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Abstract

On-line optimisation provides a means for maintaining a
process around its optimum operating plant. An important
component of optimisation relies in data reconciliation
which is used for obtaining consistent data. On a mathe-
matical point of view, the formulation is generally based on
the assumption that the measurement errors have normally
pdf with zero mean. Unfortunately, in the presence of gross
errors, all of the adjustments are greatly affected by such
biases and would not be considered as reliable indicators
of the state of the process. This paper proposes a data
reconciliation strategy that deals with the presence of such
gross errors. Application to size flowrates and concentration
data in mineral processing is provided.

x, y process variables
x̃, ỹ process measurements
x̂, ŷ estimates
σ standard deviation
p probability density function
A incidence matrix
v number of streams
n number of nodes
q number of concentrations
Wx, Wy weighting matrix
w balancing factor
V variance matrix
λ, µ Lagrange parameters

Table 1: List of symbols

1 Introduction

The problem of obtaining reliable estimates of the state of
a process is a fundamental objective, these estimates being
used to understand the process behaviour. For that purpose,
a wide variety of techniques has been developed to perform
what is currently known as data reconciliation [Mah, 76],
[Maquin, 91]. Data reconciliation, which is sometimes
referred too as mass and energy balance equilibration, is the
adjustment of a set of data so the quantities derived from the
data obey physical laws such as material and energy con-
servation. Since the pionner works devoted to the so-called
data rectification, the scope of research has expanded to
cover other fields such as data redundancy analysis, system
observability, optimal sensor positionning, sensor reliability,
errors characterization, measurement variance estimation.
Many applications are related in scientific papers involving
various fields in process engineering [Yi, 02], [Singh, 01],
[Heyen, 99].

Unfortunately, the measurement collected on the process
may be unknowingly corrupted by gross errors. As a result,
the data reconciliation procedure can give rise to absurd
results and, in particular, the estimated variables will be
corrupted by this bias. Several schemes have been suggested
to cope with the corruption of normal assumption of the
errors, for static system [Narasimhan, 89], [Arora, 01] and
also for dynamic systems [Abu-el-zeet, 01]. Methods to
include bounds in process variables to improve gross errors
detection have been developed. One major disadvantage
of these methods is that they give rise to situations that it
may impossible to estimate all the variable by using only
a subset of the remaining free gross errors measurements.
Alternative approach using constraints both on the estimates
and the balance residual equations has been developped
for linear system [Ragot, 99], [Maquin, 04]. There is also
an important class of robust estimators whose influence
function are bounded and finit allowing to reject outliers



[Huber, 81], [Hampel, 86]. Another approach is to take
into account the non ideality of the measurement error
distribution by using an objective function constructed on
contaminated error distribution. In the following, we adopt
and develop this idea for the data reconciliation problem.

Section 2 will be devoted to recall the background of data
reconciliation. In section 3, robust data reconciliation is de-
velopped and will be illustrated through an academic exam-
ple in section 4.

2 Data reconciliation background

The classical general data reconciliation problem [Mah, 76],
[Hodouin, 89] [Crowe, 96], deals with a weighted least
squares minimisation of the measurement adjustments sub-
ject to the model constraints. Indeed the model process equa-
tions are taken as linear for sake of simplicity :

Ax = 0, A ∈ IRn.v, x ∈ IRv (1)

wherex, with componentsxi is the state of the process.
The measurement devices give the information :

x̃ = x + ε, p(ε) ∝ N(0, V ) (2)

whereε ∈ Rn is a vector of random errors characterised by
variance matrixV andp is the normal probability distribu-
tion (pdf). In the least square sense, the well-known solution
of this problem iŝx = (I − V AT (AV AT )−1A)x [Maquin,
1991]. In fact, the method doesn’t work in any situation, the
main drawback being the contamination of all estimated val-
ues by the outliers. For that reason robust estimators could
be preferred, robustness being the ability to ignore the con-
tribution of extreme data i.e. such as gross errors. There are
two approaches to deal with outliers. The first one consist to
sequentially detect, localise and suppress the data which are
contaminated and after to reconcile the remaining data. The
second approach is global and reconcile the data without a
preliminary classification; in fact, weights in the reconcilia-
tion procedure are automatically adjust in order to minimise
the influence of the abnormal data. In the rest of the paper,
we only focuse on this last strategy.

