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Abstract: This paper studies the state observer design problem for discrete-time multiple models. 
New sufficient conditions for the convergence of such multiple observer are derived via 
Lyapunov appraoch and BMI (Bilinear Matrix Inequalities) formulation. For facility purpose, a 
LMI (Linear Matrix Inequality) form is obtained from BMI linearization. The method uses the 
piecewise quadratic Lyapunov functions and the S-procedure to relax the conservativeness of the 
quadratic Lyapunov results. Copyright © 2003 IFAC. 
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1. INTRODUCTION 

The issue of stability, the design of state feedback 
controller as well as the design of state observer for 
nonlinear systems described by multiple models 
(Murray-Smith and Johansen, 1997) have been 
considered actively during the last decade (Chadli, et 
al., 2002a; Tanaka, et al., 1998; Narendra and 
balakrishnan, 1994). Having the property of 
universal approximation (Buckley, 1992; Castro, 
1995), this representation includes the Takagi- 
Sugeno model (Takagi and Sugeno, 1985; Sugeno 
and Kang, 1988) and can be seen also as Polytopic 
Linear Differential Inclusions (PLDI) (Boyd, et al., 
1994). The multiple model consists to construct 
nonlinear dynamic system by means of interpolating 
the behavior of several LTI local submodels. Each 
submodel contributes to the global model in a 
particular subset of the operating space throughout 
activation functions. 

Many works have been carried out to investigate the 
stability analysis of multiple models using a 
quadratic Lyapunov function and sufficient 
conditions for the stability and stabilizability have 
been established (Tanaka, et al., 1998; Narendra and 
Balakrishnan, 1994, Chadli, 2002d). The stability 
mainly depends on the existence of a common 
positive definite matrix guarantying the stability of 
all local subsystems. These stability conditions may 
be expressed in linear matrix inequalities (LMIs) 
form (Boyd, et al., 1994). The obtaining of a solution 
is then facilitated by using numerical toolboxes for 
solving such problems. To obtain relaxed stability 
conditions, nonquadratic Lyapunov function 
formulated as a set of LMIs are used (Chadli, et al., 
2002a; Feng, et al., 2000; Johansen, et al., 1999). A 
certain form of multiple observers has been proposed 
and sufficient conditions for the asymptotic 
convergence are obtained which are dual to those for 
the stability of multiple controllers (Tanaka, et al., 
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1998; Chadli, et al. 2002b). LMIs constraints have 
been also used for pole assignment in LMI regions to 
achieve desired performances of multiple controllers 
and multiple observers (Lopez-Toribio and Patton, 
1999). In (Chadli, et al. 2002b; Chadli, et al., 2002c) 
the separation property have been studied for both 
measurable and estimated decision variables cases. 

This paper is organized as follows. Section 2 recalls 
the structure of discrete-time multiple models. In 
section 3, under the assumption that the multiple 
model is locally detectable, sufficient conditions for 
the global exponential stability are derived in LMIs 
form for multiple observer. In section 4, the main 
result is given. Based on the use of the piecewise 
quadratic Lyapunov function and the S-procedure, 
new stability conditions are presented. Firstly in the 
BMI form and secondly in LMI form under rank 
constraint. 

In the rest of the paper, the following useful notation 
is used: X T denotes the transpose of the matrix X, 
X > 0 (X > 0) denotes symmetric positive definite 

(semidefinite) matrix, ~,min(X) and )~max(X) denote 
respectively the minimum and maximum 
eigenvalues of the matrix X, X- denotes the Moore- 

Penrose inverse of X, ( ;  ; )  denotes symmetric 

matrix where (* )=B T , In = {1, .., n} and 
n n n 

Z XiXj = Z Z XiXj " 
i<j i=lj=l,j>i 

2. DISCRETE-TIME MULTIPLE MODELS 

Consider the following nonlinear dynamic system in 
the multiple models representation: 

n 

x(k + 1)= Z~ti(z(k))(Aix(k)+ Biu(k)) (1) 
i=1 

where x(k) ~ IR p is the state vector, u(k) ~ [R m is the 
input vector, n is the number of submodels, 

y(k) ~ [R 1 is the output vector, A i E [R p'p, B i E IF{ p'm 

and z(k) is the decision variable vector. The choice 

of the variable z(k) leads to different class of 
systems. It can depend on the measurable state 
variables and possibly on the input; in this case, the 
system (1) describes a nonlinear system. It can also 
be an unknown constant value, system (1) then 
represents a polytopic linear differential inclusion 
(PLDI) (Boyd, et al., 1994). 

