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Abstract:

We propose to study in this paper a new and general method to identify parameters
in a mixture of models. We will emphasize applications of this method in the
following examples: a mixture of Gaussian distributions, a mixture of affine models,
a dynamic case. The limits of this method and, consequently, the prospects will

be underlined.
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1. INTRODUCTION

We take here an interest in the particular prob-
lem of parameter identification in a model. Our
approach goes together with the problem of allo-
cation (assign a given data to a given model) and
the problem of parameter estimation. These prob-
lematics are closely linked. The final goal would
be to have a method such that, a set of data being
given, we could decide which points belong to
each model, and estimate the parameters of these
models. From now on, this goal is not realistic,
although a great amount of research has been
achieved in these areas. Let us quote, for instance,
the EM algorithm, the most famous for these pur-
poses (Dempster, et al., 1977), and its alternative
forms (Roweis and Ghahramani, 2000; Karlis and
Xekalaki, 2003; Biernacki, et al., 2003; Verbeek,
et al., 2003; Hawkins, et al., 2001; Zhang, et al.,
2004; Atkinson and Cheng, 2000; Santamaria-
Caballero, et al., 1996). Let’s also mention the
promising geometric approach from (Rousseeuw
and Hubert, 1999), a deconvolution-based method

(Santamaria-Caballero, et al., 1999), an iterative
dynamic finite algorithm (Likas, et al., 2003), a
method inspired by differential geometry (Pearson
and Ragot, 2004). Our method is based upon
non linear optimisation and differential calculus.
It allows to identify, in an iterative way, the para-
meters of a model. The most obvious applications
are the assignment of data to sets, or the determi-
nation of the number of models (each representing
for instance the working order of a given system).
This paper is structured as follows: presentation
of the method, then application to mixture of
Gaussian models, of affine models and of dynamic
models. Finally we present some numerical re-
sults.

2. THE PROPOSED METHOD

Let d and r be integers greater than 2. For
each j € [L;7], let fU) : RY — R be an
almost everywhere positive measurable function
such that [ ) (z)\4(z) = 1. We suppose that the



functions fU), j € [1;7], depend on m parameters
biy i € il f9 = 13)
estimate these parameters Let (aj)j—1 €]0;1[" be

real numbers such that 2;21 o = 1. We consider
the following mixed probability density function:

. The purpose is to
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where z; € R?% Hence there exists a probabil-
ity space (Q; 4; P) and a random variable X :
(2 A) — (RY B(R?Y)) such that X admits p as
a density function. We perform N > 2 measures
of this random variable X; let z := [z1...2n]T €
RN be the matrix of the N measures. For that
set of measurements, we then consider the joint
density:

N r
= Hzajf(j)(%‘)~ (2)

i=1j=1

We deduce from (2) the expression of the log-
likelihood:

x) = ZlogZajf(j)(xi). (3)

We then introduce the following Lagrangian:

N r r
L(z; ) = Z log Z a; £ (z;) + A(Z aj—1). (4)
i=1 j=1 j=1

We will afterwards derive this function with re-
spect to each of the parameters § and the mixture
coeflicients «. They are considered as variables
and, at their optimum (when the true value is
reached), the different partial derivatives have
to be equal to zero. We mnote that fU)(z) =

f((gl)...ém)(x) where j € [1;7],2 € RN9; each of
the m parameters evolves in an open subset U;
of a Banach space E; which is supposed to be
metric and finite dimensional. We introduce this
formal reference system of F; x ... x F,,, x R™t1:
= (51...5m; ... Qp; )\).

First assumption:

The gradient of the Lagrangian £ exists.

