
Linear Feedback Control Input under Actuator Saturation:
a Takagi-Sugeno Approach

Souad Bezzaoucha, Benoı̂t Marx, Didier Maquin, Jośe Ragot

Abstract— In this paper, the Takagi-Sugeno representation
is used to represent the nonlinear behaviour of a saturated
actuator. The control design is based on a state feedback con-
troller function of the saturation levels. Stabilization conditions
in the sense of Lyapunov method are derived and expressed as
a linear matrix inequality problem. An academic example is
presented with a comparaison between the proposed approach
and a conventional anti-windup controller.

Index Terms— Takagi-Sugeno models, actuator saturation,
linear matrix inequality.

I. INTRODUCTION

Actuator saturation or control input saturation is probably
the most usual nonlinearity encountered in control engi-
neering because of the physical impossibility of applying
unlimited control signals and/or safety constraints. Classical
examples of such limits are the deflection limits in aircraft
actuators, the voltage limits in electrical actuators and the
limits on flow volume or rate in hydraulic actuators [11].
Motivated by these practical issues, many approaches have
been developed to deal with actuator saturations in the
existing literature (see, for example, [3], [5], [13], [4] and
the references therein).
In general, there are three main design strategies to deal
with actuator saturation for linear plants. First, by taking
into account the effect of saturation throughout the design
procedure, a controller that may be linear or nonlinear is
constructed such that the stability of the closed loop system
is guaranteed and a certain performance is achieved. In ([1],
an optimal control approach with bounded control leads to a
bang-bang type controller that is rarelly used in application
due to implementation difficulty of the resulting switching
surfaces. A more practical solution is developed in [12]
where a linear and non-linear output feedback dynamic
compensators are synthesized. It is applicable to unstable
but controllable and observable systems.
The second strategy is model predictive control (MPC), also
known as receding or moving horizon control, which has
been a popular control design for discrete time systems
recently both in theory and application [8]. In MPC, an opti-
misation -often a quadratic programming (QP)- is performed
at every time instantk by considering both current and future
actuator constraints over a certain horizon of lengthN.
The third strategy is a two-step approach in which a nominal
linear controller is first constructed by ignoring actuator
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saturation. Once this controller has been designed, usually
by using standard linear design tools (it may be noticed that
some anti-windup schemes are designed for a state feedback
nominal controller (e.g. [13]) and some others are for an
output feedback dynamic controller (e.g. [7], [2])) a so called
anti-windup compensator is designed to handle the saturation
constraints [9]. A typical anti-windup scheme consists in
augmenting a nominal pre-designed linear controller with a
compensator based on the discrepancy between unsaturated
and saturated control signals fed to the plant [8].
In this paper, we propose a state feedback controller such
that the control gain depends on the saturation levels. The
advantage of this approach is to synthetize only one con-
troller (instead of two for the anti-windup case) such that
the input saturation is straightly taken into account in the
controller design process. For that, the Takagi-Sugeno (T-
S) formalism is used to represent the nonlinear behaviour
of the saturated actuator and a state feedback control law is
synthetized. The stability conditions of the controlled system
are derived from the Lyapunov theory and expressed as
matrix inequality (LMI) problem. A numerical example with
a comparison between conventional anti-windup controlleris
given to illustrate the effectiveness of the proposed method.
The rest of this paper is organized as follows. Section 2
introduces the Takagi-Sugeno structure for modeling, some
preliminary results, mathematical notations and a brief de-
scription of the saturation and anti-windup configuration.It
is followed by the representation of the nonlinear saturation
by a T-S structure in section 3. In section 4 is designed a state
feedback control law depending on the saturation bounds. A
numerical example and some simulation results are given to
show the effectiveness of the proposed methods in section 5.
Conclusions and future works are detailed in section 6.