3 Robust data validation. The linear
case.

If the measurements contain random outliers, then a single
pdf described as in (2) cannot account for the high vari-
ance of the outliers. To overcome this problem let us as-
sume that measurement noise is sampled from two pdf, one
having a small variance representing regular noise and the
other having a large variance representing outliers [Wang,

02], [Ghosh, 03]. Thus, for each observationx̃i, we define
the two following pdf and the so-called contaminated pdf:

pj,i(xi | x̃i, σi) =
1√

2πσj

exp

(

−1

2

(

xi − x̃i

σj

)2
)

(3)

p(xi | x̃i, θ) = wp1,i + (1 − w)p2,i 0 ≤ w ≤ 1 (4)

allowing to define the log-likelihood function of the mea-
surement set:

Φ = log

v
∏

i=1

p(xi | x̃i, θ) (5)

Minimising (5) in respect tox gives the estimatêx:

x̂ = (I − WxAT (AWxAT )−1A)x̃ (6a)

W−1
x = diag

i = 1..v

(

w
σ2
1
p̂1,i + 1−w

σ2
2

p̂2,i

wp̂1,i + (1 − w)p̂2,i

)

(6b)

p̂j,i =
1√

2πσj

exp

(

−1

2

(

x̂i − x̃i

σj

)2
)

(6c)

where the diag operator allow to define a diagonal matrix
from the elements (pointed byi) of a vector. Thus system
(6) is clearly non linear and we suggest the following direct
iterative scheme:

x(0) = x̃ (7a)

p
(k)
j,i =

1√
2πσj

exp



−1

2

(

x
(k)
j − x̃j

σj

)2


 (7b)

(W (k)
x )−1 = diag

i = 1..v





w
σ2
1
p̂
(k)
1,i + 1−w

σ2
2

p̂
(k)
2,i

wp̂
(k)
1,i + (1 − w)p̂

(k)
2,i



 (7c)

x̂(k+1) =
(

I − W (k)
x AT (AW (k)

x AT )−1A
)

x̃ (7d)

A stopping criterion must be chosen for implementing the
algorithm. For sake of simplicity, the proof for the local
convergence of the algorithm is omitted.

In order to appreciate how the weightW , which should be
compared to an influence function as explained in [Hampel,
86], are able to reject the data contaminated by gross errors,
figure 1 show the graph of the function:

g(u) =

w
σ2
1
p1 + 1−w

σ2
2

p2

wp1 + (1 − w)p2

p1 =
1√

2πσ1

exp

(

−1

2
(

u

σ1
)2
)

p2 =
1√

2πσ2

exp
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2
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u

σ2
)2
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whereσ1 = 0.5 andσ2 = 2 and wherew take the indi-
cated values. For a better comparison, the graphs have been
normalized, i.e. we have representedg(u) = g(u)/g(0).
For w = 1 we naturally obtain a constant weight; thus all
the data are equallly weighted and, in particular, the optimi-
sation criterion will be sensitive to large magnitude of data,
i.e. to outliers. Takingw = 0.02 reduces the influence of
outliers since the weight decreases from1 for data around
the origine to0.63 for data with large magnitude. Indeed,
with the non restrictive hypothesisσ2 > σ1, for large values
of u, the weighting functiong(u) can be approximated by
the non zero value:

ga(u) =
1

σ2
1

1 + (1−w
w

)(σ1

σ2
)3

1 + (1−w
w

)(σ1

σ2
)

where for small values ofu the approximation isgb(u) = 1.
Thus, it is possible to adjustσ1 andσ2 such that the large
values ofu would have a small influence on the criterionΦ.
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Figure 1: Influence function

