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∗CRAN UMR CNRS 7039

INPL 2 Avenue de la Forêt de Haye
F-54516 Vandoeuvre-lès-Nancy Cedex, France

Email : cherrier@eavr.u-strasbg.fr, Jose.Ragot@ensem.inpl-nancy.fr
†LSIIT UMR CNRS 7005

ULP, Pôle API Bd S. Brandt - BP 10413
F-67412 Illkirch, France

Email : mohamed.boutayeb@ipst-ulp.u-strasbg.fr

Abstract— In this paper we propose a new cryptosystem,
based on a new time-delayed chaotic system. Two chaotic signals
are sent by the transmitter: the first one is aimed at synchro-
nizing the receiver, which is proved through the resolution of a
Linear Matrix Inequality (LMI). The transmission of a second
chaotic signal enables the design of a new way to encrypt a
message: we perform a kind of modulation of the frequency
of a chaotic signal generated by the transmitter, depending on
the message and we propose a method to recover the message.
The efficiency of this new cryptosystem is illustrated by the
encryption, transmission and recovery of a picture. The security
of the proposed cryptosystem is discussed at the end of the
article.

I. INTRODUCTION

In this paper, we propose a new way to encrypt, send
and decrypt a message, based on the fundamental properties
of chaotic signals. This approach uses an observer-based
scheme to ensure the synchronization of the receiver with
the transmitter: this is performed with a first chaotic signal
sent by the transmitter. Then we develop a new encryp-
tion method, which consists of a kind of modulation of
the frequency of a second chaotic signal generated by the
transmitter: the chaotic waveform is sent with a delay which
depends on the information to encrypt. At the receiver, the
message is recovered by estimating the delay which affects
the second chaotic signal, compared with the corresponding
signal estimated at the synchronization step.

A standard communication scheme consists of the addition
of an information signal to a random carrier at the transmitter.
The message is then recovered at the receiver. To realize
this process, the receiver needs to know exactly the random
carrier to subtract it from the transmitted signal, thus simply
obtaining the information signal. In the case of a pseudo-
random sequence generated as the carrier, the receiver must
know exactly the initial conditions of the transmitter. The
security of a standard communication scheme relies on the
broadband power spectrum of the random carrier, since the
spectral analysis of the transmitted signal does not reveal
any information about the message, which is totally hidden
in the pseudo-random noise.

Chaotic signals represent an alternative to this issue.
Indeed, chaotic systems are particularly characterized by
their extreme sensitivity to the initial conditions, they are
deterministic but their trajectories look like noise, they
have a continuous-like power spectrum [1]. Besides, the
work of Pecora and Carroll [2] has opened the field of
synchronization of chaotic systems. They showed that two
identical chaotic systems, starting with different initial condi-
tions, eventually synchronize, provided that they are coupled
according to the drive-response principle. This pioneering
work inspired the idea of using chaotic systems for com-
munications [3], [4], [5]. The main advantage of using
chaotic signals as carrier waveforms to transmit the message
instead of classical random or sinusoidal carriers relies
on their property of synchronization: two chaotic systems
can synchronize without transmitting any information about
the initial conditions of the transmitter, which makes them
attractive from a security point of view.

The point here is to find an efficient (and secure) way
to inject (or hide) the message into the transmitter (see
[6], [7] for an overview on digital communications). Several
schemes have been established in order to transmit a message
in a secure way. The main difference in these designs lies
in the methods for hiding or injecting the message at the
transmitter, and recovering it at the receiver. Among these
schemes, the most important are the following [8], [9].

• Chaotic masking [10]: the information signal is added to
the output of the transmitter. The transmitted signal con-
sists of this sum, and enables the receiver to synchronize
with the transmitter: the reconstructed chaotic signal is
then simply subtracted from the transmitted signal to
obtain the information signal. However, the information
signal has to be sufficiently small in comparison to the
chaotic signal, to allow synchronization at the receiver.