II. PRELIMINARIES

A. Takagi-Sugeno structure for modeling

The T-S modeling allows to represent the behavior of
nonlinear systems by the interpolation of a set of linear sub-
models. Each sub-model contributes to the global behavior of
the nonlinear system through a weighting functionµi(ξ (t))
[10]. The T-S structure is given by







ẋ(t) = ∑n
i=1 µi(ξ (t))(Aix(t)+Biu(t))

y(t) = ∑n
i=1 µi(ξ (t))(Cix(t)+Diu(t))

(1)

wherex(t)∈R
nx is the system state variable,u(t)∈R

nu is the
control input andy(t) ∈ R

m is the system output.ξ (t) ∈ R
q



is the decision variable vector assumed to be measurable
(as the system output) or known (as the system input). The
weighting functionsµi(ξ (t)) of the r submodels satisfy the
convex sum property







∑n
i=1 µi(ξ (t)) = 1

0≤ µi(ξ (t))≤ 1, i = 1, . . . ,n
(2)

In the remaining of the paper, the two following lemmas are
used.

Lemma 1:Consider two matricesX andY with appropri-
ate dimensions andG a symmetric positive definite matrix.
The following property is verified

XTY+YTX ≤ XTGX+YTG−1Y (3)
Lemma 2: (Congruence) Consider two matricesX andY,

if X is positive (resp. negative) definite and ifY is a full
column rank matrix, then the matrixYXYT is positive (resp.
negative) definite.

B. Mathematical notation

The following notations are used throughout the paper.

• A bloc diagonal matrixA denoteddiag(A1, . . . ,An) is
defined as

diag(A1, . . . ,An) :=











A1 0 . . . 0
0 A2 . . . 0
...

...
...

...
0 0 . . . An











(4)

whereAk are square matrices.

• The integer part of a numberx is denoted:

int(x) := ⌊x⌋ (5)

• The smallest and largest eigenvalues of the matrixM
are respectively denotedλmin(M) andλmax(M).

• The saturation function for a signalν(t) is defined as

sat(ν(t)) :=







ν(t) if νmin ≤ ν(t)≤ νmax

νmax if ν(t)≥ νmax

νmin if ν(t)≤ νmin

(6)

whereνmax andνmin denote the saturation levels.

C. Anti-windup configuration

Classical anti-windup designs were mostly based on an
adjustment on the controller input [8]. Consider the block
diagrams in Figure 1 with nominal control inputν and
anti-windup compensatorΨ. The conventional anti-windup
controller uses the differenceν −νsat as an input for a large
gain matrixΨ = αI whereα >> 1 is a scalar [6].

Ψ

ν νsatν sat
+

+ −

−

Fig. 1. Conventional anti-windup controller

III. PROBLEM STATEMENT

A. Takagi-Sugeno saturation control

The main idea of this work is to model the nonlinear
actuator saturation using the Takagi-Sugeno representation
(section II-A). For that, it is proposed to re-write the satu-
ration equation (6) for each component of the control input
vector under a particular form.
Let us consider a control input vectoru(t) ∈ R

nu, such that

u(t) =







u1(t)
...

unu(t)






(7)

The contol input under actuator saturation constraint is given
by

usat(t) =







u1
sat(t)

...
unu

sat(t)






(8)

Each component of this vector is written as

u j
sat(t) =

3

∑
i=1

µ j
i (u j(t)) (λ j

i u j(t)+ γ j
i ), j = 1, . . . ,nu (9)

with










λ j
1 = 0

λ j
2 = 1

λ j
3 = 0

(10)











γ j
1 = u j

min

γ j
2 = 0

γ j
3 = u j

max

(11)

and the activation functions














µ1(u j(t)) =
1−sign(u j (t)−u j

min)
2

µ2(u j(t)) =
sign(u j (t)−u j

min)−sign(u j (t)−u j
max)

2

µ3(u j(t)) =
1+sign(u j (t)−u j

max)
2

(12)

Then, the control input vectoru(t) ∈R
nu subject to actuator

saturation is modeled by



usat(t) =

















∑3
i=1 µ1

i (u1(t))(λ 1
i u1+ γ1

i )
...

∑3
i=1 µℓ

i (uℓ(t))(λ ℓ
i uℓ+ γℓi )

...
∑3

i=1 µnu
i (unu(t))(λ

nu
i unu + γnu

i )

















(13)

In order to simplify the notations, the weighting functions
µ(u(t)) are now notedµ(t).
Based on the convex sum property of the weighting functions
(2), equation (13) can be written in order to have the same
activation functions for all the input vector components.

usat(t) =























∑3
i=1 µ1

i (t)(λ 1
i u1+ γ1

i )×
(

∏nu
k=2 ∑3

j=1 µk
j

)

...

