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Abstract—In this paper, the Takagi-Sugeno representation saturation. Once this controller has been designed, ysuall
is used to represent the_ no_nllnear behaviour of a saturated by using standard linear design tools (|t may be noticed that
actuator. The control design is based on a state feedback con- some anti-windup schemes are designed for a state feedback

troller function of the saturation levels. Stabilization conditions inal troll 13 d th f
in the sense of Lyapunov method are derived and expressed as nominal controller (e.g. [13]) and some others are for an

a linear matrix inequality problem. An academic example is output feedback dynamic controller (e.g. [7], [2])) a sdedl
presented with a comparaison between the proposed approach anti-windup compensator is designed to handle the sabuarati

and a conventional anti-windup controller. _ constraints [9]. A typical anti-windup scheme consists in
Iinég‘g%;&“}f};ﬂiﬁ?}?"sugeno models, actuator saturation, g,gmenting a nominal pre-designed linear controller with a
' compensator based on the discrepancy between unsaturated
and saturated control signals fed to the plant [8].
. INTRODUCTION In this paper, we propose a state feedback controller such

Actuator saturation or control input saturation is prolgablthat the control gain depends on the saturation levels. The
the most usual nonlinearity encountered in control engadvantage of this approach is to synthetize only one con-
neering because of the physical impossibility of applyingdroller (instead of two for the anti-windup case) such that
unlimited control signals and/or safety constraints. €tz the input saturation is straightly taken into account in the
examples of such limits are the deflection limits in aircraftontroller design process. For that, the Takagi-Sugeno (T-
actuators, the voltage limits in electrical actuators amel t S) formalism is used to represent the nonlinear behaviour
limits on flow volume or rate in hydraulic actuators [11]. of the saturated actuator and a state feedback control law is
Motivated by these practical issues, many approaches hasynthetized. The stability conditions of the controlledtsyn
been developed to deal with actuator saturations in there derived from the Lyapunov theory and expressed as
existing literature (see, for example, [3], [5], [13], [4h& matrix inequality (LMI) problem. A numerical example with
the references therein). a comparison between conventional anti-windup contrdgler
In general, there are three main design strategies to degben to illustrate the effectiveness of the proposed ntktho
with actuator saturation for linear plants. First, by takin The rest of this paper is organized as follows. Section 2
into account the effect of saturation throughout the designtroduces the Takagi-Sugeno structure for modeling, some
procedure, a controller that may be linear or nonlinear ipreliminary results, mathematical notations and a brief de
constructed such that the stability of the closed loop systescription of the saturation and anti-windup configuratitin.
is guaranteed and a certain performance is achieved. In ([1§ followed by the representation of the nonlinear satarati
an optimal control approach with bounded control leads to lay a T-S structure in section 3. In section 4 is designed a stat
bang-bang type controller that is rarelly used in applarati feedback control law depending on the saturation bounds. A
due to implementation difficulty of the resulting switchingnumerical example and some simulation results are given to
surfaces. A more practical solution is developed in [12$how the effectiveness of the proposed methods in section 5.
where a linear and non-linear output feedback dynami€onclusions and future works are detailed in section 6.
compensators are synthesized. It is applicable to unstable
but controllable and observable systems. Il. PRELIMINARIES
The second strategy is model predictive control (MPC), alsR. Takagi-Sugeno structure for modeling
known as receding or moving horizon control, which has

been a popular control design for discrete time systems The T-S modeling aIIO\_NS to represent the be_hawor of
nonlinear systems by the interpolation of a set of linear sub

recently both in theory and application [8]. In MPC, an opti, odels. Each sub-model contributes to the global beha¥ior o

misation -often a quadratic programming (QP)- is performe . - .
at every time instarit by considering both current and future?ig] n_?_ﬂgn_?_?sr zit;méhirso;%gf& eighting functiaé (t))

actuator constraints over a certain horizon of length

The third strategy is a two-step approach in which a nominal () — SN (E(t (1) + B u(t
linear controller is first constructed by ignoring actuator X S Hi(§ ) (AX(H) +Biu(h)) )
The authors are with Centre de Recherche en Automatique yt) = YiLipi(€(1)(Cix(t)+Diu(t))

de Nancy (CRAN), Universt de Lorraine, CNRS, 2 avenue Ny . n
de la Foet de Haye F-54516 Vandoeuvre-les-Nancy, FranceVherex(t)eR™ isthe system state variablg(t) € R™ is the

firstname. name@iniv-lorraine. fr control input andy(t) € R™ is the system outpug (t) € RY



is the decision variable vector assumed to be measurable
(as the system output) or known (as the system input). The

weighting functionsy;(&(t)) of ther submodels satisfy the
convex sum property

Y Hi(E(t) =1

0<m(&(t) <1,

(2)
i=1 n

g ey

v tf\ V. [ sat Vsat
n _
W j
Fig. 1. Conventional anti-windup controller

In the remaining of the paper, the two following lemmas are

used.