4 Extension to bilinear systems

We consider now the case of a process characterised by two
types of variables : macroscopic variables such as flowrates
x and microscopic variables such concentrationsy. More-
over, we will consider several species and therefore several
concentrations notedyc, c = 1..q. If the measurements con-
tain random outliers, then a single pdf described as in (2)
cannot account for the high variance of the outliers. To over-
come this problem let us assume that measurement noise is
sampled from two pdf, one having a small variance repre-
senting regular noise and the other having a large variance
representing outliers. In order to simplify the presentation,
each measurementxi (resp. yi) are assumed to have the

same normalσx,1 (resp. σy,1) and abnormalσx,2 (resp.
σy,2) standard-deviation. This hypothesis will be withdrawn
later. Thus, for each observatioñxi andỹc,i, we define the
following pdf:

p(xi|x̃i, σx,j) =
1√

2πσx,j

exp

(

−1

2

(

xi − x̃i

σx,j

)2
)

(8a)

p(yc,i|ỹc,i, σyc,j
) =

1√
2πσyc,j

exp

(

−1

2

(

yc,i − ỹc,i

σyc,j

)2
)

(8b)

with j = 1, 2, i = 1..v, c = 1..q. In the rest of the paper, we
adopt the shortening notationpx,j,i andpyc,j,i respectively
for p(xi|x̃i, σx,j), andp(yc,i|ỹc,i, σyc,j) where indexesi and
j are respectively used to point the number of data and the
number of the distribution. Then, the combination of these
two pdf (for each type of variable) is performed with the help
of a weightw. Quantity(1 − w) can be seen as an a priori
probability of the occurence of outliers:

px,i = wpx,1,i + (1 − w)px,2,i i = 1..v (9a)

pyc,i = wpyc,1,i + (1 − w)pyc,2,i i = 1..v (9b)

Assuming independance of the measurements allows to de-
fine the global log-likelihood function:

Φ = log

v
∏

i=1

px,i

q
∏

c=1

pyc,i (10)

Let us now define the optimisation problem consisting in es-
timating the process variablesx andy. For that, consider the
Lagrange function:

L = Φ + λT Ax +

q
∑

c=1

µT
c A(x ⊗ yc) (11)

in which the parametersλ andµc allow to take into account
the mass balance constraints for total flowrate and partial
flowrate (for that last one the operator⊗ is used to perform
the element by element product of two vectors). The sta-
tionarity conditions of (11) are expressed (the estimations
are now noted̂x andŷc):

W−1
x̂ (x̂ − x̃) + AT λ +

q
∑

c=1

(A ⊗ ŷc)
T µc = 0 (12a)

Wŷc

−1(ŷc − ỹc) + (A ⊗ x̂)T µ = 0 (12b)

A(x̂ ⊗ ŷc) = 0 (12c)

where the weighting matricesWx̂ andWŷc
are defined by:

W−1
x̂ = diag

i = 1..v





wpx,1,i

σ2
x,1

+
(1−w)px,2,i

σ2
x,2

wpx,1,i + (1 − w)px,2,i



 (13a)

W−1
ŷc

= diag
i = 1..v





wpyc,1,i

σ2
yc,1

+
(1−w)pyc,2,i

σ2
yc,2

wpyc,1,i + (1 − w)pyc,2,i



 (13b)
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Notice that if each measurementxi (resp. yi) has a partic-
ular standard-deviation, formulas (13a) and (13b) still hold
by replacing the parametersσx,1 andσx,2 (resp. σyc,1 and
σyc,2) by σx,1,i andσx,2,i (resp.σyc,1,i andσyc,2,i ). Using
shortening notationsAx = A diag(x) andAy = A diag(y),
system (12) may be directly solved and the solution may be
expressed:

x̂ = (I − Wx̂AT (AWx̂AT )−1A)...

