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Abstract— In this paper, a multi-modeling strategy based
on belief function theory is developed. The basic idea is to
consider a fuzzy rule based system with a belief structure
(BS) as output. The focal elements of each rule are formed
by a subset of a collection of functional models. A particular
attention is paid to the topic of combining global and local
fuzzy models of Takagi-Sugeno type by a specific formulation
of the proposed model. Some examples are given to show the
validity of the approach.
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I. I NTRODUCTION

The mathematical description of a priori unknown
dynamic process from observed data and/or expert
knowledge is a widely encountered problem in engineering,
industry, time series analysis and other fields. In most
cases, the models consist of a set of functional relationships
between the elements of a set of variables. A common
way consists of making an estimation by specifying a
function with known structure but unknown parameters
to be estimated. Although the obtained models might be
acceptable in many cases, this approach does not seem
satisfactory from the perspective of knowledge engineering
and intelligent reasoning. More specifically, in many
practical problems the prediction should be accompanied
with some additional information that quantify their
reliability, e.g, for example in the form of a confidence
interval.

For the modeling of complex problems, the principle
of divide-and-conquer is widely adopted in approximating
unknown nonlinear mappings by a smooth combination
of simple functional models. One of the most outstanding
models is the TSK fuzzy model which has attracted a great
attention due to its performances in many applications.
Typically, fuzzy modeling involves structure and parameter
identification. The latter is usually addressed by some
gradient descent variant, e.g., the least squares algorithm
or back-propagation. The former describes the inherent
structure for a concrete problem by partitioning each input
variable range into fuzzy sets. In general, the clustering is
done in the input space of training data without integrating
the interaction between the input variables and the output
dynamics. In order to take into acount the interaction

between input and output variables, the clustering is done
in the product space of input and output variables instead of
the input space in traditional algorithms of fuzzy modeling.

In the context of fuzzy modeling, the problem of
identifying the parameters of the constituent local linear
models of Takagi-Sugeno fuzzy models is of great
importance because it is difficult to find a tradeoff between
global model accuracy and interpretability [20], [21].

Here, we propose a multi-modeling strategy based on
evidence theory whose main distinctive feature concerns
the nature of the outputs, which consist in a set of belief
masses. By using a particular formulation, we show that the
local and global models can be combined in a single model.

This paper is organized as follows: section 2 describes
briefly the basics of evidence theory. In section 3, the TSK
model is presented and a special attention is paid to the issue
of combining local and global models. The formulation of
the functional approximation using the belief function theory
and the description of the proposed model as well as further
developments is also presented in section 4. Some numerical
results are given in section 5. Conclusions are drawn in
section 6.

II. T HE DEMPSTER-SHAFER THEORY

A. Knowledge model

In this section, we give a brief overview of certain aspects
of D-S theory. For exposition on the D-S theory [1], see
Shafer’s seminal work [2] and [4]. This theory is based on
the definition of a set of hypothesisΩ called the frame of
discernment, defined as follows:

Ω = {H1, · · ·,Hj , · · ·,HN} (1)

It is composed ofN exhaustive and exclusive hypothesesHj

for j = 1, . . . , N . Let us denote2Ω, the power set composed
with 2N propositionsA of Ω:

2Ω = {φ, {H1}, {H2}, · · ·, {HN}, {H1 ∪ H2}
{H1 ∪ H3}, · · ·,Ω }

(2)

where φ is the empty set. The concept ofbasic belief
assignment(BBA) plays a central role in evidence theory.
The mass of belief in an element ofΩ is quite similar to a



probability distribution, but differs by the fact that the unit
mass is distributed among the element of2Ω, that is to say not
only on singletonsHj in Ω but on the composite hypotheses
too. The beliefmi assigned to an information sourceSi is
thus defined bymi : 2Ω → [0, 1] such that:

mi(φ) = 0,
∑

A⊆Ω

mi(A) = 1. (3)