Lemma 1:Consider two matriceX andY with appropri-
ate dimensions an@ a symmetric positive definite matrix.
The following property is verified

XTY +YTX < XTGX+YTG 1Y ©)
Lemma 2:(Congruence) Consider two matricksandY,
if X is positive (resp. negative) definite and¥fis a full
column rank matrix, then the matriXY' is positive (resp.
negative) definite.

B. Mathematical notation

The following notations are used throughout the paper.

« A bloc diagonal matrixA denoteddiag(As,...,An) is

defined as
AL O 0
_ 0 A 0
diag(As, .., An) = | .. : (4)
0 O An
where Ay are square matrices.
« The integer part of a numberis denoted:
int(x) := | x| (5)

« The smallest and largest eigenvalues of the mafix
are respectively denotethin(M) and Amax(M).

« The saturation function for a signalt) is defined as

v(t) if Vmin<V(t) < Vmax
sat(v(t)) :=<{ Vmax if V() > Vmax (6)
Vmin if V(t) < Vmin

where Vimax and vmin denote the saturation levels.

C. Anti-windup configuration

Classical anti-windup designs were mostly based on an
adjustment on the controller input [8]. Consider the block

diagrams in Figure 1 with nominal control inpt and
anti-windup compensatd¥. The conventional anti-windup
controller uses the differenae— vsy as an input for a large
gain matrix¥ = al wherea >> 1 is a scalar [6].

IIl. PROBLEM STATEMENT

A. Takagi-Sugeno saturation control

The main idea of this work is to model the nonlinear
actuator saturation using the Takagi-Sugeno representati
(section 1I-A). For that, it is proposed to re-write the satu
ration equation (6) for each component of the control input
vector under a particular form.

Let us consider a control input vecta(t) € R™, such that

: )
unu (t)

The contol input under actuator saturation constraintusmi
by

Uga(t)
Usat(t) = : (8)
ugar(t)
Each component of this vector is written as
: 3 _ _ _
Wal®) = 3 W(0O) WO +y), F=1n (9)
1=
with
Al 0
A= 1 (10)
Ad 0
VJJ. urj‘nin
y = 0 (11)
Vé = Uhax
and the activation functions
U (0 —ul
() = el
UZ(Uj(t)) _ S|gr‘(-uj(t)—umin?;&gn(uj(t)—umax) (12)
e

Then, the control input vectax(t) € R™ subject to actuator
saturation is modeled by



S Ht (U (0) (At + v

Usar(t) = ¥ (U () (Afug+¥) (13)

submodels
9
Usat(t) = ; i (t) (Au(t) +T5) (18)

with the parametergs, Aj and I'; given by the following
table

3 Ny Ny u
2 L (Un, (1) (AU -
30 B (Uny (6) AU, 1) womoce ] o Tao T n -
In order to simplify the notations, the weighting functions
. Vi
p(u(t)) are now notedu(t). 1 (L1 | pl? | diagAlA2)
Based on the convex sum property of the weighting functions V2
(2), equation (13) can be written in order to have the same .
activation functions for all the input vector components. 2 (12 | ph2 | diagAlA2) "
VZ
ST OAR ) < (M 33 k) :
: 3 w3 | g | diagriag | | "
VZ
sar(t) =| S0 1/ () A+ o) x (MR g T32 1K) -
: 4 @1 | e | dagri ) | |
- 7
T M (O AU, + Y1) X (ﬂﬂuzll 213:1 “r) 11
(14) 1,2 i 132 v2
For n, inputs, 3v submodels are obtained. Thus, it is > (22| Hahz | diagAz. A7) 2
important to note that we have an analytical expression of 2
the actuators saturatiqma(t) directly expressed in term of 12 | a1 a2 3
the control variableu(t). ° @3) | Hats | diadA;.A5) 2
Equation (14) is equivalent to i
v
3 7 (3,1) | pdp2 | diagal,A2)
Usar(t) = lei(t)(/\iu(t)JrFi) (15) o s 2
i=
The global weighting functiongy(t), the matricesA; € 8 (3.2) | piu | diagAi A2) %
R and vectord; € R"u*1 are defined as follow V2
(t — r_‘uﬁ j_ ui(t)), 1
H() i kg (1) 9 (33) | wiig | diagal.A2) :z
A 3
A = d|ag()\;17...,)\(’;iﬁu) (16)
= vec(ycjfij). B. Problem statement

where the indexesri'(i =1,...,3vandj=1,...,ny), equal
to 1,2 or 3, indicate which partition of the™ input (u{, u)
or u3) is involved in thei ™ submodel. _

