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Abstract 
Static linear models characterized by bounded uncertainties on both the equation error and the parameters are studied. The 
additive equation error is assumed to belong to an interval while the parameters fluctuate inside a time-invariant bounded 
domain. An algorithm is proposed for evaluating different bounded domains. The algorithm can be extended to cope with the 
determination of the central value of the domain containing the parameters. Contrary to most of traditional estimators, the 
resulting estimator takes into account the distribution of the uncertainties of a model. 
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1. Introduction 

The application of the bounding approach to parameter 
estimation started in the eighties, especially with the 
works of Fogel et Huang [3] who used ellipsoidal 
domains, to be followed by those of Milanese et Belforte 
[5] who worked with orthotopes. Walter and Piet- 
Lahanier [ 121 on the one hand, and MO and Norton [7] on 
the other, used domains in the form of polytopes. The 
main results are presented in the book published by 
Milanese et a1 [6] .  To summarize, the problem of 
parameter estimation amounts to the determination of the 
set of parameter values (Feasible Parameter Set: FPSy) 
each of which explains all the available observations 
whenever the equation error is bounded. These techniques 
were originally designed to deal with linear models. They 
have since been extended by Jaulin and Walter [4] to cope 
with nonlinear models as well. Despite the resemblance, 
the problem we are considering is different. Indeed, we 
are not so much concerned about fact the values of the 
parameters of a model are determined, but the fact these 
values belong to a domain characterized solely by the 
invariance of its form. After the formalization of the 
problem, we will dwell at length on the method for 
finding the characteristics of this domain, the underlying 
consideration being that to the best solution must 
correspond to the most precise model. 
The knowledge of uncertainties may be crucial in fault 
diagnosis [ 111 or in control system [I]. 

2. Problem formulation 

By analogy with stochastic variables, we introduce the 
concept of abstract space, denoted by A( ), so as to 
facilitate the application of bounding approach to the 

investigation of model's uncertainties. If X represents a 
bounded variable, that is, if all that is known about it is the 
space to which this variable belongs, then we will denote 
that space by A ( X ) .  The symbol x will then refer to a 
particular realization of X. But for the sake of 
simplification, we will allow the notion of the realization 
of x merge with that of the bounded variable X itself. In 
other words, x will thus at times designate the bounded 
variable X and other times its realization. In the latter case, 
A(x) will then designate the abstract space of the bounded 
variable. 
We are interested in uncertain linear models with respect to 
parameters and observations, those topped with tilde 
symbol, '-'. By the term uncertain, we mean that we are 
dealing with parameters, some of which are bounded 
variables. Let us denote by {yl,.--,y,,}, the set of real 
numbers reassembling the values obtained through 
observations and by {Y,,-..,Y,,} the set of vectors in IR" 
verifying the following relations: V k  ( 1 ,. . . , h } ,  
yk = ZkTek +E,. The term &k corresponds to a bounded 
centered variable defined by =[-a, ,a,] (&E IR"). 
The vectors ek also represent mutually independent 
bounded variables with an invariant abstract space 
0 = A(€),). It will be assumed that this space can be 
described with a parallelotope that is centered on the value 
e,EIRP: e, = e, + T(h)u, where uk is a vector in IRq the 
components of which are normalized bounded variables 
and the matrix T(h) will be further detailed. Moreover the 
vector is supposed to be independent of &k. In other 
words, the abstract space &(U,) corresponds to a unit ball 
generated by an infinite norm ( ~ ( u , )  = (19 E IR q / l l ~ l ~  I I} ). 

h is a vector the q positive components of which 
characterize the abstract space 0 and assumed to be 
determined. 
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To determine the characteristics of an uncertain model 
amounts to finding a @+q+l)-tuple of coefficients (8,,h,6,) 
such that the model can explain the most precisely the 
associated set of observations: 

Vk E {I, . . ., h}, yk E A( XkT 8, + YkT T(h)u, + E ~ )  (1) 

In any case, it is not every model satisfying (1) that 
interests us. We are interested only in the most precise of 
such models. It is therefore necessary to specify the 
defining criterion of the precision. Let us evaluate the 
abstract space appearing in relation (1) using the results of 
interval arithmetic ( [7]  and [lo]): 

