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Abstract: In this paper, we develop a fault detection method for switching dynamic
systems with unknown inputs. These systems are represented by several linear
models, each of them being associated to a particular operation mode. The
proposed method is based on the use of Finite Memory Observers and mode
probabilities with the aim to finding the operating mode of the system and
estimating the unknown input. The resulting method also uses the knowledge of
a priori information on the mode transition probabilities represented by a Markov
chain. The proposed algorithm belongs to the class of the supervised algorithms
where the fault to be detected are a priori indexed and modelled. First, the method
is used for fault detection in the case of a linear system characterized by a normal
model of operation and several fault models. Then, it applies for fault detection in
the case of a linear system with unknown input where state and unknown input
estimation are done simultaneously. A comparison with the Generalized Pseudo-
Bayesian method is carry out showing the advantages of the suggested method.
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unknown input, state estimation.

1. INTRODUCTION

As an evidence, control of systems is becoming more
and more sophisticated; that is due to the combined
fact that systems are naturally complex but also be-
cause it is often desired to manage all things affecting
the system. This motivates researches on reliability,
availability and security. In this field, FDI (Fault
Detection and Isolation) has been developed over the
two last decades (Patton et al., 1989), (M. Blanke
and Staroswiecki, 2003). FDI is mainly based on the
state estimation of a process which also produces
an estimation of the process output. Comparison of

estimated and measured outputs is used to design
residuals that have the property to be sensitive to
faults. Thus, state estimation is a key point of FDI.
Generalized Pseudo-Bayesian approach of first order
approach (GPB1) (Bar-Shalom, 1990) is a powerful
tool to track evolution of the process functioning
due to faults, that is also based on residual com-
puting. In fact, process can be characterised by one
or several models for normal operating conditions
and by another set of models describing the different
situations of misfunctionning affecting sensors and
actuators (that are the consequence of damage of
process components). Thus, this set of models can



be used to describe the whole functioning of the
process. The multiple model representation is often
used for that purpose and is naturally exploited in
GPB1 approach. In the field of estimation, the GPB
has found a great success in tracking targets (Bar-
Shalom et al., 1989),(Bar-Shalom, 1990). In the last
few years, the multiple model approach was popular
and was largely used for estimation (Bar-Shalom
et al., 1989),(Bar-Shalom, 1990),(Bar-Shalom and
Li, 1993),(Hanlon and P.S.Maybeck, 1998), control
(Murray-Smith and Johansen, 1997) and modelling
(Gasso et al., 2001). For that purpose, a parallel
bank of filters is used; each filter is based on a
local model representing a particular behaviour of
the real process. Evaluating residuals between filter
outputs and observed process outputs allows one to
design fault detectors. The GPB method is based
primarily on the Kalman filter and mode proba-
bilities. In this work, the Kalman filter is replaced
by a Finite Memory Observer (FMO) (Kratz et
al., 1994),(Medvedev, 1996),(Nuninger et al., 1998)
which shows interesting characteristics owing to the
fact that the estimate at the moment k is indepen-
dent of the one at the moment k − 1. Moreover, a
FMO is less influenced by system noises compared
to the Kalman filter.

In the second section, we present the development
of the finite memory observer. In the third section,
the FMO is used for the estimation of the unknown
input. The fourth section presents an original method
based on an FMO, within the framework of switching
systems, in order to detect the changing regime.
In the fifth part, the FMO with unknown input
is used for simultaneously detecting the changes of
modes and estimating the unknown input. Finally, a
conclusion is drawn on the use of FMO for switching
systems and on the suggested techniques.

2. A FINITE MEMORY OBSERVER

A Finite Memory Observer uses measurements in a
finite time interval only. Consider the discrete time
and invariant following system:

{
xk+1 = Axk + Buk + Gwk

yk = Cxk + vk
(1)

where xk is the state vector at time k, A is the state
matrix, uk is the input vector at time k, B is the
input gain matrix, C is the output gain matrix, vk

and wk are respectively the state and measurement
noises and yk is the output of the system at time k.