The activation function gi(z(k)) in relation with the 

i th submodel is such that 

I i~l~i(z(k)) = 1 

L~ti(z(k)) >- o, i E l  n 

(2) 

The final output of discrete-time multiple models is 
also interpolated as follows: 

n 

y(k) = ~_,~i(z(k))Cix(k) (3) 
i=1 

where C i ~ ~l.p are the output matrices. 

It should be point out that at a specific time, only a 
number r of local models are activated, depending 
on the structure of the activation functions ~i(z(k)).  

3. BASIC MULTIPLE OBSERVER DESIGN 

In practice, all the states of a system are not fully 
measurable. Thus, the problem addressed in this 
section is the construction of a multiple observer to 
estimate states of the multiple models (1). It is 
supposed that the decision variables z(k) are 
measurable and the multiple models (1) is locally 
detectable, i.e. the pairs (a i ,C  i ) , i 6 I  n are 

detectable. 

Using the same structure as the one for multiple 
controller design, the multiple observer for the 
multiple models (1) is written as follows • 

In .~(k + 1) ~i(z(k))(Ai.~(k) + Biu(k ) + Li(Y(k ) - ~(k))) 

[~(k) = i~__l~i (z(k))Cix(k ) 

(4) 

where .~(k) and ~(k) denote the estimated state 
vector and output vector respectively. The activation 
functions IJ, i(z(k)) are the same that those used in 

the multiple models (1). Denoting the state 
estimation error by 

it follows from (1) and (4) that the observer dynamic 
error is given by the following equation • 

n n 

.~(k + 1)= Z ~ i ( z ( k ) ) ~ j ( z ( k ) ) O i j ' ~ ( k )  (6) 
i=lj=l 
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where 

(9(i = Ai - Li Cj (7) 

The design of the observer consists to determine the 
local gains L i to ensure the asymptotic convergence 
to zero of the estimation error (6). To prove the 
global exponential stability conditions of the 
estimation error (6), the following result which is 
derived from theorem 1 is proposed. 

The quadratic case uses the quadratic Lyapunov 
function 

(k)ex(k), p > 0 (8) 

Which is a radialy unbounded Lyapunov function 

since that V x(k) ~ IR p 

  n( )llx(k)ll 2_< V(x(k)) <_  x(Pl)llx(k)ll 2 <9) 

Tacking into account the variation of Lyapunov 
function (8) 

AV(x(k)) : V(x(k + I))- V(x(k)) (10) 

along the trajectory of the model (6), we obtain the 
following result : 

T h e o r e m  I : Suppose that there exist matrices L i and 

symmetric positive definite matrices P and Q such 
that 

O ii PO ii - P + r -  Q < 0 i ~ I n ( l la)  

( O i j + O j i )  T ( O i j + O j i )  Q 
p - p < - -  ( l lb)  

2 2 2 

with (9(1 = A i - L iC j , V i< j E I n and 

~ i ( z ( k ) ) ~ t j ( z ( k ) ) : / : O .  Then there exists a discrete- 

time multiple observer of the form (4) such that the 
error estimation (6) is globally exponentially stable. 

Proof: see (Chadli, et al., 2002b). 

With the definition (7), the constraints (11) are 
bilinear in L i and P. Using the Schur complement, 
the linearization of (11) gives : 

P > 0 , Q > 0  (12a) 

II _(r - 'n 

P+Q2 *p 

l(,(Ai >0, 

(12b) 

i < j e l  n 

(12c) 

which are LMIs in P, Q and Yi, i ~ I n with 

L i = P - 1 Y  i (13) 

4. MAIN RESULT 

This section is based on the use of the piecewise 
quadratic Lyapunov function: 

V(x(k)) = max(V I (x(k)) .... Vi(x(k)) .... Vn(x(k)) ) 

where Vi(x (k ) )  : x ( k )  T Pix(k) ,  Pi > O, i ~ I n (14) 

The following theorem gives sufficient stability 
conditions by using the S-procedure lemma and 
nonquadratic Lyapunov function candidate (14). 

Firstly, let us recall the following result (Chadli, et 
al., 2002a). 

T h e o r e m  2: Suppose that there exists symmetric 
matrices Pi i ~ I n and scalars "cijk >- 0 such that 

n 2 
A T I ~ A i - P j  + ~ 'Ci jk (Pj  - P k ) ,  ( i , j ) ~  I n (15) 

k=l 

Then the unforced discrete-time multiple model of 
(1) is globally asymptotically stable. 