...(x̃ − Wx̂

q
∑

c=1

AT
ŷc

(Ax̂Wŷc
AT

x̂ )−1Ax̂ỹc) (14a)

ŷc = (I − Wŷc
AT

x̂ (Ax̂Wŷc
AT

x̂ )−1Ax̂)ỹc (14b)

System (14) is clearly non linear with regard to the unknown
x̂ andŷc, the weightWx̂ andWŷc

depending on the pdf (8)
which themselves depend on thex̂ and ŷc estimations (??)
and (14b). In fact (14) is an implicit system in respect to
the estimateŝx and ŷc for which we suggest the following
iterative scheme:

Step 1: initialisation
k = 0
x̂(k) = x̃ ŷ

(k)
c = ỹc

choosew (for example between 0.9 and 0.99)
adjustσx,1 andσyc,1 from an a priori knowledge about the
noise distribution
adjustσx,2 andσyc,2 from an a priori knowledge about the
gross error distribution.
Step 2: estimation
Compute the quantities (forj = 1, 2, i = 1..v andc = 1..q)

p
(k)
x̂,j,i =

1√
2πσx,j

exp



−1

2

(

x̂
(k)
i − x̃i

σx,j

)2




p
(k)
ŷc,j,i =

1√
2πσyc,j

exp



−1

2

(

ŷ
(k)
c,i − ỹci

σyc,j

)2




W−1
x̂ = diag

i = 1..v







wp
(k)
x̂,1,i

σ2
x,1

+
(1−w)p

(k)
x̂,2,i

σ2
x,2

wp
(k)
x̂,1,i + (1 − w)p

(k)
x̂,2,i







W−1
ŷc

= diag
i = 1..v







wp
(k)
ŷc,1,i

σ2
yc,1

+
(1−w)p

(k)
ŷc,2,i

σ2
yc,2

wp
(k)
ŷc,1,i + (1 − w)p

(k)
ŷc,2,i







A
(k)
x̂ = A diag(x̂(k)) A

(k)
ŷc

= A diag(ŷ(k)
c )

Update the estimation ofx andyc

x̂(k+1) =
(

I − W
(k)
x̂ AT (AW

(k)
x̂ AT )−1A

)

...

...

(

x̃ − W
(k)
x̂

q
∑

c=1

A
(k)T
ŷc

(A
(k)
x̂ W

(k)
ŷc

A
(k)T
x̂ )−1A

(k)
x̂ ỹc

)

ŷ(k+1)
c = (I − W

(k)
ŷc

A
(k)T
x̂ (A

(k)
x̂ W

(k)
ŷc

A
(k)T
x̂ )−1A

(k)
x̂ )ỹc

Step 3: convergence test
Compute an appropriate norm of the corrective terms:
τ

(k+1)
x = ‖x̂(k+1) − x̃‖ andτ

(k+1)
yc = ‖ŷ(k+1)

c − ỹc‖. If the

variationsτ (k+1)
x − τ

(k+1)
x andτ

(k+1)
yc − τ

(k+1)
yc are less than

a given threshold then stop, elsek = k + 1 and go to step 2.

Remark : for non linear systems, the initialisation remains
a difficult task, convergence of the algorithm being gener-
ally sensitive to that choice. In our situation, measurements
are a natural choice for initializing the estimates (step 1 of
the algorithm). The solution given by classical least squares
approach would also provide an acceptable initialization al-
though its sensitivity to gross errors may be sometimes im-
portant; the reader should verify that this solution may be
obtained by redefining the distributions (9) withw = 1.

5 Example and discussion

The method described in section 4 is applied to system de-
picted by fig.2, for which 16 streams are considered; each
stream is characterized by a flowrate and two concentrations.
Random errors were added to the 16 variables but the gross
errors were added only on some of them.

