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Abstract

During the last years, a number of methodological papers on
models with discrete parameter shifts have revived interest in
the so-called regime switching models. Piecewise linear
models are attractive when modelling a wide range of
nonlinear systems and determining simultaneously 1) the
data partition 2) the time instant of change 3) the parameter
values of the different local models. This is a difficult
problem for which no solution exists in the general case and
we show here some aspects and particular results concerning
the problem of off line learning of switching time series.
We propose a method for identifying the parameters of the
local models when choosing an adapted weighting function,
this function allowing to select the data for which each local
model is active. Indeed the proposed method is able to solve
simultaneously the data allocation and the parameter
estimation. The feasibility and the performance of the
procedure is demonstrated using several academic examples.

Keywords : piecewise system, switching, parameter
estimation, data classification, signal segmentation.

1. Introduction

For the identification of nonlinear systems, there has been a
large activity during the past years. In particular many
interesting results have been reported in connection with
multi-model [1] and/or multiple models, [2], hinging
hyperplanes [3], [4], hidden Markov models [5], mixture of
regressions [6], segmented curves [7]. Most of these works
refer to quasistationnary or locally stationary systems
characterised by abrupt changes between stationary segments
with different statistical properties. Many formulations of
this problem also appear in the field of fuzzy systems [8],
[9].

In the following we focus the attention on PieceWise Auto
Regressive Exogeneous models (PWARX). As it will be
pointed out latter, if the partition of piecewise mapping is
known, the problem of identification can easily be solved
by using standard techniques of estimation. However, when
the partition is unknown the problem becomes much more
difficult. Thus, there are two possibilities. Either a
partitioning, defining the local domains in which the

system is constant, is a priori defined or the partitioning
has to be estimated along with the local models.

Our contribution is to illustrate this problem in the case
where the structure and the number of the local models are
known. Thus, we restrict the estimation problem to (1) the
estimation of switching between the local models, (2) the
estimation of the parameters of the local models.
Summarising, the main ideas of our contribution deal with
the use of adapted weights allowing a powerful
classification of the data and a sequential estimation of the
different local model parameters.

This paper is organised as follows : section 2 explains,
through a simple example, what is the problem to solve and
the foregoing difficulties. Section 3 constitutes the
contribution of the paper and is followed by a conclusion.
Some simulation examples provide an illustration of the
proposed algorithms both in section 4.

2. Model description

To begin with, let us consider systems in regression form

yk = jk
T q j          j = 1..s (1a)

if Hj
Tjk £ 0 (1b)

where jk Œ¬p  is a regression vector q j Œ¬ p  the
parameter vector associated with the jth local model, and
Hj Œ¬p  are unknown parameters. We then consider that
the observations are generated by switching among  s
different AR models of orders p  and parameters q j .
Further we will use also the notation :

yk = jk
T q(v) (2)

where v  is a key vector describing in what mode the system
is for the time being ; v  can be a function of (k ,u,y)  or
some external input and takes its values in a finite set
Is = 1,... ,s{ } . Thus the time series is generated by the
combination of s  functions jk

Tq(v).

This is not the only way to describe switching system and
the reader should refer to [4], [10], [11], [12], [13], [14] for
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other formulations using mixture of models, endogenous
switching, structural break models, self exciting threshold
autoregressions (SETAR), smooth transition autoregressive
model (STAR), neural network [15], and at last hybrid
systems [16].

The regression vector j  could consist of old inputs and
outputs. The sets Zj = Hj

Tjk £ 0{ },  j = 1..s  are
polyhedral partitions of the j - space .
Our problem, when we are given yk  and jk , k = 1. .N ,
consists in finding the PWARX model that best matches
the given data, the number s  being generally unknown. The
model (1) can be identified by minimising the optimisation
criterion :

F =
j=1

s
Â yk - jk

T q j( )2
r j jk( )Ê 

Ë 
Á ˆ 

¯ 
˜ 

k= 1

N
Â (3)

subject to :

r j jk( ) =
1  if  Hj

T jk £ 0
0  otherwise  

Ï 
Ì 
Ó 

(4)

where q j  and Hj , j = 1..s  , are the unknown.
An important problem is that of change-point detection,
namely, detecting when the time-series has switched in
some manner (eq. 1). At time k , for a given regression
vector jk , only one condition (1b) is satisfied and exactly
one of the functions r j jk( )  equals 1. This means that all
the terms in (3) are zero excepted one, those corresponding
to the active local model. Consequently, if we known that a
set of data is belonging to a particular local model,
minimising (3) is straightforward. However, in general, the
data partitioning is a priori unknown and the parameter
estimation problem becomes difficult.