P r o o f :  The proof is obtained by using the 
nonquadratic Lyapunov function (14) and the S- 
procedure lemma (see appendix). II 

The result obtained in (15) is less conservative than 
that derived in the quadratic case which is based on 

the inequalities A T PA i - P < O, P > O, i ~ I n . We can 
prove easily that the quadratic conditions are 
included in the derived conditions by substituting 
Pi, i ~ l  n by P. 

The conditions (15) of theorem 2 will be extended to 
design multiple observers. We can substitute directly 
O ij by A i in (15). However, for more relaxed 

stability conditions, the constraints (11) of theorem 1 
will be used. 
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Theorem 3 : Suppose that there exist matrices L i and 

symmetric positive definite matrices Pi i ~ I n , Q and 

scalars T, ijkl >_ 0 such that 

I ( 1 )  n I Pk - r -  Q -  Z "C iikl ( Pk - Pl ) * 2 
/=1 >O'( i 'k)  E ln  

PkOii ek 
(16a) / n / 

4P k + 2 Q -  ~, T, ijkl(e k - e l ) * 
1=1 

Pk ( O ij + O ji ) Pk 

> 0  (16b) 

(i, j , k )  ~ 13, i < j 

with O(j = A i - LiC j ,  V i< j ~ I n and 

g i ( z ( k ) ) g j ( z ( k ) ) ¢ O .  Then there exists a discrete- 

time multiple observer of the form (4) such that the 
error estimation (6) is globally exponentially stable. 

P r o o f :  Considering the nonquadratic Lyapunov 
function candidate (14). It follows that 

V(x(k)) = Vk(x(k)) if Vk(x(k)) > V/(x(k)), k ¢ l ~ I n 

(17) 

Consequently if Vk(x(k)) > Vl(x(k)),  k ~: l ~ I n then 

AV(x(k)) : AVk(x(k)) 

In the following, for take of simplicity, we denote 
gi(z(k))  by ~i and Vi (x ( k ) )by  V i. Considering all 

possible situations, we have when V k > V/, V x(k) : 

n n n 
AV k = x(k) T ~, ~_, ~ ~ t ik t jk tkk t l (OTPkOi j  - Pk)x(k) 

i=lj=lk=ll=l 

- ii Pk 0 ii - Pk )x(k ) + 
i=l 

Consequently, 

k e l V i n , i f  

when x(k)r(ek - e / ) x ( k ) _ >  0 

i o ,oii "+lrl) 'o 
( O i j + O j i )  T ( O i j + O j i )  Q 

P - P < - -  
2 2 2 

(18) 

then AV k < 0 V x(k) ¢ O. 

Finally, constraints (16) are obtained by applying the 
S-procedure lemma to (18) and using the Schur 
complement. II 

Remarks: 

1) It should be noted that the quadratic conditions 
(11) are included in conditions derived in (16). So 
when P i = P , i ~ I  n we have P k - P / = 0  and 

V(x(k)) = max(Vi(x(k))  ) = x(k) T Px(k) .  Then we 
i~l,, " 

obtain conditions (11) derived from the quadratic 
case. 

2) The same result can be obtained by using the 
nonquadratic Lyapunov function and 

V(x(k)) = min(Vi (x(k))) . 
i~l,, 

The use of the S-procedure lemma and the 
nonquadratic Lyapunov function (14) leads to 

n2 (n + 1) / 2 BMI conditions. We know that BMI 

problem is not convex and may have multiple local 
solutions. However, many control problems that 
require the solution to B MIs can be formulated as 
LMIs, which may be solved very efficiently. 
Unfortunately, obtaining the LMI formulation is very 
difficult in our case. For solving BMI problem, we 
can use, for example, the path-following method, 
developed in (Hassibi, et al., 1999). This method 
utilizes a first order perturbation approximation to 
linearize the BMI problem. Hence, the BMIs are 
converted into a series of LMIs iteratively solved 
until a desired performance is achieved if any. 

For that purpose, let Pko and Lio be initial values 

such that 

Pk = Pko + 8Pk, Li = Lio + 8Li (20) 

The BMIs term PkOij of (16) can be rewritten by 

neglecting the second order terms 8PkSLiC i as the 

following LMIs in the variables BP k and 8L i. 