The relations between thé" submodel and the! indices
are given by the following equation

i=3wlgly3n2g2 1 3PgM (314324 43l

The ¢/ are such that(g!—1),...,(c™ — 1)) corresponds
to (i-1) in base 3.
An illustrative example is given for two inputs = 2), such

that
Ula()
Usat(t) = ( ) (17)
USa(t)

Since we have three partitions for each ingytt), the
Takagi-Sugeno model fansy(t) is then composed with?3

Let us now consider a linear system represented by the
following state equation

X(t) = Ax(t) + Bu(t) (19)

The control inputu(t) is subject to actuator saturation, then
the system described by (19) becomes

X(t) = AX(t) + Busar(t) (20)
From (15), equation (20) can be written as
3

X(t) = 'Z‘/Ji (t)(AX(t) + B(Aju(t) +T)) (22)

IV. SATURATED STATE FEEDBACK CONTROL INPUT

The objective is to design a stabilizing static state feeklba
control ensuring the stability of the system, even in the
presence of control input saturation. The solution is oledi
by representing the saturation as a T-S system and by solving



an optimization problem under LMI constraints. Let us define
Let us consider a linear feedback control input given by (22) 9 = (A~ BAK)TP+P(A— BAK) + P 1P (33)

ut) = ~Kx® (22) £= Min Amin(—2) (34)
Our objective is to design the state feedback controlle) (22 =130
to guarantee the stability of the system (21) such that the 5= max [ BTZBr; (35)
control gainK takes into account the saturation limits. =13
Replacing the control law (22) in the T-S system equatiorsinceZ > 0 and from equation (32), according to Lyapunov

the obtained system is the following stability theory [14],V(t) < —¢ || x ||> +&. It follows that
V(t) <0 for
) 3 2, <0
X(t) = _Xlui (t) ((A—BAK)x(t) +Br) (23) and (36)
i= 2_ 0
| x[1*> g

The computation of the static feedbakkis detailed in the

next theorem. Which means thax(t) is uniformly bounded and converges
Theorem 1:There exists a static state feedback controllefo a small origin-centred ball of radiué;@.

(22) for a saturated input system (21) such that the sySince 2; < 0 is expressed by

tem state converges toward an origin-centred ball of radius

T _ WTATRT -1
bounded byg if there exists matrice®, = P] > O,R X = (A" —=K'A{ B )P+P(A-BAK) +PZ"P<0  (37)
=T > 0 solutions of the following optimization problem Applying Lemma 2, the inequality (37) becomes
pREsP (24)  pIAT 4 AP PIKTATBT —BAKP 421 <0 (38)
s.t. o | Using the changes of variables
( ‘ <0 (25) _ p-1
| —Bl ) P = P
- g { R = KP (39)
with N o )
o PAT AR —RTATBT—BAR | 26 condition (38) is linearized as
' | -3 PA" +AR —RTATBT —BAR+2Z1<0  (40)
and . Applying Schur’'s complement to equation (40), we finally
riB'xBri <p (27)  find the stabilization conditio®; < 0.
The gain of the controller is given by ( PAT +AR —-R'ATBT -BAR | ) <0 (@
K=RR*! (28) ! -z
Proof: As the weighting functions satisfy (2) arkd> 0, if (41) is

Let us define the following quadratic Lyapunov function satisfied fori = 1,...,3% and || x ||*> g, thenV (x(t)) < 0,
which implies thatx(t) converges to an origin centred ball
V(x(t) = XT(OPXY) (29) mplies thab(t) comverg .
of radius \/; .
whereP € R™" is a symmetric positive definite matrix. S o .
According to equations (23) and (29), the time derivative of "€ OPjective is now to minimize the radlq;g. Firstly

V(t) is given by is bounded byd <_B from the definition (35) and the LMlIs
(27). Secondly 1e is bounded by3 or equivalentlye > 1/p.
) 3m - - From the definition (34) it is equivalent to
V(X(t) = Zui(t)(x (t)((A—BAK)'P
i= -Q>(1/pB)1,i=1,..,3Mu (42)
. . TRpT T .
+P(A=BAK)X() + T BIPX(E) +x ()PBM) - (30) Applying Schur's complement, (42) is equivalent to (25).
Using Lemma 1, it follows that Finally, the radius is bounded K. [ ]

V. NUMERICAL EXAMPLE

T BTPx(t) +x' (t)PBri < M BTZBIM +x' (H)PZPx(t) The proposed static state feedback controller design for
(31) systems with saturated control input is illustrated by aa-ac

~ and thus, the time derivative of the Lyapunov function (304emic example. Let consider the linear system (19) defined
is bounded as follows by

. 3
V(x(t)) < Zl“i ()(x" (t)((A—BAK)TP+P(A—BAK) -2 01 O 01 1
= A—( 0 -05 0 ) B= ( 05 1 ) (43)

+PZP)x(t) + I BTZBrM) (32) 02 01 -3 08 06



with two control inputsu = 3; . The inputs are subject
to the following actuator saturations.