The massmi(A) represents how strongly the evidence sup-
portsA. Each subsetA ⊆ Ω such thatmi(A) > 0 is called
a focal element ofmi. Let us denoteF i the set of focal
elements associated to a belief functionmi. From this BBA,
a belief functionBeli and a plausibility functionPli are
defined respectively, as

Beli(A) =
∑

B⊆A

mi(B) (4)

and
Pli(A) =

∑

A∩B 6=φ

mi(B) (5)

The quantityBeli (A) can be interpreted as measure of one’s
belief that hypothesisA is true. The plausibilityPli (A)
can be viwed as the total amount of belief that could be
potentially placed inA. Note that functionsmi, Beli and
Pli are three representation of the same piece of information.
In evidence theory, one of the main difficulties concerns the
modeling of the knowledge of the problem by a proper choice
of the belief functionsmi.

B. Dempster’s rule of combination

In many cases, the combination or the fusion of different
information sources is an interesting solution to obtain more
relevant information. Evidence theory provides a coherent
framework for integrating different information sources.In
fact, for a given number of BBA’smi obtained from different
information sourcesSi, the use of a combination rule pro-
vides combined masses summarizing the knowledge of the
different sources. These belief masses can then be used for
decision making with the advantage of the total knowledge
contained in the belief functions given by each source.
For two information sourcesS1 andS2, the induced BBA’s
m1 and m2, can be combined by the so-called Dempster’s
rule of combination to provide a new BBAm = m1 ⊕ m2,
called the orthogonal sum ofm1 andm2, and defined as:

m (A) =

∑

B∩C=A

m1(B)m2(C)

1 − m(φ)
∀ A ⊆ Ω (6)

where the quantity in the numerator corresponds to the
conjunctive rule of combination and the massm(φ) assigned
to the empty set is defined by

m (φ) =
∑

B∩C=φ

m1(B)m2(C) (7)

In the above equations, the massm(φ) reflects the conflict
between the two sourcesS1 andS2. Asuming the normality

of the BBA’s (m(φ) = 0), the use of this rule is possible
only if m1 and m2 are not totally conflicting, i.e., if there
exist two focal elements B and C ofm1 andm2 satisfying
B ∩C 6= φ. Let us denote the belief function resulting from
the combination ofK information sources as:

m = m1 ⊕ · · · ⊕ mi · · · ⊕mK (8)

where⊕ represents the operator of combination.

III. T HE TSK MODEL

The fuzzy rule based model proposed by Sugeno and
his colleague’s [14] is able to describe complex, nonlinear
processes [17], [18], [16]. It is based on the fact that an
arbitrary complex system is a combination of mutually inter-
linked sub-systems. LetK regions, corresponding to indi-
vidual sub-systems, be determined in the state space under
consideration. The behavior of the system in these regions
can then be described with simpler functional relationships.
If the dependence is linear and if one rule is assigned to each
sub system, the TSK fuzzy model can be represented with
K rules of the following form:
Ri : IF x1 is Ai

1 and . . . and xr is Ai
r

THEN y is f i(x) ∀ i = 1, . . . ,K
Of particular interest is the linear case off i(x):

f i(x) = θi0 + θi1x1 + . . . + θirxr (9)

wheref i(x) defines a locally valid model on the support of
the cartesian product of fuzzy sets constituting the premise
parts of theith rule Ri, andx = [x1, · · ·, xr]

T
∈ X is the

vector of input (antecedent) variables.Ai
1, . . . , A

i
r are fuzzy

sets defined in the antecedent space, andθT
i = [θi0, . . . , θir]

is the vector of the consequent parameters off i(x). The final
output ŷ ∈ Y is computed by taking the weighted average
of the rule consequents

ŷ =

K
∑

i=1

βi(x)f i(x)

K
∑

i=1

βi(x)

(10)

whereβi(x) is the degree of activation of theith rule.