• Chaotic modulation or inverse system approach [11]:
the information signal modulates some parameter(s) of
the chaotic encoder. After synchronization is achieved at
the receiver, the reconstructed chaotic signal is applied



to the inverse encoder to obtain the information signal.
These two schemes are the first that have been implemented,
and suffer from a lack of security [12], [13], so some other
schemes have been recently designed. To give a few exam-
ples, we can mention some new cryptosystems [14], [15],
or [16]; a communication scheme based on the detection of
parameter mismatch can be found in [17]; a new generation
of chaotic synchronization schemes is developed in [18],
based on the theory of impulsive differential equations;
[19] proposes a modulation method with a nonlinear filter
at the receiver; the chaotic carrier is modulated with an
appropriately chosen scalar signal in [20]; some observer-
based schemes are designed in [21], [22], [23] . . . However,
these schemes are not often analyzed from a security point
of view, thus some attacks are possible, as in [24].

In contrast to these approaches, we propose a completely
new (to our knowledge) method to transmit the message by
sending two chaotic signals: one for the synchronization, and
the second for the encryption. The chaotic transmitter is a
new chaotic system, chosen for its noise-like trajectories.
Furthermore, a parameter of the transmitter can be chosen
as the key of our cryptosystem, which can guarantee a good
level of security.

This paper is organized as follows. Section II details the
different parts in the design of a cryptosystem: choice of
the chaotic transmitter (section II-A), the synchronization
problem (section II-B) and the encryption-decryption
method (section II-C). The efficiency of our cryptosystem is
tested in section III through the encryption, the transmission
and the recovery of a picture, in simulations using Matlab.
Section IV ends this paper with a study of the security of
the proposed cryptosystem.

II. DESIGN OF A NEW CRYPTOSYSTEM

A. The transmitter: a new chaotic system

In [25], [26] we chose a modified Chua’s circuit as the
transmitter in our observer-based synchronization scheme.
This system differs from the standard Chua’s circuit in the
sense that a time-delayed feedback has been added (see
details in [27]). This process belongs to the recent technics
of ”anticontrol” of chaos: in [28] it is shown that a finite-
dimensional, continuous-time, autonomous system can be
driven from nonchaotic to chaotic, or that the chaos of an
initially chaotic system can be enhanced. However, Chua’s
circuit has a piecewise-linear nonlinearity, which may not
be desirable from a mathematical point of view. In [29]
the piecewise-linear nonlinearity has been replaced by a
polynomial of degree three, but it is said in this paper
that the nonlinearity of Chua’s circuit can be any scalar
nonlinearity, provided that it is an odd function. So we
propose a new chaotic system based on the dimensionless
form of Chua’s circuit (concerning the linear part), and the
nonlinearity consists of an hyperbolic tangent and a time-
delayed feedback:

ẋ(t) = Ax(t) + F (x(t)) + H (x(t − τ)) (1)

where

A =





−α α 0
1 −1 1
0 −β −γ



 (2)

F (x(t)) =





−αδ tanh(x1(t))
0
0



 (3)

H(x(t − τ)) =





0
0

ε sin(σx1(t − τ))



 (4)

We have chosen to keep the structure of the chaotic trans-
mitter chosen in [25]. The system (1) is chaotic thanks to the
presence of the time-delay feedback: if ε is chosen equal to
zero, no chaotic behavior can be observed. The computation
of the Lyapunov exponents [1] of (1) can ensure that this
system is chaotic: this is beyond the scope of this paper, and
will be discussed elsewhere (the smooth nonlinearity of the
system enables the computation of these exponents).
The values of the parameters of (1) are chosen to ensure a
chaotic behavior: α = 9, β = 14, γ = 5, δ = 0.5, ε = 1000,
σ = 105, τ = 1.