In the noise-free case, the system is described by:
{

xk+1 = Axk + Buk

yk = Cxk
(2)

Observing the system evolution on the time horizon
[k −m, k], we can write:

Yk = Pmxk−m + BmUk + GmWk + Vk (3)

with :

Zk =
[

zT
k−m zT

k−m+1 . . . zk

]T
, Z ∈ {Y,U,W, V }

(4)
Pm =

[
CT (CA)T . . . (CAm)T

]T
(5)

Bm =




0 0 . . . . . . 0

CB 0
. . . . . . 0

CAB CB
. . . . . .

...
...

...
. . . . . . 0

CAm−1B CAm−2B . . . CB 0




(6)

Gm =




0 0 . . . . . . 0

CG 0
. . . . . . 0

CAG CG
. . . . . .

...
...

...
. . . . . . 0

CAm−1G CAm−2G . . . CG 0




(7)

The estimate of the state x̂k−m, at the moment k−m,
can be obtained easily using the least square method,
by minimizing the criterion Jk = ‖Pmxk−m+BmUk−
Yk‖2 subject to xk−m. We obtain:

x̂k−m = (PT
mPm)−1PT

m(Yk −BmUk) (8)

The state estimate at the final moment k of the
observation window is obtained by integrating the
system (2):

x̂k = Amx̂k−m + TmUk (9)

with

Tm =
[

(Am−1B)T (Am−2B)T . . . BT 0
]T

(10)

Thus, at each time k, the expression of the state
estimate is defined by:

x̂k = RmYk + SmUk (11)

with

Rm = Am(PT
mPm)−1PT

m (12a)

Sm = Tm −Am(PT
mPm)−1PT

mBm (12b)

3. A FINITE MEMORY OBSERVER WITH
UNKNOWN INPUT

The finite memory observer can be used for the
estimation of unknown input by considering the un-
known input as a state of the system. The unknown
input system is written as follows:{

xk+1 = Axk + Buk + Edk + Gwk

yk = Cxk + vk
(13)

where dk is the unknown input at time k and E is
the unknown input gain matrix.



The following assumption is made:

dk+1 = dk + δk

where δk is a random noise. With that definition,
time-varying unknown input can be taken into ac-
count.

An augmented system can be written as follows:{
x
′
k+1 = Aax

′
k + Bauk + Gaw

′
k

yk = Cax
′
k + vk

(14)

with

x
′
k =

[
xT

k dT
k

]T
, w

′
k =

[
wT

k δT
k

]T

Aa =
[
A E
0 I

]
, Ba =

[
B
0

]

Ca =
[
C 0

]
and Ga =

[
G 0
0 I

]

The augmented state estimate x̂
′
k−m can be carried

out as in the previous case:

x̂
′
k−m = (PT

m,aPm,a)−1PT
m,a(Yk −Bm,aUk) (15)

where the matrix Pm,a and Bm,a are built as the
matrix Pm (5) and Bm (6), by replacing matrices A,
B and C respectively by Aa, Ba and Ca.

As previously, expression of the augmented state
estimate at time k is deduced from (15):

x̂
′
k = Am

a x̂
′
k−m + Tm,aUk (16)

with

Tm,a =
[

(Am−1
a Ba)T (Am−2

a Ba)T . . . BT
a 0

]T

(17)

This formulation allows one to simultaneously obtain
state and unknown input estimates of the system.

Example: Consider the following unknown input
system:

xk+1 =
[

0.45 0
0 0.4

]
xk +

[
0.1815
1.7902

]
uk

+
[

0.0129
−1.2504

]
dk +

[
1
10

]
wk

yk =
[

1 0
0 1

]
xk + vk

First a constant unknown input (δk is centered) that
occurs in a specified time interval is considered. Af-
terwards, we consider an unknown input with a ramp
shape (the mean value of δk is different from zero).