Pk 0 ij = (Pko + 5Pk )(Ai - Lio Cj ) - PkoSLi Cj 

with Pko + 8Pk > 0 

(21) 

Tacking into account the expression (21), the initial 
BMI problem (16) become LMI in respect to the 
variables 8P k and 8L i by fixing the scalars "cijkl. 

It is important to note that the following constraints: 

II p, II < Clip, oil and II L, II < ;IlL/oil, o < ~ << 1 must be 
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added in order to ensure that the linear 
approximation should be valid. 
The major weakness of this method is, firstly, the 
choice of initial values for an acceptable solution and 
secondly the convergence to a solution which is not 
guaranteed. Some BMI can be converted into an 
equivalent LMI problem with a rank constraint. The 
resolution of this problem appears in many problems 
of analysis and synthesis. It is a nonconvex NP-hard 
problem. However, some methods are proposed to 
find solutions for this kind of problems. Local or 
global optimization Algorithms can be employed. As 
an example, in (Henrion, et al., 2000) the authors 
proposed an heuristic algorithm to solve an LMI 
problem with a rank-one constraints. In (Apkarian, et 
al., 2000) a method, based on the Frank & Wolf 
algorithm, guaranteeing the global optimality of the 
solution, if any, is given. In the following we 
propose an LMI formulation under rank constraint of 
the BMI problem (16). 

Theorem 4 • Suppose that there exist symmetric 
positive matrices definite matrices Pi,i E I n , 

Q ~ [R p'p, matrices Rki and scalars Xijkt > 0 such 

that 

I (1 )  n I Pk - r -  Q -  ~_, T, iikl ( e k - e l )  * 2 
1=1 > O ' ( i ' k ) e l n  

Pkai + RkiCi Pk 
(22a) / n / 

4 P k + 2 Q -  E T, ij kl ( Pk - Pl ) * 
1=1 

Pk (Ai + A j ) -  RkiC j - ekjC i Pk 

(i, j , k )  ~ 13, i< j 

> 0  

(22b) 

rang(P Ri)= p,i  E I n (22c) 

with 

P=(P1 P1 "'" p n ) T , R i = ( R 1  i R2 i ... Rni)T 

Then there exists a discrete-time multiple observer of 
the form (4) such that the error estimation (6) is 

globally exponentially stable where L i = P - R  i. 

Proof :  The conditions (22) are obtained directly 
from (16) (theorem 3) with the change of variables 
Rki = PkLi . The rank constraint (22c) is essential in 
order to guarrantee that the change of variables 
Rki = Pk Li leads at least to a solution. • 

In the case of using a common output matrix, i. e. 
C i = C, i ~ I n , we obtain the following result • 

Theorem 5 • Suppose that there exist symmetric 
positive matrices definite matrices Pi,i E I n , 

Q ~ ~P'P, matrices Rki and scalars "~ikl >- 0 such that /n / 
ek - E "~ ikl ( ek - el) * 2 

1=1 > 0, (i,k) E I n 

Pk ai + RkiCi Pk 

(23a) 

rang(P Ri )= p,i  ~ I n (23b) 

with 

P : ( P 1  P1 "'" pn)T,Ri  = (Rli R2i "'" Rni) T 

Then there exists a discrete-time multiple observer of 
the form (4) such that the error estimation (6) is 

globally exponentially stable where L i = P - R  i. 

Proof: see theorem 4. • 

Let us notice that it suffices to take Pk = Po, k ~ In to 
obtain the quadratic results. Indeed, since 
P k - P / =  0 and the condition of rank constraints 

becomes commonplace, the conditions of theorems 4 
and 5 become LMI in P0 and Roi. The observer 

gains are obtained directly by L i = PO 1Roi. 

5. CONCLUSION 

This paper presents new stability conditions for 
discrete-time multiple observer. The result is based 
on the use of the piecewise quadratic Lyapunov 
function and the S-procedure. Although these 
conditions are in the B MI form, the result is less 
conservative than the quadratic result. An LMI 
formulation under rank constraint is also proposed. 

APPENDIX 

Lemma (S-Procedure, (Boyd, et al., 1994))" 
Let Fo(x(t)) ..... Fq(x(t)) be quadratic functions of 

the variable x(t) ~ IR p . 

If there exists scalars q:l > 0 . . . .  'l;q > 0 such that 
q 

Fo(x( t ) ) -  E xiFi(x(t)) < 0 
i=1 

then Fo(x( t ) )<O for all x(t) such 

Fi(x(t)) <_ O, V i E  lq. 

that 
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