We provide the phase portrait of (1) in the plane (x1−x2)
in Fig. 1, and Fig. 2 shows the chaotic attractor.
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Fig. 1. Phase portrait in the plane x1 − x2
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Fig. 2. A new chaotic attractor



Remark 1: We recall that a function f satisfies the Lip-
schitz property with constant k if there exists k > 0 such
that

‖f(x) − f(y)‖ ≤ k‖x − y‖ ∀ x, y (5)

(3) and (4) show that the nonlinear functions F and H satisfy
the Lipschitz condition with respective constants kF = |αδ|
and kH = |εσ|.

Remark 2: In a chaotic secure communication scheme,
the chaotic system parameters play the key role in secure
transmissions. The presence of the time-delay feedback adds
further parameters that need to be known to recover the mes-
sage, and thus enhances the security not only by enhancing
the complexity of the chaos in the transmitter. We will see
in section IV that the parameter σ can be considered as the
key of our cryptosystem.

B. Observer-based synchronization

There are two main approaches to ensure the synchroniza-
tion of a chaotic system. First, the drive-response principle
was found by Pecora and Carroll in 1990 [2]. In this scheme,
the transmitter is called the drive system, and the receiver
is called the response system. The driving signal is usually
some of the transmitter’s state variables, and the response
system is chosen as a part of the drive system. It has been
shown that, if the conditional Lyapunov exponents [1] of the
response system are all negative, synchronization occurs: the
response system is forced by the drive signal, and it forgets
its own initial conditions. The main limitation of this concept,
is that the drive signal and the response system are obtained
from the drive system, but there is no systematic procedure
available to find a good decomposition of the drive system
to ensure negative conditional Lyapunov exponents.
This approach is a kind of self-synchronization, and can
be opposed to the second approach : the observer-based
synchronization (see [30], [31]). Indeed, the problem of
synchronization can be seen as a state estimation problem:
given the chaotic transmitter, the receiver can be designed
as an observer of this system. Then the receiver and the
drive signal must check a property of detectability to ensure
synchronization. Since this is a well-studied problem, sev-
eral procedures are available to design the observer. Some
observer-based concept to design synchronization schemes
for chaotic systems can be found in the following papers:
[32], [33], [21], [22], [23]. We have chosen an observer-based
communication scheme, so we must determine an observer
which synchronizes with (1).
Classically, to ensure the synchronization of the observer, the
transmitter sends a chaotic signal, of the form:

y1(t) = Cx(t) (6)

We underline the fact that the synchronization step is com-
pletely separated from the encryption step (which will be
detailed in section II-C), in particular the chaotic signal y1

does not contain any information about the message.
In [25] and in [26] we have designed two observer-based

synchronization schemes for a delayed Chua’s circuit. Here

we propose another observer-based approach, to deal with a
large Lipschitz constant (Remark 1 implies kH = 108). For
this purpose, we choose C =

(

1 ζ 0
)

with ζ � 1. We
obtain

y1(t) = x1(t) + ζx2(t) (7)

The dynamic model of the transmitter (1) can be rewritten
as:






ẋ(t) = Ãx(t) + B̃y1(t)

+F̃ (y1(t), x2(t)) + H̃(y1(t − τ), x2(t − τ))
y1(t) = Cx(t)

(8)
where

Ã =





0 α − ζ 0
0 −(1 + ζ) 1
0 −β −γ



 (9)

B̃ =





−α

1
0



 (10)

F̃ (y1(t), x2(t)) =





αδ tanh(y1(t) − ζx2(t))
0
0



 (11)

H̃(y1(t−τ ), x2(t−τ )) =





0
0

ε sin (σ(y1(t − τ ) − ζx2(t − τ )))





(12)
The dynamic model of the receiver is chosen of the

following form:

˙̂x(t) = Ãx̂(t) + B̃y1(t) + F̃ (y1(t), x̂2(t))

+H̃(y1(t − τ), x̂2(t − τ)) + K(y1(t) − Cx̂(t))
(13)

We define the synchronization error vector e(t) = x(t)−x̂(t),
and its derivative is given by

ė(t) = AKe + F̃ − ˆ̃
F + H̃ − ˆ̃

H (14)

with the notations

AK = Ã − KC

F̃ = F̃ (y1(t), x2(t))
ˆ̃
F = F̃ (y1(t), x̂2(t))

H̃ = H̃(y1(t − τ), x2(t − τ))
ˆ̃
H = H̃(y1(t − τ), x̂2(t − τ))

The following theorem provides a sufficient condition for the
synchronization of the observer (13) with the transmitter (8).

