linear figure 1 show the graph of the function:

case. Lp1+ tp,
gluy =22 "~
If the measurements contain random outliers, then a single wpr + (1 —w)p2
pdf described as in (2) cannot account for the high vari- 1 1w
ance of the outliers. To overcome this problem let us as- p1 = exp <—(—)2)
sume that measurement noise is sampled from two pdf, one V2ra 201
having a small variance representing regular noise and the 1 1, u .,
other having a large variance representing outliers [Wang, NG (_5(0_2) )



wheres; = 0.5 ando, = 2 and wherew take the indi- same normab, ;1 (resp. o,,1) and abnormab, > (resp.
cated values. For a better comparison, the graphs have bggs) standard-deviation. This hypothesis will be withdrawn
normalized, i.e. we have represen®d.) = g(u)/g(0). later. Thus, for each observation andg. ;, we define the
Forw = 1 we naturally obtain a constant weight; thus afbllowing pdf:
the data are equallly weighted and, in particular, the optim 9
_sation crite_rion will t_)e sensitive to large magnitude ofedat (4, |z, Onj) = L exp 1 (xz - xz) (8a)
i.e. to outliers. Takingv = 0.02 reduces the influence of \/ﬁam 2 Oz,j
outliers since the weight decreases frarfor data around 1 1 o
the origine t00.63 for data with large magnitude. Indeedp(y.,i|jc,i,0y. ;) = ———— exp <_ (M) )
with the non restrictive hypothesis > o, for large values m"yc,j 2 Tye.j
of u, the weighting functiorj(u) can be approximated by (8b)
the non zero value: with j = 1,2,i = 1..v,¢ = 1..q. In the rest of the paper, we
11+ () (2)? adopt the shortening notatign. ; ; andp,, ;; respectively
Ga(u) = ;W for p(x;|Zi, 05,5), andp(ye,i|Je.i, oy.,;) Where indexesand
! w hoa 4 are respectively used to point the number of data and the
where for small values af the approximation ig,(u) = 1. humber of the distribution. Then, the combination of these
Thus, it is possible to adjust, ando, such that the large two pdf (for each type of variable) is performed with the help

values ofu would have a small influence on the criteridn  Of @ weightw. Quantity(1 — w) can be seen as an a priori
probability of the occurence of outliers:

1 1
05 w:0.000101:0.502:4 05 W:0.000101:0.56221 pIJ' — wpg;,Li + (1 _ w)pg;,27i 'L — 1“1) (ga)

?4 2 0 2 4 ?4 2 0 2 4 Dye,i = WPy, 1,i + (1 - w)pyc-,Q,i i=1. (9b)

1 1
05 W=°-°°5°y®{ 0s|  MTOomOr0se Assuming independance of the measurements allows to de-
0 0 fine the global log-likelihood function:

-4 2 0 2 4 -4 2 0 2 4

1 1 v q
05 w=0.02 u1ﬂ 05 w=0.02 0= 0.5 o, 1

: : ® = log [ [ pei [I pyesi (10)

-4 2 0 2 4 -4 2 0 2 4 i=1 c=1

1 1

o5l WTOLOE0YoY gsfE0LeE000, 1 Let us now define the optimisation problem consisting in es-
0 0 timating the process variablesandy. For that, consider the

-4 -2 0 2 4 -4 -2 0 2 4 -

1 1 Lagrange function:

05 w=05 U1=0 02:4 05 w=05 0= 0502: N

’ q

l-)4 2 0 2 4 -04 2 0 2 4 L=%o+ )\TA.T + Z ,UZA(% & yc) (11)

0.: w=090=050,4 O; w=090=050,1\ c=1

P — (S 0 in which the parameters andy,. allow to take into account
7 0 2 ¢ 7 0 z *  the mass balance constraints for total flowrate and partial

flowrate (for that last one the operateris used to perform
the element by element product of two vectors). The sta-
tionarity conditions of (11) are expressed (the estimation
are now noted: andy..):