A(zkTe, + zkT T(~)u~ + E ~ )  = (2) 

The width of the interval obtained is equal to 
j k  = 21(FkTT(h)lll + 26,. The culmination of these widths 
on the horizon h considered provides the model's precision 
criterion: 

But choosing matrix T(h) in an arbitrary manner will make 
it difficult to anticipate the influence of a variation in the 
parameter h on the precision. To get round this difficulty, 
we will limit ourselves to matrices having one of the 
following structures: 

T(h)  = : h€IR*+ ( 3 4  

(3b) 

where ti is a vector in IR". Structure (3a) corresponds to a 
predetermined shape of the abstract space A(%): only the 
size of this domain remains unknown. By contrast, 
structure (3b) does not specify the shape of the domain 
A(0k): it depends of h. This structure corresponds to cases 
where the individual influences of the uncertainties U; all 
intervene in the same direction ti. 
The precision criteria for (3a) and (3b) are respectively: 

T(h)  =[h,t, ... h,t,] : hi&*+ 

J ( 6 , A )  = 2h6, +2ht(lzkTT,1)1 (4a) 

J(6,,h) = 2h6, f 2XTh (4b) 

with k[hl . . .hq]T,  ~ k T = [ I ~ k T t l I . . . I X " k T t y I ]  and x = t x , .  
The problem then comes to finding the characteristics e,, 
6, and h such that relations (1) are satisfied and which 
minimize the corresponding criteria (4). Notice that the 
central parameter vector, e,, is invariant. If 0, is not known 
a priori, it can be obtained using a classical estimator and 
minimizing an a-norm 1 1  11, of the equation error &k raised 
to the power p: 

k = l  

k=l  

or using the most precise estimator (to which we will 
return later in the sequel) which minimizes criteria (4). 
The problem can then be summarized as one of computing 
the characteristics 6, and h at a 8, given (e, and 6, will be 
adjusted by iteration in the case of the most precise 
estimator). 

3. Solving for pre-determined shape 

Let us first consider the special case of structure (3a). We 
deduce from relations (1) and (2) that the constraints to 
verify can also be written as follows: Vke { 1, ..., h ] ,  

-hllzkTq)l/l -6 ,  I j;, -Ek%, I h p ( ) J I ]  +6 ,  

or still as: V ~ E  { 1, ..., h } ,  

In view of the precision criterion (4a), it is clear that the 
smaller the positive characteristic h, the better the 
precision. Thus, taking (4a) into account, we deduce from 
(5) that the best value of h associated with a fixed 6,, in the 
sense of the criterion, is given by: 

It is possible to have an a priori knowledge of the 
characteristic value 6,. Otherwise, one can evaluate the 
different values of (e,, 6,,h(6,)) and keep the one that 
minimizes the criteria (4) (cf. figure V of the illustration). 

4. Solving for undetermined shape 

It can be deduced from (1) and (2) that when the matrix 
T(h) has the shape given in (3b), the following constraint 
must be verified: Vke { 1, ..., h ] ,  

XkTe, - xkTh - 6, I yk I zkTO, + xkTh + 6, 

or: V ~ E  (1, ..., h } ,  

xrTh 2 max(j;k -FkTO, -6,,zkTe, -yk  - 6 , )  (7) 

In this case, the problem becomes one of minimizing 
criterion (4b) while respecting the constraints imposed by 
(7) instead of (1) and (2). Each of the constraints in (7) 
defines a IR4 half-space the frontier of which is determined 
by a IR4-' plane domain. The intersection of the different 
half-spaces determines a IRy forbidden space for h (cf. 
figure I). 
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minimizes precision 
criterion and satisfies 