Theorem 3: If the following conditions are verified:
1) the pair (A, C) is detectable;
2) there exist k1, k2 > 0, a matrix K and a symmetric,

positive-definite matrix P solution of the following
LMI (where I3 denotes the identity matrix of dimen-
sion 3 and AK = A − KC):

ζ2k2
H − k1 + 1 < 0 (15)

(

AT
KP + PAK + k1I3 P

P − 1
k2

I3

)

< 0 (16)



then (13) is an observer for (1): x̂(t) → x(t) when t → ∞.

Proof: The transmitter is a time-delay system, so it is
classical to define a Lyapunov-Krasovskii functional

V = eT Pe + ξ

∫ 0

−τ

e(t + θ)T e(t + θ)dθ (17)

where P is a symmetric, positive-definite matrix, and ξ is
a positive scalar. It is easy to show that V is positive and
upper bounded.
We compute the derivative of V along the trajectories of
(14):

V̇ = eT
(

AT
KP + PAK

)

e + 2eT P (F̃ − ˆ̃
F )

+2eT P (H̃ − ˆ̃
H) + ξeT e − ξeT

τ eτ

(18)

with eτ (t) = e(t − τ).
The Cauchy-Schwarz and the Young inequalities applied
successively, and the Lipschitz property of F̃ and H̃ lead
to:

2eT P (F̃ − ˆ̃
F ) ≤ ζ2k2

F eT PPe + eT e (19)

and
2eT P (H̃ − ˆ̃

H) ≤ eT PPe + ζ2k2
HeT

τ eτ (20)

With (19) and (20), (18) leads to:

V̇ ≤ eT
(

AT
KP + PAK + (1 + ξ)I3 + (1 + ζ2k2

F )P 2
)

e

+(ζ2k2
H − ξ)‖eτ‖

2

(21)
We set k1 = 1 + ξ and k2 = 1 + ζ2k2

F . Then condition (15)
implies ζ2k2

H − ξ < 0, and (22) yields:

V̇ ≤ eT
(

AT
KP + PAK + k1I3 + k2P

2
)

e (22)

If condition (15) is checked, (22) reduces to

V̇ ≤ −eT We (23)

with W = AT
KP + PAK + k1I3 + k2P

2.
To apply the Lyapunov theory, the matrix W must be
negative-definite. The inequality W < 0 can be solved by
applying the Schur complement:

W < 0

⇔







(

AT
KP + PAK + (1 + ξ)I3 P

P − 1
(1+ζ2k2

F
)
I3

)

< 0

−(1 + ζ2k2
F ) < 0

(24)
This demonstrates the condition (16), which can be solved
numerically. If it is verified, the synchronization error vector
e converges towards zero.
Thus the synchronization step is achieved.

Remark 4:
The detectability of the pair (Ã, C) is guaranteed by the fact
that the matrix W is negative-definite (24).

Remark 5: In practice, to find a solution to the LMI (16),
we must impose ξ ≤ 1. Consequently, to satisfy (15), ζ is
chosen such that ζkH < 1.

C. A new encryption method

In this part, we detail a new way to encrypt a message. The
aim is to transmit a chaotic signal which does not contain
explicitly any direct information about the secret message.
That is to say we use the most remarkable property of
chaotic signals: they look like noise. So we intend to ”hide” a
message thanks to a chaotic signal, so that it is impossible to
detect that a message is transmitted. Some attacks showed
that chaotic masking or chaotic modulation are not secure
enough [12], [13], [24], so we have designed a method for
injecting the message which prevents it from altering the
transmitted signal or its power spectral density.
We propose to send one of the chaotic signals generated at
the transmitter (we do not use the signal y1 that is sent for
the synchronization of the receiver), with a delay depending
on the message:

y2(t) = x3(t − ν(u(t))) (25)

y2(t) is obtained from the signal x3(t), deformed by a
frequency modulation. So y2 looks like noise too. In practice,
we assume that u(t) ∈ [0, 1], and the function ν will be
chosen as ν(u(t)) = Tuu(t), with 0 < Tu ≤ Te (where Te

will be the discretization step of the numerical integration of
the differential equations) to enable the recovery of u.