Figure 1: Influence function

4 Extension to bilinear systems WAl )4 ATA ij(A i —0  (128)

x

We consider now the case of a process characterised by two c=1
types of variables : macroscopic variables such as flowrates Wi, Hbe —Jo) + (A2 8)Tu=0 (12b)
2 and microscopic variables such concentratipndviore- AE®G.) =0 (12¢)

over, we will consider several species and therefore skvera o ) )
concentrations notegh, c = 1..q. If the measurements conWhere the weighting matricé$’; andV;, are defined by:
tain random outliers, then a single pdf described as in (2) whsai 4 (1=w)pe i
cannot account for the high variance of the outliers. To-over ;-1 _  diag 92 Tz (13a)
come this problem let us assume that measurement noise is * i=1Lv Vwp, 1+ (1 —w)pro
sampled from two pdf, one having a small variance repre-

-1 _  diag ora 02,2 (13b)

WPyeti 4 (1*w2)10yc,2,i

senting regular noise and the other having a large variance
representing outliers. In order to simplify the preseotati Wo = i=Tw Wpyoni + (L — w)py. 24
each measurement; (resp. y;) are assumed to have the e e




Notice that if each measurement (resp. y;) has a partic- g+t = (1 — Wék)Ag“)T(Aék)Wfk)Agk)T)‘lAék))gc

ular standard-deviation, formulas (13a) and (13b) stiltho ‘

by replacing the parametess ; ando, » (resp. o, 1 and &P 3 convergencetest _

0y.2) by 051 aNdo, o (r€SP.0y, 1. andoy, 2. ). Using C(?chp))ute an appropriate ?kgrlr? of t(rﬁlg:orrectwe terms:
shortening notationd, = A diag(z) andA, = A diag(y), 7= = [#**) — [ and7,™ =[5 — ge[|. If the
system (12) may be directly solved and the solution may wariationsr "™ — 71 and7{F 9 — 705 are less than
expressed: a given threshold then stop, elge= k£ + 1 and go to step 2.

A T Ty\—1 . e e .
&= (I WA (AW A")" A)... Remark : for non linear systems, the initialisation remains

B a T Tt - a difficult task, convergence of the algorithm being gener-
(T = Ws Z Ay (AeWy A3) ™" Asge) (142) ally sensitive to that choice. In our situation, measuremsen
e=1 are a natural choice for initializing the estimates (sted 1 o
e = (I — Wy, AL (AsWy, AT) ™' Ag)ie (14b) the algorithm). The solution given by classical least sqsar

approach would also provide an acceptable initializatien a

?ystzrp (%:) IS c!e?{gfﬁong%?ér&/vnh reO?ard to :P]e ur;l;ngvi/ ough its sensitivity to gross errors may be sometimes im-
& andje, the weightiV’; andW;, depending on the pdf ( )portant; the reader should verify that this solution may be

which themselves depend on theandy,. estimations ?7?) ! g L -
and (14b). In fact (14) is an implicit system in respect t%btamed by redefining the distributions (9) with=1.

the estimates: andj. for which we suggest the following
iterative scheme: 5 Example and discussion

Step 1: initialisation

k=0 The method described in section 4 is applied to system de-

k) n (k) picted by fig.2, for which 16 streams are considered; each

L =r Yoo =Ye stream is characterized by a flowrate and two concentrations
hoosew (for example between 0.9 and 0.99) y ;

che 7 ‘ Random errors were added to the 16 variables but the gross

adjusto,,1 andoy, 1 from an a priori knowledge about the, ..« \vere added only on some of them

noise distribution '

adjusto, » andoy, o from an a priori knowledge about the

gross error distribution.