βi(x) =

r
∏

j=1

µAi
j
(xj), i = 1, · · ·,K (11)

andµAi
j
(xj) : R → [0, 1] : is the membership function of the

fuzzy setAi
j(xj) in the antecedent ofRi.

The construction of the TS fuzzy model from data is solved
in two steps: 1) structure identification 2) parameters estima-
tion. In the first step, the antecedent and consequent variables
of the model are determined. From the available training data
that containN input-output samples, a regression matrixX

and an output vectory are constructed

X = [x1, · · ·,xN ]
T

,y = [y1, · · ·, yN ]
T (12)

In the second step, the number of rulesK, the antecedent
fuzzy setsAi

j , and the parameters of the rule consequents



θi for i = 1, . . . ,K are identified. In order to capture the
interaction between the input and output variables, the fuzzy
clustering in the Cartesian product-spaceX × Y is a useful
method. This is based on the fact that the different clusters
represent operating regions, where the system behaviour is
approximated by local linear models. The data setZ to be
clustered is formed by combiningX andy

Z = [X;y]
T (13)

Once the training dataZ and the number of clustersK are
given, the Gustafson-Kessel (GK) clustering algorithm [19]
is used to discover the potential regions of the rules.
From the the partition matrixU , whoseikth elementµi

k →
[0, 1] is the membership degree of the datazk, the kth row
of Z in clusteri, it is possible to extract the fuzzy sets in the
antecedent parts. One-dimentional fuzzy setsAi

j are obtained
from multidimentional fuzzy clusters (given byU ) by point-
wise projection onto the space of the input variablexj :

µAi
j
(xkj) = projj(µ

i
k) (14)

whereµi
k is the level of belonging of thekth sample (vector

xk) to the ith cluster, whileµAi
j
(xkj) is the value of the

membership of thejth input variable of thekth sample (jth
co-ordinate of the vectorxk) to the fuzzy setAi

j . Since
all the functions µAi

j
(xkj) under consideration represent

membership function, the conditionµAi
j
(xkj) : R → [0, 1]

must hold true. Value of firing strength of theith rule for
eachkth input sample is computed asand-conjunctionby
means of the product operator:

βi
k = βi(xk) =

r
∏

j=1

µAi
j
(xkj) k = 1, 2, . . . , N (15)

The correct application of this equation requires an intro-
duction of a threshodξ (ξ = 0.05, for example) for the
fulfillment of the condition:µAi

j
(xkj) ≤ ξ ⇒ µAi

j
(xkj) = 0.

The consequent parameters for each rule are obtained as a
least squares estimate. LetXe denote the matrix[1, X]; Wi

is a diagonal matrix of dimensionN×N having the normal-
ized membership degreewi(xk) = βi(xk)

/

∑K

j=1 βj(xk) as

its kth diagonal element. Hence a matrix compositionX′ of
dimensionN × K(r + 1) is formed:

X′ = [(W1Xe), (W2Xe), . . . , (WKXe)] (16)

where matrixXe = [1, X] contains rows
[

1, xT
k

]

. Denote
θ′, the column vector of dimensionK(r + 1) given by

θ′ =
[

θT
1 , θT

2 , . . . , θT
K

]T
(17)

whereθT
i = [θi0, . . . , θir] for 1 ≤ i ≤ K. The modely =

Xθ′+ε, whereε is the approximation error, has the following
least squares solution

θ′ =
[

(X ′)
T

X ′
]−1

(X ′)
T

y (18)

This identification strategy corresponds to a global learning.
A second class of methods is known as local learning. As

opposed to global learning, where the local linear models
cooperate for the minimisation of a global cost function, local
learning strategies encourage the linear models to compete.
In this case, the weighted least-squares method is used
separately for each rule:

θi =
[

XT WiX
]−1

XT Wiy (19)