figure I - Graphical solution of the constrained 
minimization problem 

The most precise solution corresponds to the admissible 
value of h that minimizes the scalar product xTh in (4b). 
The admissible domain being convex (the intersection of 
half-planes is necessarily convex), one of the polytope 
vertices of the admissible domain necessarily corresponds 
to the smallest orthogonal projection, on the straight line 
determined by x, of an admissible value of A. 
The polytope calculation is a well-known technique. MO 
and Norton [7] described it using lists of vertices and 
facets. Belforte et a1 [2] recently presented a synthesis of 
the technique. All the same, the main stages of the 
calculation are as follows. One starts with an orthotope 
shaped domain of investigation Vq aligned with the 
coordinate axes: ( IE lR+/AiSdi, Vie ( 1,. . . ,q } } . Taking 
successively the different inequalities of (7) into account, 
the domain is then truncated to the polytope domain of the 
admissible values of A. 
Notice that we have all along assumed that the value of 8, 
is known. One can obtain the most precise 8, estimator 
using a simplex type of algorithm [9]. One retains the 
value of 8, that minimizes either criterion (4a) or criterion 
(4bh 
To complete this study, we will now propose a method for 
representing the abstract space 48,)  in the parametric 
domain and for an a posteriori verification that the 
computed values are really the right ones. We will begin 
by presenting a cartography of the parameter space for 
different values of 6,. We will then move on to show how 
to verify that the abstract space 48,)  really respect the 
constraints. 

5. Map of the parameter space 

Leaving aside the development of et, the constraint in (1) 
can simply be written as follows: 

v'k~{ i , . . . ,h}  , yk E A ( x " , ~ ~ , + + E , )  (8) 

With  A(8k) = 0 and A(&k) = [-6, ,6 , ]  

For this constraint to be verified, it suffices that, for all k in 
( 1 ,  . . ., h ) ,  the following conditions are satisfied: 

Taking into account the fact that t4(~~)=[-6,,6,], one 
obtains: 

38 E On@: with 0; = [ 8 / y k  -6 ,  I YkT8] (9a) 

38' E 0 n 0; with 0; = { 8' /y, + 6 ,  2 i k T e r ]  (9b) 

0,' represents the set of the parameters 8 for which the 
values of :,*'e + 6 ,  are greater than y, while 0,- represents 
the set for which the values of YkT8'-6,are smaller than 
y", . Consequently, the intersections, ono: and On@; 
represent the elements of the domain 0 which ensure that, 
at the instant k,  the measurement yk is inside the 
boundaries of the abstract space A(TkT8, +E,). It follows 
that the intersection On@,+ contains the parameters 8 of 
the domain 0 for which the values of EITO+6, are bigger 
than TI. At the instant k=2, it is the intersection O n 0 2  
that contains the parameters 8 for which the derived values 
of ?,;'e+ 6 ,  are bigger than y2. The subset 0 for which the 
values of XIT8+6, and X",T8+6e are respectively bigger 
than y", and y"*, corresponds necessarily to the intersections 
On@,+ no,'. Proceeding in this way, step by step, one 
deduces that the parameters of On0,+n---n0,+ lead to 
values of 8 such that X",*'8+6, I y",, V k  E {l,..., h}  (cf. 
figure 11). 

bset of 0 whch ye 
upper bound above 
and the 2"d measun 

:Ids 
~ the 
:ment 

I bound above the T d  measurement y2 

figure I1 - Elementary suprema1 and the parameter set 
domains. 

Reasoning in analogous manner, it can be deduced that the 
0 domain will explain the set of measurements, provided 
there exists at least one value of 0 belonging to 
O,+n..nO,+ and at least one belonging to O,-n-.nO,-. 

In other words, letting 0' =n0: and 0- = no;, we 

can conclude that the following two constraints must be 
verified: 

h h 

k = l  ,=I 



We have just shown that relation (9a) implies relation (IO). 
To establish that both relations are equivalent, it remains to 
show that (10) also implies (9a). We observe that relations 
(10) imply that: 

38E(@n@:n...n@;) 

and 38' E(@n@;n...n@;) 

Referring to the definitions of the elementary domains 0,' 
and 0i, one can easily show that there exists a (O,O')E 0' / 
Vk€ { 1, ..., h ] :  