∑3
i=1 µℓ

i (uℓ(t))(λ ℓ
i uℓ+ γℓi )×

(

∏nu
k=1k6=ℓ ∑3

j=1 µk
j

)

...

∑3
i=1 µnu

i (t)(λ nu
i unu + γnu

i )×
(

∏nu−1
k=1 ∑3

j=1 µk
j

)























(14)
For nu inputs, 3nu submodels are obtained. Thus, it is
important to note that we have an analytical expression of
the actuators saturationµsat(t) directly expressed in term of
the control variableu(t).
Equation (14) is equivalent to

usat(t) =
3nu

∑
i=1

µi(t)(Λiu(t)+Γi) (15)

The global weighting functionsµi(t), the matricesΛi ∈
R

nu×nu and vectorsΓi ∈ R
nu×1 are defined as follow































µi(t) = ∏nu
j=1 µ j

σ j
i

(u j(t)),

Λi = diag(λ 1
σ1

i
, . . . ,λ nu

σnu
i
)

Γi = vect(γ j

σ j
i

).

(16)

where the indexesσ j
i (i = 1, . . . ,3nu and j = 1, . . . ,nu), equal

to 1,2 or 3, indicate which partition of thej th input (µ j
1,µ

j
2

or µ j
3) is involved in thei th submodel.

The relations between thei th submodel and theσ j
i indices

are given by the following equation

i = 3nu−1σ1
i +3nu−2σ2

i + . . .+30σnu
i −(31+32+ . . .+3nu−1)

The σ j
i are such that((σ1

i −1), . . . ,(σnu
i −1)) corresponds

to (i-1) in base 3.
An illustrative example is given for two inputs (nu = 2), such
that

usat(t) =





u1
sat(t)

u2
sat(t)



 (17)

Since we have three partitions for each inputµ j(t), the
Takagi-Sugeno model forusat(t) is then composed with 32

submodels

usat(t) =
9

∑
i=1

µi(t)(Λiu(t)+Γi) (18)

with the parametersµi , Λi and Γi given by the following
table

submodel i (σ1
i ,σ2

i ) µi(t) Λi Γi

1 (1,1) µ1
1 µ2

1 diag(λ 1
1 ,λ

2
1 )







γ1
1

γ2
1







2 (1,2) µ1
1 µ2

2 diag(λ 1
1 ,λ

2
2 )







γ1
1

γ2
2







3 (1,3) µ1
1 µ2

3 diag(λ 1
1 ,λ

2
3 )







γ1
1

γ2
3







4 (2,1) µ1
2 µ2

1 diag(λ 1
2 ,λ

2
1 )







γ1
2

γ2
1







5 (2,2) µ1
2 µ2

2 diag(λ 1
2 ,λ

2
2 )







γ1
2

γ2
2







6 (2,3) µ1
2 µ2

3 diag(λ 1
2 ,λ

2
3 )







γ1
2

γ2
3







7 (3,1) µ1
3 µ2

1 diag(λ 1
3 ,λ

2
1 )







γ1
3

γ2
1







8 (3,2) µ1
3 µ2

2 diag(λ 1
3 ,λ

2
2 )







γ1
3

γ2
2







9 (3,3) µ1
3 µ2

3 diag(λ 1
3 ,λ

2
3 )







γ1
3

γ2
3







B. Problem statement

Let us now consider a linear system represented by the
following state equation

ẋ(t) = Ax(t)+Bu(t) (19)

The control inputu(t) is subject to actuator saturation, then
the system described by (19) becomes

ẋ(t) = Ax(t)+Busat(t) (20)

From (15), equation (20) can be written as

ẋ(t) =
3nu

∑
i=1

µi(t)(Ax(t)+B(Λiu(t)+Γi)) (21)

IV. SATURATED STATE FEEDBACK CONTROL INPUT

The objective is to design a stabilizing static state feedback
control ensuring the stability of the system, even in the
presence of control input saturation. The solution is obtained
by representing the saturation as a T-S system and by solving



an optimization problem under LMI constraints.
Let us consider a linear feedback control input given by (22)

u(t) =−Kx(t) (22)

Our objective is to design the state feedback controller (22)
to guarantee the stability of the system (21) such that the
control gainK takes into account the saturation limits.
Replacing the control law (22) in the T-S system equation,
the obtained system is the following

ẋ(t) =
3nu

∑
i=1

µi(t)((A−BΛiK)x(t)+BΓi) (23)

The computation of the static feedbackK is detailed in the
next theorem.