Examination of figure 1 makes it possible to note a
good estimation of the unknown input, in spite of
a certain delay due to the horizon of observation of
the OMF (chosen here equal to 11 (m = 10)). Figure
2 presents similar results when the unknown input
evolves according to a ramp.
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Figure 1. Constant unknown input estimation
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Figure 2. Variable unknown input estimation

4. FMO FOR SWITCHING SYSTEMS

In this section, we consider a system represented
by a set of models Mi, i = 1, . . . , r; each model
representing a particular behaviour of the system.
The objective is to detect, at each moment, the active
model and simultaneously to estimate the state of the
system. The transitions from a model to another one
are assumed to be described by a Markovien process
governed by the a priori known Markov transition
matrix π given by:

Π =




p11 · · · p1r

...
. . .

...
pr1 · · · prr




where pij is the mode transition probability from
the model Mi to the model Mj ; we note µk

j the
probability that the jth model is active at time k.

4.1 Development of the method

Consider the jth model described by:

Mj :
{

xk+1 = Ajxk + Bjuk + Gjwk

yk = Cjxk + vk
(18)

The state estimation of this model can be carried out
using a FMO according to the method described in
section 2. We obtain:

x̂j
k−m = (PT

j,mPj,m)−1PT
j,m(Yk −Bj,mUk) (19)

and
x̂j

k = Am
j x̂j

k−m + Tj,mUk (20)

Matrices Pj,m, Bj,m and Tj,m are built using the
definitions (5), (6) and (10) replacing matrices A,



B and C by matrices Aj , Bj and Cj related to the
jth model.

The state estimate x̂k of the switching system is then
computed as a weighted sum of the states of the
“local” models:

x̂k =
r∑

j=1

x̂j
kµj

k (21)

Following the work of Bar-Shalom (Bar-Shalom,
1990), the probability that model j is in effect at
time k is calculated in the following way:

µj
k = P{Mj(k)|Yk} (22)

Define Ỹk−1, the observation vector carried out on
the horizon [k −m, k − 1]; we have:

Yk =
[

Ỹ T
k−1 yT

k

]
(23)

Equation (22) can then be written as:

µj
k = P{Mj(k)|Ỹk−1, yk} (24)

Using the Bayes formula, this probability can be
transformed into:

µj
k =

p
[
yk|Mj(k), Ỹk−1

]
P{Mj(k)|Ỹk−1}

∑r
l=1 p

[
yk|Ml(k), Ỹk−1

]
P{Ml(k)|Ỹk−1}

(25)

In order to alleviate the notations, let us introduce:

Li(k) = p
[
yk|Mi(k), Ỹk−1

]
(26)

Using the total probability theorem, the activation
probability of the model j at time k, according to
the active model at the time k− 1 can be written as:

P{Mj(k)|Ỹk−1} =
r∑

i=1

P{Mj(k)|Mi(k − 1), Ỹk−1}P{Mi(k−1)|Ỹk−1}

(27)

To obtain a recurrence on the computation of the µj
k,

we carried out the following approximation:

P{Mi(k − 1)|Ỹk−1} ≈ P{Mi(k − 1)|Yk−1} = µi
k−1

(28)

That amounts considering that the information given
by the first vector of observation yk−m−1 of the
vector Yk−1 defined on the horizon [k−m− 1, k− 1]
is not very important and can be neglected (that
depends obviously on the selected horizon). In this
case, considering equations (25) to (28) and noticing
that, by definition, P{Mj(k)|Mi(k − 1), Ỹk} = pij ,
the following recurrence on the probability that the

system operates according to the model j at the
moment k can be established:

µj
k =

Lj(k)
∑r

i=1 pijµ
j
k−1∑r

l=1 Ll(k)
∑r

i=1 pilµ
j
k−1

(29)

4.2 Fault models

An actuator fault can be modelled by ”modifying”
the appropriate column of the control input matrix
B. Thus, a fault on the ith actuator is represented
by writing the following equation:

xk+1 = Axk + (B + ∆Bi)uk + wk

where ∆Bi is a matrix of same dimension that B; all
of its columns are null except the ith which charac-
terizes the fault on the ith actuator.

On a same way, a sensor fault is described by:

yk = (C + ∆Ci)xk + vk

where ∆Ci and C have the same dimension; all of
its columns are null except the ith that characterizes
the fault on the ith sensor.