14

1 2

3

5

6

9

4

5

6

7

8

9

10

11

15

16

12

131
7 8

4

2

3

Figure 2: Flowsheet

The performance results are given when three gross errors
(with magnitudes of 6, 8 and 8) affect the measurement 3, 7
and 16; simultaneously, gross errors of magnitude1.5 affect
the measurement of the first concentration for streams 1, 9
and 12, and gross errors of magnitudes 4 and 2.5 affect the
measurement of the second concentration for streams 4 and
8. Comparison of the proposed robust least square algorithm
(RLS) with the classical least squares (LS) algorithm is now
provided in table 2.

Columns 2 to 4 relate the row measures, columns 5 to
7 show the estimations obtained with RLS and columns
8 to 10 the estimations obtained with LS ; analysing the
estimation errors, for RLS estimator clearly allows to
suspect variables 3, 7 and 16 for being contaminated by a
gross error. Such conclusion is more difficult to express
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Measurement RLS estimate LS estimate
x y1 y2 x̂ ŷ1 ŷ2 x̂ ŷ1 ŷ2

1 55.88 3.93 3.53 56.50 2.38 3.46 57.30 2.63 3.58
2 65.31 2.73 3.70 65.07 2.71 3.70 65.80 2.89 4.16
3 61.68 2.48 3.54 52.99 2.52 3.58 54.63 2.73 4.16
4 8.38 4.83 9.01 8.57 4.83 5.30 8.50 4.62 8.03
5 44.15 2.13 3.16 44.42 2.07 3.24 46.13 2.38 3.45
6 55.90 2.45 3.57 55.30 2.52 3.51 56.85 2.67 3.68
7 39.05 2.87 3.74 31.44 2.87 3.76 32.97 3.23 3.49
8 23.90 2.05 5.72 23.86 2.05 3.18 23.88 1.91 3.95
9 20.58 3.75 3.34 20.55 2.09 3.32 22.25 2.88 2.91
10 10.33 4.35 4.60 10.89 4.34 4.60 10.72 3.95 4.69
11 12.40 3.57 4.16 12.08 3.54 4.25 11.17 3.68 4.15
12 17.66 5.11 4.32 17.49 3.47 4.27 19.85 3.97 4.30
13 2.66 8.92 6.91 2.27 8.92 6.90 2.71 8.45 6.90
14 19.38 4.18 4.66 19.76 4.10 4.57 22.56 4.51 4.61
15 12.42 3.45 4.24 12.08 3.54 4.25 11.17 3.68 4.15
16 14.77 4.95 5.01 7.68 4.98 5.07 11.39 5.33 5.06

Table 2: Measurements and estimations

with LS estimator. Table 3 gives explicitely the corrective
terms x̂ − x̃ and ŷ − ỹ for RLS (row 3) and LS (row 4)
approach; for a better comparison, row 2 indicates the true
value of the gross error and thus we can appreciate the
vicinity of the corrective terms obtained with RLS with the
true gross errors.

x3 x7 x16 y1,1 y1,9 y1,12 y2,4 y2,8

T 6.0 8.0 8.0 1.5 1.5 1.5 4.0 2.5
RLS 8.69 7.61 7.09 1.55 1.69 1.64 3.71 2.54
LS 7.05 6.08 3.38 1.3 0.87 1.14 0.98 1.77

Table 3: Corrective terms

For another data set, figure 3 visualizes more clearly the
estimation errors (̂x − x̃ and ŷc − yc) both for RLS (up-
per part) and LS (lower part). On each graph, horizontal
and vertical axis are respectively scaled with the number of
the data and the magnitude of the absolute estimation error;
the dashed horizontal line is the threshold chosen to detect
abnormal corrective terms. Analysing figure 3 shows two
advantages on RLS upon LS approach: first, the corrective
terms are more precisely estimated, second, the scatteringof
the gross errors is less (the corrective terms mainly affectthe
variables affected by the gross errors and not the others).