Consequently, relation (10) is necessarily verified. Since 
both implications are verified, the equivalence between 
(9a) and (10) is established. 
We will refer to the two domains 0' and 0- respectively as 
supremum and infimum bounding domains. These domains 
can be constructed independently of the domain 0; each of 
both domains is just a function of the measurements and 6,. 
The evaluation of the domains @'(SE) and 0-(6,) for 
different values of 6, provides the maps of the parametric 
space. 
We will only give a brief description of the method used in 
computing these maps. In fact, notwithstanding the slight 
differences which we will bring out in the sequel, the 
technique employed is quite similar to the one employed to 
construct the polytope of admissible values h. 
Consider the bounding domain @'(SE). A priori, such a 
domain is not bounded. It is therefore indispensable to 
conduct its investigation on a bounded domain V of W. 
We will refer to V as the domain of investigation. This 
domain will advantageously be chosen in the form of an 
orthotope, which is aligned with the coordinate axes. In 
decomposing x=[x,,. ..,x,,IT, we will write XEVH{X/  
Vis ( 1 ,. . . p} ,  d;lxi5dT] where d; and d; are real numbers. 
The problem is then to evaluate the domain VnO' or 
(((D n o,+) n 02+)  ..no,,+). 
To show that V n 0' is a polytope, we begin by showing 
that it is a polyhedron and then proceed to verify that it is 
convex. 
The intersection of the orthotope V with the half-space of 
parameters 0,+ ={e/?, -6, I ZIT8}, determined by the 

hyperplane AI+ ={8/Y, -6, = ZIT8}, is necessarily a 
polyhedron. We deduce that VnO' is a polyhedron. 
Generally speaking, the intersection of a polyhedron of the 
parameter space with a domain 0,' ={€I /y, - 6, I XkT e} ,  
determined by the hyperplane A,' ={e /?, - 6, = ZkTO}, 
is a polyhedron. The domain V and the bounding domains 
0,' are all convex. Their intersection is therefore convex. 
It follows that V n 0' is a polytope. One of its interesting 
properties is that it is perfectly defined by its vertices. The 
technique for generating such polytopes was previously 

mentioned. It allows the computation of the polytope's set 
of the characteristic vertices. 
Considering different values for SE, with 

0<6,< inf ( sup (I yk - Z,TOC I )) 
@,erP ks { l : - ,h }  

we obtained a family of maps, V n 0 + ( 6 , )  and 
V n 0 - ( 6 , ) ,  of the parameter space contained in the 
investigation domain V .  Each one of the maps is made up 
of two polytopes specified by their vertices. We will 
designate the vertex coordinate sets of DnO+(&,)  and 
V n0-(6,) respectively by E+ and X. 
We recall that to explain all the observations, the abstract 
space *&ek), which corresponds to a €&centered 
paralleiotope of the parameter space, must verify relations 
(10). More precisely, 0 must contain at least one point in 
the domain O'(6,) and at least one point in the domain 
CY(&). Notice the domain 0 is a function only of central 
invariant parameter vectors 8, and the characteristic h: 
0=0 (ec, A). 

figure I11 - Searching for 0: h is a scalar quantity. 

One easily sees the relevance of the solution A(ek). Since 
@'(SE) and CY@,) are both convex and 0 is a parallelotope, 
it is easy to verify condition (10). Indeed, it suffices to 
ensure either that there exists at least a vertex which 
verifies all the inequalities of the elementary domains 
0,' of (9a) or that one of the vertices of 0,' (6,) belongs to 
the domain 0. The latter can also be described by means of 
inequalities [ l l ] .  It must similarly be verified that 0 and 
0- do in fact intersect. Where dimensions are small, the 
results can assessed graphically (cf. figure 111). 
We presented in [ l l ]  how to solve the problem of the 
characterization defined in (1) and (4a) using the 
cartography of the parameter space. The solution however 
becomes more complex when the shape of 0 is 
indeterminate. 