Theorem 1:There exists a static state feedback controller
(22) for a saturated input system (21) such that the sys-
tem state converges toward an origin-centred ball of radius
bounded byβ if there exists matricesP1 = PT

1 > 0,R,Σ =
ΣT > 0 solutions of the following optimization problem

min
P1,R,Σ,β

β (24)

s.t.
(

Qi I
I −β I

)

< 0 (25)

with

Qi =

(

P1AT +AP1−RTΛT
i BT −BΛiR I

I −Σ

)

(26)

and
ΓiB

TΣBΓi < β (27)

The gain of the controller is given by

K = RP−1
1 (28)

Proof:
Let us define the following quadratic Lyapunov function

V(x(t)) = xT(t)Px(t) (29)

whereP∈ R
n×n is a symmetric positive definite matrix.

According to equations (23) and (29), the time derivative of
V(t) is given by

V̇(x(t)) =
3nu

∑
i=1

µi(t)(x
T(t)((A−BΛiK)TP

+P(A−BΛiK))x(t)+ΓT
i BTPx(t)+xT(t)PBΓi) (30)

Using Lemma 1, it follows that

ΓT
i BTPx(t)+xT(t)PBΓi ≤ ΓT

i BTΣBΓi +xT(t)PΣ−1Px(t)
(31)

and thus, the time derivative of the Lyapunov function (30)
is bounded as follows

V̇(x(t))≤
3nu

∑
i=1

µi(t)(x
T(t)((A−BΛiK)TP+P(A−BΛiK)

+PΣ−1P)x(t)+ΓT
i BTΣBΓi) (32)

Let us define

Qi = (A−BΛiK)TP+P(A−BΛiK)+PΣ−1P (33)

ε = min
i=1:3nu

λmin(−Qi) (34)

δ = max
i=1:3nu

ΓT
i BTΣBΓi (35)

SinceΣ > 0 and from equation (32), according to Lyapunov
stability theory [14],V̇(t) < −ε ‖ x ‖2 +δ . It follows that
V̇(t)< 0 for







Qi < 0
and

‖ x ‖2> δ
ε

(36)

Which means thatx(t) is uniformly bounded and converges

to a small origin-centred ball of radius
√

δ
ε .

SinceQi < 0 is expressed by

(AT −KTΛT
i BT)P+P(A−BΛiK)+PΣ−1P< 0 (37)

Applying Lemma 2, the inequality (37) becomes

P−1AT +AP−1−P−1KTΛT
i BT −BΛiKP−1+Σ−1 < 0 (38)

Using the changes of variables
{

P1 = P−1

R = KP1
(39)

condition (38) is linearized as

P1AT +AP1−RTΛT
i BT −BΛiR+Σ−1 < 0 (40)

Applying Schur’s complement to equation (40), we finally
find the stabilization conditionQi < 0.

(

P1AT +AP1−RTΛT
i BT −BΛiR I

I −Σ

)

< 0 (41)

As the weighting functions satisfy (2) andΣ > 0, if (41) is
satisfied fori = 1, . . . ,3nu and ‖ x ‖2> δ

ε , thenV̇(x(t)) < 0,
which implies thatx(t) converges to an origin centred ball

of radius
√

δ
ε .

The objective is now to minimize the radius
√

δ
ε . Firstly δ

is bounded byδ < β from the definition (35) and the LMIs
(27). Secondly 1/ε is bounded byβ or equivalentlyε > 1/β .
From the definition (34) it is equivalent to

−Qi > (1/β ) I , i = 1, . . . ,3nu (42)

Applying Schur’s complement, (42) is equivalent to (25).
Finally, the radius is bounded byβ .