Step 2: estimation

Compute the quantities (fgr=1,2,7 = 1..v andc = 1..q)

k 1
TP\ 210y

~(k ~
p) 1 exp 1 y((;,i) ~ Yei
GerJyt /27T(7yc.,j 9 Oy

exp | —

2

Figure 2: Flowsheet

wpi"fi,i (17w)p(k)

&,2,1
w-l—  diag %5 " 3z The performance results are given when three gross errors
¢ e=1v p® (1 — w)pl®) (with magnitudes of 6, 8 and 8) affect the measurement 3, 7
o o and 16; simultaneously, gross errors of magnitudeaffect

wpy? | n (1-w)pi?, the measurement of the first concentration for streams 1, 9

w-l— diag Tyen Tye.2 and 12, and gross errors of magnitudes 4 and 2.5 affect the
Ve t=Lw wpék)l - w)p;’“)w measurement of the second concentration for streams 4 and
o o 8. Comparison of the proposed robust least square algorithm

Agc) — A diag(i,(k)) A;IZ) — A dmg@gk)) (RLS) with the classical least squares (LS) algorithm is now

provided in table 2.
Columns 2 to 4 relate the row measures, columns 5 to
7 show the estimations obtained with RLS and columns
8 to 10 the estimations obtained with LS ; analysing the
. estimation errors, for RLS estimator clearly allows to
) <@ _ ZA;k)T(AQk)W;k)AQk)T)1A§k)gc> suspect variables 3, 7 and _16 f_or being qo_ntamlnated by a
¢ c ¢ e ¢ gross error. Such conclusion is more difficult to express

Update the estimation af andy.

#H0 = (1— WP AT (aw ) AT) 1 4)

c=1



Measurement RLS estimate LS estimate Z

z Y1 Y2 z U1 Y2 x Y1 Y2 7

55.88 | 393 | 3.53 | 56.50 | 2.38 | 3.46 | 57.30 | 263 | 3.58 | »

65.31 | 2.73 | 3.70 | 65.07 | 2.71 | 3.70 | 65.80 | 2.89 | 4.16 | *
6168 | 248 | 3.54 | 5299 | 252 | 3.58 | 54.63 | 2.73 | 4.16 ‘3' 15

2

o

RLS x LS RLS y2
15 3

"
|
|
|
|
|
|
|
|

N

8.38 | 4.83 | 9.01 8.57 | 483 | 530 8.50 | 4.62 | 803

0.5 1 - -f------

. . . 2.07 | 3.24 | 46.13 | 2.38 | 3.45
5590 | 2.45 | 3.57 | 55.30 | 2.52 | 3.51 | 56.85 | 2.67 | 3.68 F— 10 15 %o B TR % B o is
3905 | 287 | 3.74 | 3144 | 287 | 3.76 | 3297 | 3.23 | 3.49
2390 | 2.05 | 572 | 23.86 | 2.05| 318 | 23.88 | 1.91 | 395 | |
2058 | 375 | 3.34 | 2055 | 209 | 3.32 | 2225 | 288 | 291 | ¢

10 10.33| 435 | 460 | 10.89 | 434 | 460 | 10.72 | 395 | 469 | 7

11 12.40| 357 | 416 | 12.08 | 354 | 425 | 1117 | 368 | 415 | °

12 1766 | 511 | 432 | 1749 | 347 | 427 | 1985 | 397 | 4.30 i 1= - - 2

3
2
1
o

OCoO~NOUDWNPE
I
A
=
3
N
=
w
w
=
o
I
I
»
)

LS x LSyl Lsy2

13 266 | 892 | 6.91 2.27 | 892 | 6.90 271 | 8.45 | 6.90
14 1938 | 418 | 466 | 19.76 | 4.10 | 457 | 2256 | 451 | 461
15 1242 | 345 | 424 | 1208 | 354 | 425 | 11.17 | 3.68 | 4.15
16 14.77 | 495 | 5.01 768 | 498 | 507 | 1139 | 533 | 5.06

Table 2: Measurements and estimations Figure 3: Corrective terms

RLS gross error LS gross error
detection detection

with LS estimator. Table 3 gives explicitely the corrective Var . " " . J "
termsi — & and g — ¢ for RLS (row 3) and LS (row 4) —— ! 2 ! 2
approach; for a better comparison, row 2 indicates the truﬂw_o'10 925/999]91.4] 414 572|552
value of the gross error and thus we can appreciate the
vicinity of the corrective terms obtained with RLS with the
true gross errors.