6. Example 

By way of illustration, let us start by considering the 
simple example of a linear model of dimension p=2 for 
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which the available measurements yk and X k  (ke  (1, ..., 31) 
are: 

1.1 0.1 

1.3 0.8 

We first assume an equal distribution of the uncertainties 
of the two parameters of 8,. In other words, h is a scalar 
quantity and To the two-order identity matrix. In the 
parameter space, the target abstract domain 0 is therefore a 
square with 8, as center. The domains PnO'(6, )  and 
Pn0- (6 , )  in figure IV were drawn using three distinct 
values of the error 6,. Using the additive errors a,, we 
calculated two best estimators successively using the 
Euclidean norm e,=[ 1 .45,0,49IT and the infinite norm 
e,=[ 1 .43,0.53IT. We next evaluated an estimator which 
both verifies (1) and minimizes (4a). This was done 
according to the two-stage method presented in section 4 
above. The associated estimator, baptized the most precise 
estimator (MPl), corresponds to the central value 
8,=[1.40,0.52]'. Figure IV shows that the bigger the 
equation error SE, the closer the two domains 0' and e-; 
the domain 0 becomes smaller and the parameter 
uncertainties in turn are less significant. 

0 9  

0 8  

0 7  

0 6  

0 5  

0 4  

0 3  

0 2  

0 1  

0 
1 I .2 1.4 I .6 I .8 

Figure IV - Mapping of parameter space 

The square drawn in the center of the figure corresponds to 
the domain 0 associated with the estimator MPl and the 
optimal pair (6,=0,k7.69.10-2) in the sense of the 
precision criterion (4a). It is also possible that the 
uncertainties associated with the two parameters differ. In 
this case, there are two parameters hl and &, and the 
matrix T(h) is as described in (3b) with tl=[1,OIT and 
t ~ [ 0 ,  1IT. We denoted the corresponding estimator by 
MP2. The optimal domain 0 (figure IV) is a straight line 
segment centered on eC=[ 1 .44,0.45IT. Its calculation is 
based on (S,=O, hl=0.12, &=O). 
The upper chart of figure V presents the plot of the scalar 
parameter h against the additive error 6, for different 
estimators, other than MP2. The latter cannot be 
represented in this plane. As can be seen, when the 
additive error becomes too small to embrace all the model 
errors yk - ZkO,, the algorithm has the effect of increasing 

the parameter uncertainties. On the one hand, when the 
additive error 8, exceeds sup(lTk - Zk8,(),  h becomes zero: 

the additive error 6, then explains all the observations. 
k 

0.1 

0.05 

6 

0 o.m 0.04 0.06 0.m 0.1 0.12 0.14 0.16 

Figure V - Results of parameters characterization 

The lower chart of the figure also presents the plot of the 
precision criterion of (4). As the curve is made up of 
straight line segments and the precision criteria linearly 
dependent on h, it is natural to expect piece-wise linear 
criteria. For k0, the criterion simplifies to 2h6, which 
explains the fact that the curves J(6,,h(6,)) for the different 
estimator 8, coincide. We also added the criterion 
corresponding to the estimator MP2. h is in this case a 
two-component vector. This choice naturally yields the 
most precise abstract domain. 

I b e s t  t- est imator 
b e s t  fz est imator 
M P l  est imator 

%\\\F MP2 est imator 

I f 'measur'ement: ! 
1 

1 2 3 

Figure VI - Corresponding uncertainties on estimations 

The figure VI presents the abstract spaces 
A(Zk'e, i- ZkTT(h)uk + E ~ )  corresponding to the different 
choices of estimators. For each of the estimators, the 
characteristics (&,A) minimize the associated precision 
criterion. 

7. Conclusion 

We have proposed an algorithm for characterizing 
uncertainties in static linear models. In addition to the 
determination of the best distribution of uncertainties with 
respect to the precision, we also showed how to evaluate 
the central parametric values corresponding to the greatest 
precision. This was accomplished through an additional 
stage of minimization based on simplex method. Contrary 
to traditional techniques, the resulting central estimator 
fully exploits available knowledge about the distribution of 
uncertainties. The proposed technique may be extended to 
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dynamical systems provided that they are not represented 
by a recursive form. However, in this case, if parameter 
uncertainties remains easy to represent, uncertainties on 
measurements are difficult to take into account. 
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