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Abstract. Switching systems are a particular class of hybrid systems.They
are represented by several operating regimes, called modes, each of them be-
ing active under certain particular conditions. The modes can be associated
with normal or faulty operating conditions. Therefore, thedetermination of
the active mode at any moment constitutes a fault diagnosis approach for
such systems. This paper addresses the issue of the determination of the
active mode at any moment, using only the system’s input/output data. To
perform this task, we propose an adaptation of the well-known parity space
method to this class of system. Conditions that guarantee the uniqueness of
the determined active mode are also given.
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1. Introduction

The modeling of complex systems often leads to complex non-linear models. To get rid
of the obtained model’s complexity, a widely used modeling strategy is to represent the
system’s behavior using a set of models with simple structure, each model describing the
behavior of the system in a particular operating zone. Within this modeling framework,
hybrid models are very successful in representing such processes.
Hybrid models (Heemelset al., 2001) characterize physical processes governed by con-
tinuous differential equations and discrete variables. The process is described by several
operating regimes, called modes, and the transition from one mode to another is governed
by a mechanism which depends of the system’s variables (input, output, state) or external
variables (human operator for instance). When the transition from one mode to another is
abrupt, one obtains a particular, but significant, class of systems namely switching models.
This class of models is widely used because tools for analysis and control of linear systems
are well mastered and, moreover, many real processes can be represented by models belong-
ing to this class.
Switching system (Juloskiet al., 2005) are described by several operating regimes that are
often linked to linear models. The transition from one mode to another is governed by
a mechanism which depends on the system’s variables (input,output, state) or external
variables (human operator for instance). When the nature of the switching mechanism is
unknown, the determination of the mode describing the behavior of the system at any mo-
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ment, this mode being called active mode, is a crucial information. We assume here that the
modes describe the behavior of the real system either in normal operating conditions or in
faulty operating conditions. The aim of this paper is to present a method for the determi-
nation of the active mode at any moment using the measurementdata (input and output) of
the system. This task is equivalent to a fault diagnostic scheme as it leads to the detection
of the modes associated with faulty operating conditions. The determination of the active
mode is performed thanks to an extension of the well-known parity space method (Chow
and Willsky, 1984) to switching system.
The paper starts in section 2 with the problem statement. Thedetermination of the active
mode is tackled in section 3. Conditions guaranteeing the discernability of the various
modes are formulated in section 5 and an illustrative example is proposed in section 6.

2. Problem statement

Let us consider the switching system represented by equation (1):
{

x (k + 1) = Aµk
x (k) + Bu (k)

y (k) = Cx (k)
Aµk

∈ A = {A1, A2, . . . , As}, µk ∈ {1, 2, . . . , s}, s ∈ N
∗\{1}

(1)

In equation (1), the variablesu(·), y(·) andx(·) respectively stand for the input, the output
and the state of the system. The regime switchings are introduced by means of the state
matrix which takes its value in a finite setA which isa priori known. The results presented
in this paper can be extended to the case where the matricesB andC also take different
values. The variableµ(·) denotes the active mode at any moment. For example, if one has
µk = i, i ∈ {1, 2, . . . , s}, the system is said to be in the modei at the instantk. We
assume that the switchings are triggered by unknown external variables and then, the mode
sequence is arbitrary and independent of the system’s variable (input, output and state).
Coming from (1), we wish to recover the active mode (or the value taken byµ(·)) at any
moment, using only the system’s input/output data on a finiteobservation window. We
introduce the following definitions:

Definition 1 (Path) A pathµ is a finite sequence of modes:µ = ( µ1 · µ2 · . . .·µh). The
length of a pathµ is denoted|µ| andΘh denotes the set of all paths of length|µ|.
µ[i,j] is the infix of the pathµ betweeni andj: µ[i,j] = (µi · µi+1 · . . . · µj).

Definition 2 (Observability matrix) The observability matrixOµ,h of a pathµ ∈ Θh is
defined as:

Oµ,h =










C
CAµ1

...
C Aµh−1

Aµh−2
· · ·Aµ1

︸ ︷︷ ︸

h−1










(2)

Definition 3 (Active path) On a finite observation window[k − h, k], the active pathµ∗

is the one describing the true mode sequence on the observation window.