IV. FUZZY MODELING USING BELIEF FUNCTIONS

In the last years, many methods based on the Dempster-
Shafer theory have been proposed in different areas including
data fusion [3], [6], [7], classification [9], [11], [8] and
regression [5], [12], [10]. Among the different methods,
we mention only the two approaches that are relevant to
our work. The first approach was proposed by Yager [5]
in the context of fuzzy modeling. This strategy allows the
integration of probabilistic uncertainty in fuzzy rule based
systems. The output of the rules is a belief structure whose
focal elements are fuzzy sets among the output variable
linguistic terms.
The second approach was proposed by Denoeux [9] in
the context of classification. This approach considers each
neighbour of a pattern to be classified as an item of evidence
supporting certain hypotheses concerning the class member-
ship of that pattern. Based on this evidence, basic belief
masses are assigned to each subset of the set of classes. Such
masses are obtained for each of the k-nearest neighbours
of the pattern under consideration and aggregated using the
Dempster’s rule of combination. Lately, the above approach
has been improved and applied in regression analysis [10],
[12]. For a given input query vector, the output variable is
obtained in the form of a fuzzy belief assignment (FBA),
defined as a collection of fuzzy sets of values with associated
masses of belief. In [13], the output FBA is computed non-
parametrically on the basis of the training samples in the
neighbourhood of the query point. In this approach, the
underlying principle is that the neighbours of the query
point are considered as sources of partial information on the
response variable; the bodies of evidence are discounted as
a function of their distance to the query point, and pooled
using the Dempster’s rule of combination.
Based on the approach proposed by Yager [5] and the princi-
ple introduced by Denoeux [?], we propose a new model for
approximating nonlinear functional mappings. This model is
illustrated through a particular form of the functional models.
More specifically, the functional models are linear models
used in the TSK fuzzy model.

A. The proposed model

Let D = (xk, yk)
N

k=1 be a set of input-output data
obtained from an unknown nonlinear process,X andY are
the domains of variation of the input of dimensionr and the
scalar output, respectively.
The principle underlying the fuzzy modeling based on
Dempster-Shafer theory assumes the existence of a certain
numberc of functional relationships between the input vari-
ables and the output variable, denoted byf j(x), j = 1, . . . , c.



In order to find a link between the evidence theory, which
starts by the definition of a set of hypothesis as described
in section 2, we shall consider that the above relationships
models form the frame of discernmentΩ. Thus, we have:

Ω =
(

{f1}, . . . , {f j}, · · ·, {fc}
)

(20)

where{f j} is the hypothesis that corresponds to the func-
tional modelf j(x).
In our modeling strategy, the model consits ofK rules of
the form:
Ri : IF x1 is Ai

1 and . . . and xr is Ai
r

THEN y is mi

where mi is a BBA whose focal elements are among the
hypotheses of the frame of discernmentΩ. Let us denote
by Fij , j = 1, . . . , J(i); the J(i) focal elements ofmi and
denote bymi (Fij) the weight (a mass of probability) asso-
ciated to thejth focal elementFij of mi. This formulation
which is quite general brings some aspects of the evidence
theory to aggregate different BBA, where every BBA has its
own elements. The firing strength of theith rule is defined by
the product of the membership degrees of the corresponding
fuzzy sets:

µi(x) =
r

∏

j=1

µAi
j
(xj) (21)

whereµAi
j
(xj) is the membership function of the fuzzy set

Ai
j(xj). In order to predict an output valuey for an input

vectorx, every rule provides a piece of evidence concerning
the value of the unknown outputy. This item of evidence
can be assimilated by a belief functionmi:







mi
({

f j
}

|x
)

= pijφi(x), j = 1, . . . , J(i)
mi (Ω |x ) = 1 − φi(x)
mi (A |x ) = 0 ∀ A ∈ FΩ −F i

(22)

In the above equationFΩ is the power set ofΩ andF i de-
note the focal elements ofmi. The quantitiesmi

({

f j
}

|x
)

,
andmi (A |x ) are the masses assigned to the subsets

{

f j
}

andA after taking knowledge ofx. The quantitymi (Ω |x )
is the mass assigned to the frame of discernment after taking
knowledge ofx. The functionφi (x) is related to the input
domain (domain of expertise) of theith rule. In the present
work, it is defined by:

φi (x) = αiµ
i(x) (23)

whereµi(x) is given by (22) andαi is a weighting factor
which verify (0 < αi < 1). It is defined by a suplementary
parametersβi to control the importance of the ruleRi in the
inference process:

αi =
1

1 + e−βi
(24)

The coefficientspij which are application dependent must
verify the following constraint:

∑J(i)

j=1
pij = 1 (25)

so that the piece of evidence provided by theith rule is
divided among the focal elementsF i of the belief structure
mi. In order to make a decision, the outputs of the different
rules which are belief structures, are combined using the
Dempster’s rule of combination. The final belief structure is
then:

m = ⊕K
i=1m

i (26)

where⊕ represents the operator of combination. This befief
structurem which is a vector of(c + 1) elements (masses
of probabilities) should be normalized to give the following
normalized belief structure:

m′
j = mj

/

∑c+1

q=1
mq j = 1, . . . , c + 1 (27)

The overall multimodel is defined as a combination of the
functional prototypes with a single model representing the
frame of discernmentΩ, denoted byf (Ω):

⌢
y =

c
∑

j=1

ωj(x)f j(x) + ωc+1(x)f (Ω)(x) (28)

where ωj , j=1,...,c+1 are the mixing coefficients, which

verify
c+1
∑

j=1

ωj(x) = 1. Taking the mixing coefficients as the

normalized massesm′ which is a vector of size(c+1) gives
the following model:

⌢
y =

∑c

j=1
m′

(

{f j}
)

f j(x) + m′ (Ω) f (Ω)(x) (29)

with m′
(

{f j}
)

is the jth element ofm′ and m′ (Ω) is the
(c+1)th element ofm′.

B. Combining local and global fuzzy TSK models

In this subsection, we address the issue of combining local
and global models derived from the TSK fuzzy models. To
do that, we consider the case when the number of input
prototypes (or rules) is equal to the number of functional
prototypes; e.gK = c and we assume that the input region of
every rule is dominated by the contribution of one model. In
a first step, the Gustafson-Kessel (GK) clustering algorithm
[19] is used to cluster the data in the Cartesian product
spaceX ×Y and to define the antecedent parts of the rules.
Thus, the natural choice of the coefficientspij introduced in
equation (22) ispij = 1 if i = j and pij = 0 if i 6= j and
the expression of the belief functionmi is reduced to the
following form:







mi
({

f i
}

|x
)

= φi(x)
mi (Ω |x ) = 1 − φi(x)
mi (A |x ) = 0 ∀ A ∈ FΩ −F i

(30)

In order to obtain a compromise between local interpretabil-
ity and global accuracy, we consider that the linear models
f i(x) of parametersθT

i = [θi0, . . . , θir] are identified by the
weighted least squares (19). However, the modelfΩ(x) is
defined as a global TSK fuzzy model:

f (Ω) =

∑K

i=1 µi(x)gi(x; Λi)
∑K

i=1 µi(x)
(31)



with gi(x; Λi) being local linear functions of parameters
ΛT

i = [Λi0, . . . ,Λir] identified globally by a single least-
squares equation (18), whereµi(x) is the firing level of the
ith rule defined by equation (21). It is worthwhile to notice
that the induced mass of the belief structuremi of the ith
rule is divided among its local modelf i(x) and the global
modelfΩ(x).

V. EXPERIMENTAL RESULTS

In this section, two examples are tested to verify the
validity of the proposed strategy: the first one is a univariate
function. The other is the gas furnace data of Box and Jenkins
[24], which is well known and frequently used as benchmark
example for modeling and identification. The performance
index is the mean squares error (MSE). The weighting factor
αi = 0.99 for i = 1, . . . ,K so that all the rules have the
same weight.