Table 4: Performance of the approach

o T o T T T o T T o s conf[aminated distribution may affec_t determination z_about
T 60| 80| 80| 15| 15 15| 40| 25 outliers and therefore requires special attention. Tyfyica
Bl Bl I el ol ol Il el there is a range of sensible values for these parameters that

we can start with. In fact, due to the structure of the functio
Table 3: Corrective terms defining the weight, we can reduce these parametets to
021/04, @andoy, 1/0y. 2. Table 5 presents some results of
sensitivity, expressed in percentage of correct detection
For another data set, figure 3 visualizes more clearly ting the same process. For each result of detection, concern-

estimation errorsi( — & and g. — y.) both for RLS (up- ing a particular value ofv, f = 0,.1/02, = 0y, 1/0y. 2,

per part) and LS (lower part). On each graph, horizonted000 runs have been performed, each run having the same

and vertical axis are respectively scaled with the numberaftliers but specific random noise affecting the measure-

the data and the magnitude of the absolute estimation erragnts. It should be noted that all gross errors may be cor-
the dashed horizontal line is the threshold chosen to detegitly detected with a proper choice of the parameteasd
abnormal corrective terms. Analysing figure 3 shows twQ excepted the error on the flowratg. Thus, considering

advantages on RLS upon LS approach: first, the correctiggults in table 5, it is relatively easy to adjust manudily t

terms are more precisely estimated, second, the scatt#ringarametersy and o of the method and a "large” range of

the gross errors is less (the corrective terms mainly affect acceptable values may be found. However, it is also possi-
variables affected by the gross errors and not the others) ble to use an adaptive algorithm for the adjusting of these

Performances of the proposed approach be also analysg&émeters.
when using a great number of data. For that purpose, the

same process has been used with different additive rar—7 T 25 T =-

T16 Yi1,1 Y1,9 Y1,12 Y2,4 Y2,8

dom noise on the data, the gross errors being superpos@@i2 S0 111 11 100 1 1 11 99
00525| 1| 1 0| 100 0 1 1| 100
to the same data as previous. 10000 runs have been pgko 25| 5| 45 3| 100 0 2 ol 100

formed, allowing to enumerate the cases where the gross é’r02 50 ( 72 991 99 100 | 75 100 | 41} 100
5 50 i 100 100 100 96 100 59 100
rors have been correctly detected or not, both for RLS angigo 50| 76 | 100 | 100 | 100 | 1200| 100| 90| 100
LS method. Results, expressed in percentage, are shown%g2 75| 76 | 100 | 100 | 100 | 100 } 100 | 99 | 100
. ' .. 0. 76 | 100 | 100 | 100 | 100 | 100 | 100 | 100
table 4. Roughly speaking, for the given example, the gbilitg3p 75| 76 | 100 | 99 | 100 | 100 100 | 100 | 100
of gross error detection for RLS is twice of those of LS. This
has been confirmed by many other runs involving various Table 5: Performance of the approach
distributions of the measurement errors.

The sensitive known parameters o, ; ando,, ; of the




6 Conclusion

To deal with the issues of gross errors influence on data
timation, the paper has presented a robust reconciliafien
proach. For that purpose, we use a cost function which

9]

es-
BLO]

is

less sensitive to the outlying observations than that oftlea
squares. The algorithme can handle multiple biaises or out-
liers at a time and for the given example, 8 outliers have beﬁli]

correctly detected on 48 variables.
The results of reconciliation will clearly depend not only o

the data, but also on the model of the process itself. As a per-

spective of development of robust reconciliation straegi

[12]

there is a need for taking account of model uncertainties and

optimise the balancing parameter Moreover, for process
with unknown parameter, it should be important to jointl
estimate the reconciled data and the process paramaters

li3)
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