From definitions 1 and 3, the estimation of the active mode at any moment is equivalent
to the determination of the path describing the true mode sequence on a finite observation
window. For that, throughout the remainder of this paper, wewill focus on the recovery of
the active path on an observation window.
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3. Determination of the active path

The determination of the active path task can be formulated as a recursive problem applied
to a sliding window. On a time window[k−h, k], equation (1) can be written in a compact
way as:

Yk−h,k − Tµ,hUk−h,k = Oµ,hx(k − h) (3)

whereYk−h,k =
(

y (k) . . . y (k − h)
)T

, Uk−h,k =
(

u (k) . . . u (k − h)
)T

and
Tµ,h is a Toeplitz matrix defined by:

Tµ,h =










0 . . . 0 0
CB 0 0

...
...

...
C Aµk−1

. . . Aµk−h+1
︸ ︷︷ ︸

h−1

B . . . CB 0










(4)

The relation (3) links on the time window the system’s input and output to the initial state
x(k − h) oon the observation window. We introduce the following proposition:

Proposition 1 The observability matricesOµ,h of the pathsµ generated on the observation
window[k − h, k] are all of full rank: rank (Oµ,h) = dim (x) = n,∀h ≥ n.

The existence of an integerh, such that proposition 1 holds, has been analyzed in (Babaali
et al., 2003) and is linked to pathwise observability that have been furthermore shown to be
decidable.
Using proposition 1, a projection matrix1 Ωµ,h is defined in such a way thatΩµ,hOµ,h = 0,
i.e. Ωµ,h is selected as a basis for the left null space ofOµ,h.
Next, residualsrµ,h(·), independent of the initial statex(k − h), can be defined as:

rµ,h(k) = Ωµ,h(Yk−h,k − Tµ,hUk−h,k) (5)

The residualsrµ,h(·) depends only on the system’s input and output and their calculation
requires the preliminary determination of all matricesΩµ,h.

Theorem 1 (Active path determination) The active pathµ∗ describing the true mode se-
quence on a time window[k − h, k] satisfies :

rµ∗,h(k) = Ωµ∗,h (Yk−h,k − Tµ∗,hUk−h,k) = 0 (6)

To recover the true mode sequenceµ∗ from the system’s measurements, one can proceed in
the following way:

• first, all the possible paths of lengthh are built on the time window[k − h, k]. This
is equivalent to finding all the matricesOµ,h.

• knowing the matricesOµ,h, the projection matricesΩµ,h are easily calculated.

• from the matricesOµ,h andΩµ,h, one can form the residualsrµ,h(·) using the sys-
tem’s measurements.

1In fact, the existence of the projection matrix is directly linked to the observability of the system and to the
length of the observation window (Gertler, 1997)
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• the active path is recovered from the system’s measurementsby testing the residuals
rµ,h(·) and it corresponds to the one which residual is equal to zero.

Let us noticed that the same methodology can be applied for the determination of the active
in the case of noisy measurement by allowing the test (6) to take into account the presence
of noise on the system measurement (Domlanet al., 2006). Finally, once the active mode
is identified, the statex(·) of the system can be estimated using a finite memory observer
(Ragotet al., 2003).

4. On the number of path

It is easy to see that the enumeration of all paths on a time window [k − h, k] introduces
a problem of combinative explosion related on the number of modes and the length of the
observation window. Indeed, the number of residualsrµ,h(·), µ ∈ Θh, to be calculated
is equal tosh and quickly grows with the lengthh + 1 of the observation window and
the numbers of modes. Then, the use of all paths on a time window is awkwardand
computationally demanding. In practice, all pathsµ ∈ Θh do not have to be considered at
every moment. When at a timek0, the active path on an observation window[k0 − h, k0]
is identified, it is not necessary to test thesh residuals at the next instantk0 + 1. Only
the pathsµ ∈ Θh with infixesµ[k0+1−h,k0−1] identical to the infixµ∗

[k0+1−h,k0−1] of the
pathµ∗ recovered previously atk0 are considered at the next instantk0 + 1. Moreover,
assuming that the minimum sojourn time in a mode is less than the length of the observation
window, one can limit the number of generated paths by only considering paths that describe
the mode sequence when the system remains in the same mode allover the duration of the
observation window, i.e.µ = (i · i · . . . · i), i ∈ {1, 2, . . . , s}. Nevertheless, the reduction
of the number of residuals comes at the expense of a delay in the estimation of the switching
time from one mode to another. The recognition of the active path cannot take place as long
as the switching instant is in the observation window. Thus,a maximum delay equals to the
length of the observation window exists.
Prior knowledge on the process such as “prohibited” switching sequences or minimal time
between two consecutive switchings, can also help to limit the number of generated residuals
or paths to be considered.