Second assumption:

The functions fM) ... f(") are of class C! over R?,

and the r differential functions y — dyf((éll)___(sm)(x)

T dyf((;3 5, (@) are invertible.
Let’s notice that these two assumptions are not re-
stricting as they are satisfied in practice. We shall
evaluate the partial derivatives of £ = L(z;\)
thanks to (4):
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We deduce from (5a), (5b) and (5¢) the following
optimality equations:
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Z Z Jaf =0, ke[l;m], (6a)
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For sake of brievety, we will only deal with the
optimality equations related to the m parameters
d in (6a). The implicit functions theorem applies
o (6a) and (7) holds; for each index k € [1;m],
we have an implicit equation for d; (Ramis, et al.,
1998):
o = 9&352...57%)(51)

: (7)

b =92, ) 6n)
Moreover, the m functions gV’ are Uj—valued,
and of class C! over U;, j € [1;m]. Defining A =
(51 . ..5m) and G = (g(l) . ..g(m)), we will deal
with the formal equation (fixed-point problem):
A = G(A). We define as well U :==Uy X -+ x Uy,
and F = E; x --- x E,,,, Banach space of which U
is an open subspace. Therefore A € U and we can
suppose that G : U — U, G of class C' over U.
Third assumption:
G : F — F, where F is a non empty closed
subspace of F included into U, is a K—contracting
application (K €]0;1]).
Then the Picard-Banach theorem holds: fixing
Ag € U, the sequence defined by A,;; =
G(Ap,),n € N, is convergent, and its limit is
the unique fixed point A € U of G. In some
applications, the third assumption is however very
strong.

3. APPLICATION

As mentioned in the introduction, we now present
concrete applications of the proposed method



(mixture of gaussians, mixture of static systems,
dynamic system with outliers) and discuss its rel-
evance.

3.1 The case of r Gaussian distributions

The notations are strictly the same as in the pre-
vious section. We have in this case the distribution
between r mixed Gaussian densities

p(xi) = Z a;p;(xi), (8a)

1 _%(zi—nlj>2
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The joint density of the measures is given by:

N r
80 = s L[ omst). O
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Then we consider the Lagrangian £ = L(z; \):
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N
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k=1

(10)
As in the previous section, the processes is the
following: we derive the Lagrangian £ with respect
to each of its parameters, we deduce the optimal-
ity equations and set up methods to solve those
equations. The derivatives of the Lagrangian are
evaluated below (1 < k <r):
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At the optimum, these derivative are set to zero
and then we deduce from (11):

= —N, (12a)

1<k<r  (12b)

For simplicity, we will not deal with the evaluation
of the mixture coefficients ;. Let’s put the prob-
lem of the estimation of the parameters my, ok

in the form of a fixed-point problem. For this
purpose, let’s define the following vectors:
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The 2r relations (12b) and (12¢) are clearly equiv-
alent to 0 = F(0). It is important to note that
the fixed-point theorems only apply to functions
of class C'', which is not necessarily the case of a
function such as F'. All we can hope is to obtain a
condition upon the gradient of F' (when this has
a meaning) such as || F' ||[< 1 (the norm ||e|| is to
be settled) to ensure, at least locally speaking, the
convergence of the fixed point algorithm towards
an effective fixed point of F'.

3.2 The case of two affine models

We apply the proposed method in the case of two
affine models. The processes is the same for several
affine models. The equations of two affine models
are determined by four parameters aq, as, by, ba:

Yi = a1%; + by

{ Yi = az; + by (14)
where ¢ € [I;N], N > 2. We introduce the
following quantities (1 <i < N):

€1 =Yi —a1T; — b1, €2, =y —asx; — by (15)

which correspond to the measurement errors. As
in the case of the Gaussian models, we consider
the distribution of the errors, then the functions:

1 i
r;) = ——exp——5, ke{l;2}, (16a
pk( ) \/ﬁgk Xp 20_]% { } ( )
p(z;) = aip1(xi) + aopa(w;). (16b)

The mixing coefficients «, as will be taken equal
to 0.5 and therefore will not be estimated. The
processes is the same as in the case of Gaussian
models: we work out the Lagrangian, derive it
with respect to each parameter to be estimated,
then set the derivatives to zero and finally deduce



from these an implicit expression of the parame-
ters. Here are the relations that we obtain:

N ZTi
X — b By

al = N 3 5 (17&)
D i1 T ;;1((9“))
1 p1(xi)
by = — i — by ) 17b
N L pi(zi)
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N 2pi(zi) ’
2= % iy
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Simulations and results will be discussed of in the
fourth section of this paper.