In our case, we limit the estimation problem to the one of
q j  ; however, we need to simultaneously estimate the
values of the function j j  in order to know the time
switching i.e. the data useful to estimate the parameters of
the jth local model. In fact we are not involved with the
explanation of the switching, i.e. the estimation of the Hj
parameters.

3. The main algorithm

Here we present our main contribution. Let yk  represents
the output measurements of the underlying system and yk, j
the output of the jth local model. To fit the local model to
the data, we attempt to minimise the error function :

F = yk, j - yk( )2

j=1

s
Â

k= 1

N
Â pk, j (5)

yk, j = jk
Tq j

where the weights pk, j   have to be designed such that the
local model j  is adapted only with the input-output data
for which it is concerned. It can be seen that the cost
function (5) represents a trade-off between local and global

learning. Indeed, when the model output yk, j  is closed to
the measurement yk  then model j  matches the
measurements and pk, j  must be smaller than pk,l ,  "l ≠ j .
In general, this performance index has to be minimised with
respect to the parameter vectors q j  to all possible disjoint
partitions of the measurement set and to all possible
numbers of submodels. Here we restrict the identification
problem, the number of submodels being a priori chosen.
Obviously, the key point is the design of these weights. In
the following a non parametric estimation is used because
there is no need to parameterize the weighting functions,
only their values being useful to separate the data according
to the s  local models. The ideal situation deals with the
knowledge of the partition of the data into s  groups, the
first one gathering the data in accordance with the first
model, and similarly for the other groups. These s  sets are
noted Sj  , j = 1..s  :

Sj = xk , yk( ), k = 1. .N / xk , yk( )  satisfy model  j{ }

Thus, the optimal weights are defined by :

pk, j =
1 if  xk , yk( ) ŒSj

0  if  xk , yk( ) œSj

Ï 
Ì 
Ô 

Ó Ô 
    k = 1. .N     j = 1..s (6)

In fact our algorithm try to adapt the weights as closed as
possible to the optimal ones.

The complete iterative algorithm is now described. Each
iteration consists of two steps. The first one (step 1) is to
determine an estimation of the weighting functions pk, j
given the local models. The second step (step 2) is to
identify the local models given the weights. Note that in
[17] a similar model description is used in the context of
weighted combination of local linear state-space systems
but using a different approach based on an extended Kalman
smoother allowing to estimate changes in the weights.
It should be noted that the proposed algorithm estimates
sequentially these local models (and use a serial data
allocation). More precisely, the algorithm estimates the first
local model, the second local model explains the residuals
of the first local model and so on. The algorithm uses an
adapted weighting function allowing the clustering of the
data automatically.

Algorithm  : sequential estimation

Step 0. Initialisation
Select s  the number of local models
Select a set of weighting matrices Wj  for the s  local
models.
Define the matrices :

X = j1  º  jN[ ]T

y = y1  º  yN[ ]
Dy0 = y ˆ q 0 = 0

Set r = 0
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Step 1. Parameter computation
For j  = 1..s :

residual regression : Dˆ q j = XTWjX( )-1
XT WjDy j-1

residual estimation : Dˆ y j-1 = XDˆ q j
residual : Dyj = Dyj-1 - Dˆ y j-1

local model parameters : ˆ q j = ˆ q j-1 + Dˆ q j

residual criterion F j = Dy j Wj

2

Step 2. Weight computation
For j = 1..s

weights : pj = Dyq( )2 r

q=1
q≠ j

s
’

normalised weights : pj = pj / p j
j=1

s
’

Wj
(r ) = diag pj( ) ,

The operator ’  is used for evaluating the Hadamard
product of vectors. The /  operator allows to divide two
vectors component by component. The "diag" operator
allows to construct a diagonal matrix from a vector.