5. Path discernability

In what follows, we are interested in the conditions guaranteeing the discernability of the
various paths enumerated on an observation window. These conditions ensure the unique-
ness of the recovered active pathµ∗ during the path recognition process.

Definition 4 (Path discernability) Two pathsµ1 ∈ Θh and µ2 ∈ Θh are discernible on
an observation window[k − h, k] if their respective corresponding residualsrµ1,h(·) and
rµ2,h(·) are not simultaneously null when one of the two paths is active on the considered
observation window.

In order to establish the discernability conditions of two different paths, let us consider two

pathsµ1 ∈ Θh andµ2 ∈ Θh on an observation window[k − h, k]. We denoteY µ1

k−h,k

(respectivelyY µ2

k−h,k) the output vector related to the system when it undergoes the pathµ1

(respectivelyµ2). We suppose that at an instantk, the active path on the observation window
is the pathµ1. This information being unknown, we have to analyze the possibilities that
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the pathµ1 or the pathµ2 are in adequacy with the system’s data. Using equation (5), the
expressions of the residualsrµ1,h(·) andrµ2,h(·), whenµ1 is the active path, are given by:

{
rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Tµ2,hUk−h,k

) (7)

Adding and taking awayY µ2

k−h,k from the expression ofrµ2,h(·), one obtains:

{
rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Y µ2

k−h,k + Y µ2

k−h,k − Tµ2,hUk−h,k

) (8)

As by definitionΩµ2,h

(

Y µ2

k−h,k − Tµ2,hUk−h,k

)

= 0, one has:

{
rµ1,h(k) = 0

rµ2,h(k) = Ωµ2,h

(

Y µ1

k−h,k − Y µ2

k−h,k

) (9)

Equation (9) clearly points out that the residual calculated for the pathµ2 (nonactive path)
directly depends on the difference between the system’s outputs when the mode sequence
evolves according to the two pathsµ1 andµ2, the system being excited by the same inputs
in both cases. Therefore, a necessary and sufficient condition for the residualsrµ1,h(k) and
rµ2,h(k) not to be simultaneously equal to zero is:

Y µ1

k−h,k − Y µ2

k−h,k /∈ Nr(Ωµ2,h) (10)

whereNr stands for the operator “right null space”.
Condition (10) has to be analyzed in order to deduce the discernability conditions. Accord-
ing to (3), one has:

Y µ1

k−h,k − Y µ2

k−h,k =
(
Oµ1,h −Oµ2,h

)
x(k − h) +

(
Tµ1,h − Tµ2,h

)
Uk−h,k (11)

wherex(k − h) is the value of the system’s state at the initial instant of the observation
window.
From (11), we obtain:

Ωµ2,h(Y µ1

k−h,k − Y µ2

k−h,k) = Ωµ2,hOµ1,hx(k − h) + Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k

(12)
If Y µ1

k−h,k − Y µ2

k−h,k belongs to the right null space ofΩµ2,h, one has:

Ωµ2,hOµ1,hx(k − h) + Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k = 0 (13)

The relation is satisfied “for almost every initial state”2 x(k − h) if the following necessary
and sufficient condition is satisfied:

{
Ωµ2,hOµ1,h = 0

Ωµ2,h

(
Tµ1,h − Tµ2,h

)
Uk−h,k = 0

(14)

Therefore, the pathsµ1 and µ2 are not discernible on a time window[k − h, k] if the
relations (14) are satisfied.

2see remark 1 for the explanation of the expression “for almost every initial state”
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Theorem 2 (Path discernability) Two pathsµ1 andµ2 of a switching system are discernible
on an observation window[k − h, k], “for almost every initial state”x(k − h), if:

Ωµi,hOµj ,h 6= 0, i, j ∈ {1, 2} , i 6= j (15)

or
Ωµi,h

(
Tµj ,h − Tµi,h

)
Uk−h,k 6= 0 i, j ∈ {1, 2} , i 6= j (16)

whereUk−h,k is the vector containing the system’s input stacked on the observation window.