3.8 The case of dynamic systems

In the two previous examples 3.1 and 3.2, the
equations were related to static systems. We here
deal with a dynamic case, with the same method.
The equations of the model are the following:

Yo 1s given,
i€ [1;N]. (18)
The probability distribution is the following:

Yit1 = ay; + bx;,

A _ 1 _%<yi+1fiy7‘,*bx7:)2
pi(z) mge

The notations are given here: x; stands for the
input of the system and N for the number of
measurements. We will focus only on the problem
of the identification in the case of a single model.
The parameters a and b satisfy the relations
below:

(19)

N
Z(%H = bxi)yipi(x)
a="=—r: , (20a)
> i)
i=1
N

Z(yi+1 — ay;)zipi(x)

=1
b= .
> i)
=1

Here, the algorithm is iterative and two-levelled
(a and b are alternatively estimated). The results
of the simulations are shown in the next part of
the document.

(20b)

4. NUMERICAL RESULTS

In this part we present some figures et numerical
results that allow us to evaluate the relevance of
the proposed method.

4.1 The case of v Gaussian distributions, v > 1

The processes followed in the section 3.1 can
be generalised in the case of multidimensional
Gaussian distributions. The example below shows
a mixture of two bidimensional distributions. A
zero mean and normalised Gaussian noise has
been added to each data. We have generated two
sets of points in the plane according to Gaussian
distributions, which respective parameters are
A(1; 2) and B(4; 4) for the means, 1.25 and 0.75
for the variances. See Fig. 1.

Fig. 1. visualization of convergence

For the algorithm, the initial values have been
set equal to (—1; 1.5) and (2.2; —2), 1 and 1
respectively. Convergence towards the true values
is obtained after about one hundred steps; we get
for A and B the respective estimations A (0.9;
1.93) and B (3.97; 3.97). We have drawn on Fig.
1 the two circles centred on A and B , with radius
the respective variances estimated (1.17 and 0.77)
on one hand. On the other hand, we have drawn
the two circles centred on A and B with radius
the true respective variances (1.25 and 0.75). They
merely almost coincide.

As previously mentioned, the mixing coefficient is
not estimated, it has been set to 0.5; however it
is possible to estimate its value when deriving the
Lagrangian with respect to a. The values that are
to be estimated and their respective estimations
are summarized in the Table 1 that way for two
cases: my;; stands for the abscissa of the kth
Gaussian model, my.o its ordinate, and oy, its
variance (k = 1 or 2). The number of points
considered for the first Gaussian model is 100
(and 200 for the second one). Twenty experiences
have been achieved for each of the simulations
(the average of the results has been rounded), and
about one hundred steps are needed to observe
convergence.



mi1 mi2 g1 mai1 m22 02

True values 2.0 3.0 1.0 4.0 5.0 3.0
Est. values 1.7 2.6 0.9 3.8 4.8 3.0
True values 2.0 3.0 2.0 4.0 5.0 2.0
Est. values 2.8 4.1 2.0 4.7 5.4 2.2
Table 1. Two bidimensional Gaussian
models

These results are satisfactory insofar as we con-
tent ourselves with an order of magnitude of the
parameters. Let’s remark that the limitation to 20
simulations is a minimum: the results are excellent
beyond 30 simulations (less than 5 per-cent of
error is observed in the examples that we have
treated). We can notice that the noise does not
have a significance influence on the results. On
the other hand, the results are very reliable when
one of the variances at least is small.

4.2 The case of affine models

Four parameters have to be estimated with the
described method: the iterative algorithm used
is two-levelled (the slopes and the intercepts are
alternatively estimated). The results are presented
further. An example is reproduced in Fig. 2 where
we see the superposition of two true straight
lines and the two estimations that we get. A
zero-mean normalized Gaussian additive noise has
been added, and the lines have been perturbed
by aberrant values. For all that, the results are
satisfactory. The method that we propose yields
in this case excellent results that are almost not
sensitive to noisy data.