Step 3. Convergence test
Check for termination in some convenient matrix norm. If
W(r ) - W(r+1) £ e   go to step 4, otherwie set r = r +1

and return to step 1.

Step 4 Classification
The fuzzy data allocation is naturally given by the values of
the weights. It is also possible to transform these weights
into a binary representation involving only the values 0 and
1.

Remarks
- For the implementation issues, in step 2, the coefficient r
enforced the weight and in our experience, it must be
chosen between 2 and 4.
- The preceding algorithm supposes that matrices XTWj X
are regular. Indeed, it rarely occurs in practice that particular
data and weights will cause singularity of XTWj X .
- The convergence of the algorithm is not discussed here
and the reader may refer to [18] in which the use of EM and
FCRM algorithms encounter the same convergence
problem. As a evidence, the initialisation is a key point. It
is important to note that, generally speaking, classification
algorithms may terminate at extrema different from the true
value. In our case, the proposed algorithm is quite enough
insensitive to the initialisation used. However it is always
possible to generate particular data for which the algorithm
will trap at a local solution.

3. Examples

To verify the validity of the proposed algorithm and test its
performance, we conducted several Monte-Carlo experiments

with simulated data most of them being collected from
systems used as benchmark in the literature. Here some
results are presented.

Example 1

The data have been generated by the PWARX system (this
structure has been proposed and analysed in [19] :

y(k + 1) = au(k ) + b + e(k) (7)
a = -1   b = 0  if  u(k) Œ -4,0[ ]
a = 1 b = 0     if  u(k) Œ 0,2[ ]
a = 3  b = -2  if  u(k ) Œ 2,4[ ]  

Ï 

Ì 
Ô 

Ó 
Ô 

where the input  u(k) Œ¬  is a random sequence with
uniform distribution on -4,4[ ]  and where the noise e(k)  is
a random sequence with standard deviation s = 0.1 . In that
example, the three clusters have respectively, 30, 15 and 15
data. Ideally, cluster 1, 2 and 3 (corresponding to models 1,
2 and 3)) would respectively contain indices 1 to 30, indices
31 to 45 and indices 46 to 50. We have applied the
algorithm 1 to these data when the number of local models
is fixed to 3 (which corresponds to the exact number of
clusters in the data). The identified parameters are :

Model
1  :  a = -0.999    b = 0.011
2  :  a = 0.905      b = 0.133
3  :  a = 2.917      b = -1.754

Ï 

Ì 
Ô 

Ó 
Ô 

Figure 1a present the data of the simulated system in the
plan y(k) ,  u(k){ } . Figure 1b simultaneously displays the
data and the estimated model for each class. The vicinity of
the data in regard to the local models provides a good
approximation of the PWARX system (7). As an example
of classification performance, fig. 1c (left) show the
estimation errors and fig. 1d (right) the weighting functions
for local models 1, 2 and 3 at iteration 7 (after convergence
of the algorithm). These weights allow to
perform the classification of the data which is given here as
membership coefficient normalised between 0 and 1 (it
would be also possible to define a boolean classification).
On the same figure 1d, the true data allocation is indicated
by shading areas ; in the computation, of course, the class
labels of each data point are not known to the algorithm
which "see" all the data simply as points yk+ 1, uk{ }Œ¬2 .
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Figures 1a and 1b. The PWARX data sets
in the plane y(k + 1),  u(k){ } .
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Figures 1c. Estimation error
versus time

Figure 1d. Weights (data
classification) versus time.

Example 2

The time series y(k)  is defined in [11]

x(k + 1) = ax(k ) + be(k )
y(k) = x(k ) + e(k )

(8)