The Taylor-Lagrange formula applied to x3 is expressed
as (all the functions involved are sufficiently smooth to apply
this theorem):

Proposition 6 (Taylor-Lagrange):

∃t1/x3(t) − x3(t − Tuu(t)) = ẋ3(t)Tuu(t) −
ẍ3(t1)

2
(Tuu(t))2

(26)
In practice Tu ≤ Te ≤ 10−2 ⇒ T 2

u ≤ 10−4. So, if we use
the fact that a chaotic system has bounded trajectories, we
can make the following first-order approximation:

x3(t)−x3(t−Tuu(t)) = x3(t)−y2(t) = ẋ3(t)Tuu(t) (27)

If we take a sufficiently small integration step Te ≤ 10−2,
since x3 is chaotic, we assume that this signal is never
constant (if this case would happen, it would be impossible
to recover the delay between x3 and y2). That is why our
encryption method well fits to chaotic signals. The inversion
of equation (27) leads to (under the condition ẋ3(t) 6= 0):

u(t) =
x3(t) − y2(t)

Tuẋ3(t)
(28)

Now we use the fact that the synchronization step is
completely separated from the encryption step: the recovery
of the message u relies on the relation (28) and the dynamics
of the receiver (13) (we note K = (κ1 κ2 κ3)):

û(t) = x̂3(t)−y2(t)

Tu
˙̂x3(t)

= x̂3(t)−y2(t)
Tu(−βx̂2(t)−γx̂3(t)+ε sin(σx̂1(t−τ))+κ3(y1(t)−x̂1(t)−ζx̂2(t)))

(29)
Remark 7: If it happens that ˙̂x3(t) = 0, then we use the

Taylor-Lagrange formula (26) for an approximation at the
second order, since the first and the second-order derivatives
cannot be null at the same instant.



This second signal y2 represents a new way to encrypt a
signal, it performs a kind a modulation of the frequency of
the chaotic signal x3, so y2 looks like noise too. We underline
that there is no direct information sent through the channel
from the transmitter to the receiver, so the security seems to
be optimal. In short, the transmitter is used to synchronize
the receiver and to encrypt the information signal, and these
two processes can be treated in two separated steps. The
efficiency of the decryption process relies on the efficiency of
the synchronization. This will be illustrated on the example
of section III.

III. SIMULATIONS

A. Synchronization

We propose here to test our cryptosystem with the famous
”Lenna picture”:

Fig. 3. Original Lenna picture

The synchronization error of each state component is plot-
ted on Fig. 4 with a zoom on [0,1] seconds. The initial con-
ditions chosen for the transmitter are

(

0.01 0.01 0
)T

and for the receiver
(

0.05 0.05 0.01
)T . The LMI (16)

is solved with the following parameters and matrices (with
rounded values):

P '





4.03 −1.38 0.29
−1.38 1.85 0.16
0.29 0.16 0.41





K '





32.16
26.91
−28.45





and ζ = 10−9, ξ = 1, k1 = 2, k2 ' 1.
The signal y1(t) sent to the receiver for synchronization

purpose is shown in Fig. 5.