4.3 Application

For the application of the suggested method, we
consider a model of normal operating (A1, B1, C1), a
model of fault actuator (A2, B2, C2) and a model of
sensor faults (A3, B3, C3), the various matrices being
defined by:

Ai =
[

0.45 0
0 0.4

]
, i = 1 . . . 3

B1 =
[
0.1815 1.7902

]T
, C1 =

[
1 0
0 1

]
,

B2 =
[
1.1815 1.7902

]T
, C2 =

[
1 0
0 1

]
,

B3 =
[
0.1815 1.7902

]T
, C3 =

[
1.5 0
0 1.5

]
.

To test the method, the following scenario was estab-
lished: initially the system normally operates, then at
time 100, an actuator fault occurs, at time 500, the
system returns to the normal operating mode and,
at time 800, sensor faults are introduced.

The results are presented at the figures 3, 4 and
5 where the changes of mode clearly appears; the
mode probabilities of the models, in their respective
operation zones, fluctuates around one and thus a
detection of the default is carried out. It is noticed
that the results of the suggested method are better
than those of GPB1 method. That is due to the
sensitivity of the latter to the noise of the system.
It is thus concluded that the use of a finite memory
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Figure 3. Activation probability of model 1
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Figure 4. Activation probability of model 2
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Figure 5. Activation probability of model 3

observer, for fault detection within the framework of
switching systems, gives good results which are less
sensitive to the noise than traditional GPB method.

5. EXTENSION OF THE METHOD TO
UNKNOWN INPUT SYSTEM

The suggested method in preceding section can be
applied to unknown input systems. For that, the
finite memory observer of the second section is re-
placed by a finite memory observer with unknown
input (see the third section).

The jth model is written as follows:

Mj

{
xk+1 = Ajxk + Bjuk + Edk + Gwk

yk = Cjxk + vk

where dk is the unknown input at the time k and
where E is the unknown input gain matrix.

Using an augmented model for each model Mj , as in-
dicated in section 3, the state and the unknown input
can be simultaneously estimated. The estimation of
the system state is then obtained following the steps
exposed in subsection 4.1.

Example: We consider the same models of normal
operation, actuator fault and sensor faults than pre-
viously, disturbed by the unknown input dk whose
influence matrix is:

E =
[
0.0129 −1.2504

]T

To test the method, the following scenario was es-
tablished: initially the system normally operates, at
time 100 occurs an unknown input with a constant
magnitude, then at time 200, an actuator fault oc-
curs, at time 300, the unknown input becomes null, at
time 500, the system returns to the normal operating
mode and, at time 800, sensor faults are introduced.

The results, in the presence of noise, are shown on
figures 6 to 8. They clearly exhibit the changes from
one mode to another, allowing the detection of faults.
The figure 9 shows the estimation of the unknown
input in the absence of noise. In the presence of
noise, this estimate is represented in the figure 10. We
can affirm that the use of a finite memory observer
with unknown input for fault detection and unknown
input estimation, within the framework of switching
systems, gives good results in spite of the presence of
noise.
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Figure 6. Activation probability of model 1 in the
presence of noise
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Figure 7. Activation probability of model 2 in the
presence of noise
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Figure 8. Activation probability of model 3 in the
presence of noise

6. CONCLUSION

In this work, the structure of a Finite Memory Ob-
server was firstly recalled. Such observer was then
applied successfully for estimation of unknown input.
This type of observer was used within the framework
of a switching systems for which the moments of
commutation between models must be detected. The
comparison of the obtained results with the GPB1
method was carried out on an example. The use of a
finite memory observer, based on measured outputs
only, contrarily to the GPB1 method which uses
estimates, gives better results, mainly in the presence
of noises.

Finally, the suggested method was extended to the
case of systems subjected to unknown input. In this
situation, the detection of the moments of commuta-
tion is carried out simultaneously with the estimation
of the unknown input.
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Figure 9. Unknown input estimation in the absence
of noise
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Figure 10. Unknown input estimation in the presence
of noise
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