Performances of the proposed approach be also analysed
when using a great number of data. For that purpose, the
same process has been used with different additive ran-
dom noise on the data, the gross errors being superposed
to the same data as previous. 10000 runs have been per-
formed, allowing to enumerate the cases where the gross er-
rors have been correctly detected or not, both for RLS and
LS method. Results, expressed in percentage, are shown in
table 4. Roughly speaking, for the given example, the ability
of gross error detection for RLS is twice of those of LS. This
has been confirmed by many other runs involving various
distributions of the measurement errors.

The sensitive known parametersw, σx,i andσyc,j of the
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Figure 3: Corrective terms

RLS gross error LS gross error
detection detection

V ar. x y1 y2 x y1 y2

w=0.10 92.5 99.9 91.4 41.4 57.2 55.2

Table 4: Performance of the approach

contaminated distribution may affect determination about
outliers and therefore requires special attention. Typically,
there is a range of sensible values for these parameters that
we can start with. In fact, due to the structure of the function
defining the weight, we can reduce these parameters tow,
σx,1/σx2 andσyc,1/σyc,2. Table 5 presents some results of
sensitivity, expressed in percentage of correct detection, us-
ing the same process. For each result of detection, concern-
ing a particular value ofw, f = σx,1/σx2 = σyc,1/σyc,2,
10000 runs have been performed, each run having the same
outliers but specific random noise affecting the measure-
ments. It should be noted that all gross errors may be cor-
rectly detected with a proper choice of the parametersw and
f , excepted the error on the flowratex3. Thus, considering
results in table 5, it is relatively easy to adjust manually the
parametersw andσ of the method and a ”large” range of
acceptable values may be found. However, it is also possi-
ble to use an adaptive algorithm for the adjusting of these
parameters.

w f x3 x7 x16 y1,1 y1,9 y1,12 y2,4 y2,8

0.02 25 1 1 1 100 1 1 1 99
0.05 25 1 1 0 100 0 1 1 100
0.30 25 5 45 3 100 0 2 0 100
0.02 50 72 99 99 100 75 100 41 100
0.05 50 77 100 100 100 96 100 59 100
0.30 50 76 100 100 100 100 100 90 100
0.02 75 76 100 100 100 100 100 99 100
0.05 75 76 100 100 100 100 100 100 100
0.30 75 76 100 99 100 100 100 100 100

Table 5: Performance of the approach
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6 Conclusion

To deal with the issues of gross errors influence on data es-
timation, the paper has presented a robust reconciliation ap-
proach. For that purpose, we use a cost function which is
less sensitive to the outlying observations than that of least
squares. The algorithme can handle multiple biaises or out-
liers at a time and for the given example, 8 outliers have been
correctly detected on 48 variables.
The results of reconciliation will clearly depend not only on
the data, but also on the model of the process itself. As a per-
spective of development of robust reconciliation strategies,
there is a need for taking account of model uncertainties and
optimise the balancing parameterw. Moreover, for process
with unknown parameter, it should be important to jointly
estimate the reconciled data and the process paramaters.
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Europen des Systèmes Automatisés, 2004.

[14] S. Narasimhan, R.S.H. Mah. Treatment of general
steady state process models in gross error identifica-
tion. Computers and Chemical Engineering, 13 (7), p.
851-853, 1989.

[15] J. Ragot, D. Maquin, O. Adrot. LMI approach for data
reconciliation. 38th Conference of Metallurgists, Sym-
posium Optimization and Control in Minerals, Metals
and Materials Processing, Quebec, Canada, August 22-
26, 1999.

[16] S.R. Singh, N.K. Mittal, P.K. Sen. A novel data rec-
onciliation and gross error detection tool for the min-
eral processing industry. Minerals Engineering, 14 (7),
2001.

[17] D. Wang, J.A. Romagnoli. Robust data reconciliation
based on a generalized objective function. 15th trien-
nial world congress, Barcelona, 2002.

[18] H.-S. Yi, J. H. Kim and C. Han. Industrial applica-
tion of gross error estimation and data reconciliation
to byproduction gases in iron and steel making plants.
International Conference on Control, Automation and
Systems, October 16-19, 2002, Muju, Korea.

6