a =
 0.9  if  y(k) ≥ 0.7
-0.9  otherwise

Ï 
Ì 
Ó 

b = 0.2

The random term e(k)  is a normally distributed white noise
process with zero mean and variance 0.0625  ; the noise
e(k)  is also normally distributed with variance 0.02 .
Figure 2 shows the data and the result. Rows 1 and 2
present the output evolution and those of the parameter a
only taking one of the two values -0.9  or 0.9 . Row 3 at
left shows the data in the plane y(k) , y(k - 1){ }  while the
right part compare the data with the obtained model. The
normalised and rounded weights (taking only the values 0
and 1) given by the algorithm are drawn on row 4 and
perfectly agree with the evolution of the a  parameter ; these
weights may be used to allocate the data to the two local
models. The final clusters represented are correctly defined.
Note that there is no hyperplan that separate the data sets (in
the coordinate space y(k) / y(k - 1) ) because the clusters are
not convex. In our approach, the clusters are defined through
the weights that have been estimated simultaneously with
the model parameters. Row 5 of figure 2 allows to compare
the measured and the reconstructed output using the
estimated parameters and time switching. Excepted in the
vicinity of time origin for which bad initial conditions
justify discrepancy, reconstructed state agrees with the true
one.
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Figure 2. Data and estimations.

Example 3. A hybrid tank system

The identification procedure is now applied to the
simulation data of a tank system shown in figure 3a. The
valve V can be continuously manipulated whereas the flow
output only linearly depends on the level in the tank. The
system's hybrid nature results from the interaction of the
continuous dynamics and the discrete event dynamics and
vice versa. The continuous dynamic depends on the liquid
level in the tank while the dynamics switches if the levels
rise above of fall beneath the height hs  for which the
section of the tank is changing.

Figure 3a : An "hybrid" tank

The model of the system is piecewise linear :
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h(k +1) = h(k ) + S(v(k)) q1(k) - q2 (k)( )
q2 (k) = Kh(k )

v(k) =
0  if  h(k) > hs
1  if  h(k ) < hs

Ï 
Ì 
Ó 

S(v(k)) = S1 + (S2 - S1)v(k)

(9)

Figure 3b gathers the data and the results. Rows 1 to 3
respectively indicate the input, the level and the output of the
process while rows 4 and 5 respectively present the switching
according to the section modification and the estimated
switching ; excepted for one value at time 36, the estimated
switching perfectly agrees with the true ones.
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Figure 3b. Data and estimation versus time.

Example 4. System with unknown a priori
number of models

All the previous examples use an a priori knowledge about
the number of local models. Here, the given example shows
how a false hypothesis concerning the number of local
models influences the identification results. The simulated
system is described by a first order model  taking three
different sets of parameters. The measurements y(k)  are
corrupt by a white noise process e(k)  with zero mean and
standard deviation 0.1  :

x(k + 1) = ax(k ) + bu(k)
y(k) = x(k ) + e(k )

(10)

a = 1   b = 2  
a = 2    b = 8     
a = -1  b = 3  

Ï 
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Ô 
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The procedure is performed with 4 local models. Figure 4a
shows the measurements (left) and the obtained models
superposed to the measurements (right). The data
classification is given in figure 4b which also shows the
true allocation (grey boxes). The estimated parameters are
collected in table 2.
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Figure 4a. Data and estimated model
in plane y(k + 1) / u(k),  y(t ) / u(k){ }
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Figure 4b. Classification versus time

model 1 model 2 model 3 model 4
a 0.994 2.143 2.413 -0.960
b 2.075 8.094 8.260 2.961

Table 2. Estimated parameters

Analysing the results clearly points out that the structure of
the model is not optimal. There are several ways to analyse
the problem of structure optimisation of the complete
model [1], [20], [21]. The general ideal is to detect the
presence of neighbouring local models or the presence of
local model with a very few number of associated data. In
the present situation, according to the model coefficients in
table 2, two local models 2 and 3 have to be merged. For
that purpose the merging may be performed by constraining
models 2 and 3 to have the same behaviour, i.e. the same
parameter vector. The new results are not presented, but
they confirm the optimal structure with only three local
models.
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Conclusion

The proposed approach combines the identification of the
parameters of a piecewise linear or affine form and the
clustering of the data. This allows to identify both the affine
local models and the partition of the domain in which each
local model is valid ; in other words we have solved the data
allocation task which consists in discovering that several
local models exist and separated the data into groups
corresponding to each model. We have successfully applied
the proposed approach to static and dynamic switching
regressions.
Further investigations will firstly focus on the performances
of the method namely in the case of noisy measurement.
Secondly, the order selection of the local models together
with their number needs to be further analysed and
optimised. Thirdly, so far all the data sets we have deal with
a relatively low dimension, a large scale simulation will
provide more insight into the robustness of this approach.
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