The proof of this theorem directly comes from the preceding remarks.

Remark 1 (Dependency to the initial state)In theorem 2, the expression “for almost ev-
ery initial state” holds owing to the fact that the discernability of the paths cannot be en-
sured for any initial statex(k−h). In fact, for certain particular values ofx(k−h), the rela-
tion (13) is always satisfied independently of the input sequenceUk−h,k. For example, in the

situation whereOµ1,h has full rank, forx(k−h) =
(
Oµ1,h

)† (
Φ −

(
Tµ1,h − Tµ2,h

)
Uk−h,k

)
,

equation (13) is satisfied for every input sequenceUk−h,k, whereΦ belongs to the right null

space ofΩµ2,h and
(
Oµ1,h

)†
is the pseudo-inverse ofOµ1,h.

6. Academic example

We present here an academic example of a switching system characterized by three modes
and the matrices of the models describing the different modes are:

A1 =

(
−0.211 0

0 0.521

)

A2 =

(
0.691 0

0 −0.310

)

A3 =

(
0.153 0

0 0.410

)

B =
(

2 −1
)T

C =
(

1 2
)

(17)

Figure 1 shows the inputu(·), the outputy(·), the statex(·) and the mode sequenceµ(·).
The vertical dashed lines on the third graphic of figure 1 markthe time instants where
switchings occur. The fourth graphic plots the mode sequence described by the mode’s
selection variableµ(·).

As Ωk,h

li
Ok,h

lj
6= 0, µi, µj ∈ Θ2, µi 6= µj , Θ2 being the set of all paths of length2, the

condition (15) of theorem 2 is respected. Condition (16) is tested at every moment. If it is
not satisfied, no decision is taken concerning the recognition of the active path.
In order to perform the determination of the active path at every moment from the system’s
input and output signals, we consider an observation windowof length3, leading to the
consideration of the setΘ2 of all paths of length2 on the observation window.
Figure 2 presents the evolution of the calculated residuals. The different graphics on the
figure show the residualsr(i · j),h(·), i, j ∈ {1, 2, 3} corresponding to the paths of length2.
Only one residual equals zero at each instant, the index(i · j) of this residual corresponding
to the active path on the considered time window.

As explained in section 4, to reduce the number of residuals to be analyzed during the active
mode determination process, it is possible to only considerthe paths describing the mode
sequence when the system remains in the same mode all over theduration of the observation
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Fig. 1. Input u(·), output y(·), state x(·), mode sequence µ(·)
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Fig. 2. Residuals rµ,h(·), µ ∈ Θh

window. In this case, only the paths(1 · 1), (2 · 2), and(3 · 3) have to be considered. While
having a close look at the residualsr(1 · 1),h(·), r(2 · 2),h(·) andr(3 · 3),h(·) on the graphics
of figure 2, one can see that , except in a vicinity of the switching instants, only one of the
three residuals is null at every moment, the index(i · i), i ∈ {1, 2, . . . , s} of this residual
being the active path on the considered time window. When a switching occurs, none of the
paths(1 · 1), (2 · 2) and(3 · 3) matches the active path, this situation highlighting the
occurrence of a switching.
The mode sequence (first graphic of figure 3) and its estimation (second graphic of figure
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3) while analyzing the residuals are depicted on figure 3. Thefigure shows that the mode
sequence is well reconstructed.

10 20 30 40 50 60 70 80 90 100
1

2

3 true µ
k

10 20 30 40 50 60 70 80 90 100
1

2

3 estimated µ
k

Fig. 3. Mode’s recognition

7. Conclusion

This paper proposed a method for the determination of the active mode and the switching
instants of a switching system, using only the system’s input and output data. Discernability
conditions have also been examined.
A point to be deepened is the situation where all the modes of the system are not previously
indexed. In this case, one does not have a complete knowledgeof all the operating regimes
of the system. Therefore, it is necessary to simultaneouslyproceed to the detection of not
indexed modes and to the estimation of their parameters.
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