Umax = 1
Umin = -1

44
Wmax = 1.5 (“44)
u2min = - 15

In order to illustrate the effectiveness of the propose
approach, three different control laws are synthesize
for the same system. A so-called nominal controller i
computed by a conventional pole placement, without takin
into account the input saturation, although the saturatic
acts on the controller. Then in the first part of this sectior
a comparison is provided between the nominal closed loc
system without saturation, the nominal closed loop system
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with saturated actuators and the closed loop system withy. 2.
the controller proposed in this paper where the saturatigigntrollers

bounds are taken into account in the controller design.

In a second case, a conventional anti-windup controller
is synthetized (as shown in section II). The obtainer
performances of this controller and of the proposed T-
control are compared.

A. Comparison with nominal control

Let us consider the nominal controllé&;, such that the
gain does not take into consideration the actuator satunsti
For the considered example,

Ko — 0.3308 05586 —1.0239
"7\ —0.0453 07816 04507

For the T-S controller, the control gak depending on the
saturation limits and computed from theorem 1 is equal to

K — ( 1.9543 05029 23005)

(45)

1.0800 03243 18291 (46)
with a convergence to an origin-centred ball of radius
3.04.

The following figures (2 and 3) depict the system states and
control of the nominal closed loop system without saturatio
(respectively denoted;, X2,X3, U1 and up), those of the
nominal closed loop system with saturation (respectivel
denotedxisat, Xzsat, X3sat» Uisat and Upsar) and those of the
proposed approach (respectively denotegls, Xots, XaTs,

UiTs and uzrs).

B. Comparison with anti-windup controller

In this subsection, a second simulation is performed i
order to compare a conventional anti-windup controllethwit
the proposed one. For the conventional anti-windup, thema
idea is to synthetize a nominal feedback control and to add
compensator to handle the saturated input. The anti-wind
compensator is taken as a large gain mafix al with
a = 50. Figures 4 represents the system states for the twu

10

System states for nominal, nominal saturated and Ta8aded
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controllers, wherexits, Xors and xsrs correspond to the Fig. 4.
proposed approach whereagay, Xoaw andxsay correspond  controllers

to the anti-windup controller.

System states for conventional anti-windup and Tafirated



C. Comments [8]

In the present work, a new representation of the actuator
saturation problem was introduced. Thus, it is important to[9]
note as first that with the proposed approach, the actuator
saturation is directly expressed in terms of the contrqhg
variable and the saturation limits. The proposed approach
allows us to describe and study a nonlinear behavior usiT%]
linear tools.
As an illustrative example, a linear feedback controlleswa
applied to an academic system. Three cases were presentéd:
nominal controller, T-S controller and anti-windup cotito
For the nominal case, the control gain is computed without3]
considering the saturation limits. For the anti-windupecas
the control input is adjusted using the differenciga{— u),
but the controller gain is computed without taking into
account the saturation on the input control..

On the other hand, for the proposed approach the control gain
is computed depending on the saturation limits by solvireg th
LMIs given in theorem 1.

The obtained results illustrates the effectiveness of tloe p
posed approach for the studied example.

[14]

VI. CONCLUSIONS AND FUTURE WORKS

Considering the saturation nonlinearity, a linear system
can be represented in a T-S form. The main advantage of
the proposed approach is to synthetize the control by taking
into consideration the saturation limits, since they argeald
in the new system representation. Then, the stabilizing sta
feedback gain can be computed by solving an optimization
problem under LMI constraint, as usually done in the T-S
framework. A numerical example was presented in order to
illustrate the proposed approach with a comparaison with
a conventional anti-windup controller. It was shown that
the obtained results are slightly better for the T-S sadurat
controller.

As future works, the proposed approach may be generalized
to nonlinear systems represented by a T-S model with mea-
surable and unmeasurable decision variable. It is alsalnote

that the saturation may also affect not only the actuators,
but also the sensors, this is why our approach may also be
applied to sensors saturations.
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