2 o 2 0 © [

Fig. 2. Superposition of the straight lines

Fig. 3 emphasizes the noisy data that are used,
they are moreover perturbed by some punctual
aberrant measures around the straight line y =
3z — 1.

Fig. 3. Noisy data available

In the next simulations (10 experiences made for
each one), we consider a constant number of iter-
ations (100) and data that are strongly perturbed
(by seven aberrant values equal to 50) and noisy
(the slopes and the intercepts being submitted
to a zero-mean normalized Gaussian noise). We
choose 45 dots for each straight line, with an
additive noise which is zero-mean, Gaussian and
with variance 1.0. The Table 2 sums up some
simulations.

True values Estimated values

b1 a2 b2 | a1 b1 a2 b

-1 1 3 09 -1.2 1.2 2.5
-1 1 -1 | 1.1 -09 1.2 -1.2
-1 3 -1 (11 -08 3.0 -1.0
3 -1 -2 (10 32 -1.0 -21

Table 2. Two affine models

iy

== ==

The applications presented here are particularly
unfavourable to a reliable estimation. However,
we get thanks to this method results that are of
good accuracy. The estimations for the intercepts
are less precise that for the slopes, this is un-
derstandable in the presence of aberrant values.
The algorithm is not much sensitive to noise and
aberrant values. The results are excellent when
the parameters are all distinct. Finally, about one
hundred iterations suffice to obtain convergence.

4.3 The case of dynamic models

We will emphasize the following phenomena: the
number of dots considered and the number of iter-
ations in the algorithm do not have much influence
on the results; a is in general estimated with a
satisfactory accuracy, whereas the estimation of
b can be very different from the true value; the
noise (additive noise for a, additive noise for b,
and extra additive noise) has a strong influence
on the results; the initialization step is a fun-
damental stage. When convergence arises (weak
noise), the results are generally excellent. The use
of a noisy output perturbed by aberrant values
instead of the measured output does not have
an influence on the results, except in the case of
coarse initialization. In such a case, the algorithm
quickly diverges or produces estimations that are
very different from the true values. The aim of
this part is to highlight the fundamental role
played by the initialization step. Let’s consider a
very unfavourable case: additive noise upon the
first parameter a, additive noise upon the second
parameter b, additive noise upon the measure.
The number of dots constituting the input x is
weak, and so is the number of iterations used. We
also systematically use the perturbed value of the
output.



Parameters of the algorithm: each noise is a zero-
mean Gaussian noise with variance 0.2; the num-
ber of measures of the input is 140; the number
of aberrant values in the output is 2 (maximal
magnitude: 10). The results are presented in the
Table 3.

True values | Initial values | Estimated values
a b a b a b

0.9 6.1 0.88 5.90 0.88 5.98
0.9 6.1 0.20 0.11 0.78 8.14
0.2 0.2 0.70 5.00 0.26 0.17

Table 3. Dynamic model

To conclude, the results are quite satisfactory,
even after modification of the additive noise or
the noise upon the parameters a and b. In every
situation, the algorithm is noise sensitive and
produces excellent results when we consider the
average of at least 20 simulations.

5. CONCLUSION

In this paper, we have proposed a new practical
method dedicated to identification of parameters
into mixtures. We have explained in detail the
processes, based upon non linear optimization and
involving some concepts from differential calcu-
lus. This method fits the case of several mixed
Gaussian distributions, and even more general
distributions. In the fourth part of this document,
where some pieces of the method have been im-
plemented, we have highlighted some advantages
(instantaneous execution, straightforwardness of
the code) and limitations (influence of the initial-
ization, noise sensitivity).

This study can be extended in several ways: theo-
retical study of the validity of the processes, test of
the influence of every parameter, generalization to
non linear models, generalization to more abstract
spaces than Banach spaces, study of the influence
of the nature of the noise.
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