V. NUMERICAL EXAMPLE

The proposed static state feedback controller design for
systems with saturated control input is illustrated by an aca-
demic example. Let consider the linear system (19) defined
by

A=





−2 0.1 0
0 −0.5 0

0.2 0.1 −3



 , B=





0.1 1
0.5 1
0.8 0.6



 (43)



with two control inputsu=

(

u1

u2

)

. The inputs are subject

to the following actuator saturations.














u1max = 1
u1min = −1
u2max = 1.5
u2min = −1.5

(44)

In order to illustrate the effectiveness of the proposed
approach, three different control laws are synthesized
for the same system. A so-called nominal controller is
computed by a conventional pole placement, without taking
into account the input saturation, although the saturation
acts on the controller. Then in the first part of this section,
a comparison is provided between the nominal closed loop
system without saturation, the nominal closed loop system
with saturated actuators and the closed loop system with
the controller proposed in this paper where the saturation
bounds are taken into account in the controller design.
In a second case, a conventional anti-windup controller
is synthetized (as shown in section II). The obtained
performances of this controller and of the proposed T-S
control are compared.

A. Comparison with nominal control

Let us consider the nominal controllerKn such that the
gain does not take into consideration the actuator saturations.
For the considered example,

Kn =

(

0.3308 0.5586 −1.0239
−0.0453 0.7816 0.4507

)

(45)

For the T-S controller, the control gainK depending on the
saturation limits and computed from theorem 1 is equal to

K =

(

1.9543 0.5029 2.3005
1.0800 0.3243 1.8291

)

(46)

with a convergence to an origin-centred ball of radiusr =
3.04.
The following figures (2 and 3) depict the system states and
control of the nominal closed loop system without saturation
(respectively denotedx1, x2,x3, u1 and u2), those of the
nominal closed loop system with saturation (respectively
denotedx1sat, x2sat, x3sat, u1sat and u2sat) and those of the
proposed approach (respectively denotedx1TS, x2TS, x3TS,
u1TS andu2TS).

B. Comparison with anti-windup controller

In this subsection, a second simulation is performed in
order to compare a conventional anti-windup controller with
the proposed one. For the conventional anti-windup, the main
idea is to synthetize a nominal feedback control and to add a
compensator to handle the saturated input. The anti-windup
compensator is taken as a large gain matrixΞ = αI with
α = 50. Figures 4 represents the system states for the two
controllers, wherex1TS, x2TS and x3TS correspond to the
proposed approach whereasx1AW, x2AW andx3AW correspond
to the anti-windup controller.
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C. Comments

In the present work, a new representation of the actuator
saturation problem was introduced. Thus, it is important to
note as first that with the proposed approach, the actuator
saturation is directly expressed in terms of the control
variable and the saturation limits. The proposed approach
allows us to describe and study a nonlinear behavior using
linear tools.
As an illustrative example, a linear feedback controller was
applied to an academic system. Three cases were presented:
nominal controller, T-S controller and anti-windup controller.
For the nominal case, the control gain is computed without
considering the saturation limits. For the anti-windup case,
the control input is adjusted using the difference (usat−u),
but the controller gain is computed without taking into
account the saturation on the input control..
On the other hand, for the proposed approach the control gain
is computed depending on the saturation limits by solving the
LMIs given in theorem 1.
The obtained results illustrates the effectiveness of the pro-
posed approach for the studied example.

VI. CONCLUSIONS AND FUTURE WORKS

Considering the saturation nonlinearity, a linear system
can be represented in a T-S form. The main advantage of
the proposed approach is to synthetize the control by taking
into consideration the saturation limits, since they are added
in the new system representation. Then, the stabilizing state
feedback gain can be computed by solving an optimization
problem under LMI constraint, as usually done in the T-S
framework. A numerical example was presented in order to
illustrate the proposed approach with a comparaison with
a conventional anti-windup controller. It was shown that
the obtained results are slightly better for the T-S saturated
controller.
As future works, the proposed approach may be generalized
to nonlinear systems represented by a T-S model with mea-
surable and unmeasurable decision variable. It is also noted
that the saturation may also affect not only the actuators,
but also the sensors, this is why our approach may also be
applied to sensors saturations.
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