B. Encryption-decryption

A discrete signal is generated from the Fig. 3: the colored
picture is coded as three matrices (one for each basis color
red, green, blue), whose coefficients are integers belonging
to [0, 255]. The rows of the first matrix are concatenated,
followed by the rows of the second and the third matrix, so
we obtain a one-dimensional vector defining u. We normalize
this vector so that all its components are in [0, 1]. We choose
the integration step Te = 10−2 seconds. The vector u is used
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Fig. 4. Plots of the three synchronization errors
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to modulate the chaotic signal x3, and this defines the signal
y2, see Fig. 6.
We give the encrypted picture sent to the receiver in Fig. 7,
and the recovered picture in Fig. 8. Some errors appear on
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Fig. 6. Signal y2 transmitted to encrypt and decrypt the message

Fig. 7. Encrypted picture of Lenna



Fig. 8. Recovered picture of Lenna

the first points of the picture, this is due to the time necessary
for the receiver to synchronize with the transmitter, which
appears on the reconstruction error between u and û plotted
on Fig. 9. This can be avoided by increasing the speed of
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Fig. 9. Reconstruction error

convergence of the receiver, and by concatenating a useless
signal before the information signal u, so the synchronization
step will be achieved when the useful signal begins to be
decrypted.

IV. SOME SECURITY ISSUES

Some papers [24] regret that the security aspects are not
always discussed when a new cryptosystem is designed, so
we intend to address this issue in this paragraph. In a chaotic
cryptosystem, the security relies on a (the) parameter(s) of
the system: it is assumed that, without the exact knowledge of
the parameters of the transmitter, it is impossible to recover
the encrypted message. However, this is not always the
case, and some specific attacks have been designed to break
chaotic encryption schemes in certain conditions (mostly
concerning chaotic masking or parameter modulation).
The parameter σ can be considered as the key of our
cryptosystem. We mentioned in section II-A that the chaotic
behavior of the transmitter (1) relies on the presence of
the time-delayed feedback (4), whose first and second com-
ponents are zero, and the third component is defined by
h(x1(t − τ)) = ε sin(σx1(t − τ)). Since x1 is a chaotic
signal, σ determines the speed of variation of the function
h. If σ is sufficiently large, another value σ̃ will lead to a
completely different behavior of the function h: the larger σ

is, the more sensibility there is in that parameter.

Even if an intruder obtains the structure of the receiver and
intercepts the signals y1 and y2 sent by the transmitter, if he
does not know the value of σ (here σ = 10000) shared
by the transmitter and the receiver, we can hope that he
will not be able to decrypt the message. The Fig. 10 shows
the deciphered message with an error of 0.01% on σ. The
sensibility increases with the value of σ: if σ = 106, then a
0.001% mismatch produces the same effect.

Fig. 10. Deciphering error with a 0.01% mismatch on σ

To quantify the sensibility of the deciphering as a function of
the mismatch on σ, Fig. 11 shows the norm of the difference
u − û divided by the total number of points in u as a
function of the mismatch on σ (to cope with the errors due to
the synchronization, we start the simulations with the same
initial conditions for the transmitter and the receiver). Fig. 12
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Fig. 11. Error rate of the deciphering vs. error rate of σ

shows a zoom on the amplitude of Fig. 11: the deciphering
is exact only when the receiver exactly knows the value of
σ.
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Since the efficiency of our cryptosystem relies on the
efficiency of the synchronization, our future work will be
devoted to the analyze of the robustness of the synchroniza-
tion towards some channel noise or delays, altering each of
both transmitted signals y1 and y2. Besides, further analyses
of the chaotic behavior of the transmitter may lead to an
increase of the level of security.

V. CONCLUSION

In this paper we propose a new cryptosystem to send
messages in a secure way. It relies on an observer-based
synchronization scheme, and the transmitter is chosen as
a new chaotic system. Two chaotic signals are sent to the
receiver. The first signal is aimed at ensuring the synchro-
nization of the receiver, and a second chaotic signal is sent
by the transmitter, modulated by a variable delay depending
on the secret message. We prove the synchronization through
the resolution of a LMI, and we detail the encryption method
in a discrete case: the message to be transmitted is the famous
”Lenna picture”. The encrypted and recovered pictures show
the efficiency of our method, and we have shown that our
cryptosystem possesses a secret key, which guarantees the
security.
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