A. Nonlinear static function approximation

To illustrate the performance of the proposed methodol-
ogy, let us consider the univariate function taken from [22],
[23]:

y(x) = 3e−x2

sin(πx) + η (32)

whereη is Gaussian noise with zero mean andσ2 = 0.15.
By using random inputsx uniformly distributed in the
[−3, 3], 300 samples ofy(x) were obtained. This gives the
identification Z = {(xk, yk); k = 1, . . . , 300}. The dataZ

are clustered by the GK clustering algorithm, withK = 7
clusters. The different models are given by Table I. The
local linear modelsf j(x); j = 1, . . . ,K and the mass
assigned to the global modelf (Ω)(x) are shown in Fig. 1.
The actual and estimated values are shown in Fig. 2.

The TSK global model (29) obtained with GK+LS gives
a MSE = 0.0058 and the TSK global model obtained with
GK+WLS (minimizing individual locally weighted predic-
tion error criteria) gives aMSE = 0.0196. However, the
combination scheme provides aMSE = 0.0181, which
represents a compromise between the two models but the
main advantage lies in the output belief structure as a
powerful representation of different kinds of uncertaintyand
in the additional information of the massm′(Ω). Depending
of the specific formulation of the elementary basic belief
assignements, the massm′(Ω) is relatively high in the
overlapping regions of the local models (local experts) where
the global modelf (Ω)(x) is expected to give better results.

B. Box and Jenkins gas furnace dataset

The Box and Jenkins gas furnace data are frequently used
in performance evaluation of system identification methods.
The data consist of 296 I/O measurements with a period of
9s: the input u(t) is gas flow rate and the output measurement
is CO2 concentration in outlet gas. The instantaneous value
of the outputy(t) can be regarded as being influenced by
ten variablesy(t − 1), . . . , y(t − 4), u(t − 1), . . . , u(t − 6).
Following the recommendation of [15] and with the aim
of achieving a comparison with other available models, are

TABLE I

THE DIFFERENT MODELS FOR THE UNIVARIATE FUNCTION

Local linear models The sub-models off (Ω)

f1(x) = −4.0022x − 4.2350 g1(x) = −4.2842x − 4.4591
f2(x) = −0.0103x − 0.0349 g2(x) = −0.0061x − 0.0465
f3(x) = +7.1408x − 0.0649 g3(x) = +7.4794x − 0.0649
f4(x) = +0.6677x + 1.2226 g4(x) = +0.7113x + 1.2915
f5(x) = +0.6675x − 1.3520 g5(x) = +0.7111x − 1.4210
f6(x) = −4.0021x + 4.1051 g6(x) = −4.2841x + 4.3293
f7(x) = −0.0103x − 0.0950 g7(x) = −0.0061x − 0.0834

TABLE II

BOX AND JENKINS DATA

Model No inputs No rules MSE
Sugeno and Yasukawa [15] 3 6 0.190

Wang and Langari [16] 6 2 0.066
local modeling GK+WLS 2 5 0.1575
global modeling GK+LS 2 5 0.1288

GK+combined 2 5 0.1401
local modeling GK+WLS 10 3 0.0557
global modeling GK+LS 10 3 0.0386

GK+combined 10 3 0.0447

taken as input variablesx = [y(t − 1), u(t − 4)]
T . Fig. 3

shows actual values and estimated values, obtained by means
of the model with 5 rules.

The above results are obtained without any optimization
of the parameters governing the behaviour of the model. The
structure of the combined model which integrates explicitly
some conflicting objectives is well suited to be optimized by
a gradient descent technique or by a nonlinear optimization
technique because the global model and the local models
share the same antecedent membership functions. Finally,
it is important to notice that the combination of the local
and global models is introduced here to show the validity of
the modeling strategy based on Dempster-Shafer theory and
other models can be defined.

VI. CONCLUSIONS

This paper describes a model for the modeling of the
functional relationships using belief function theory andits
validity is illustrated by addressing the issue of combining
global and local learning in fuzzy modeling. The impact of
the optimization of the different parameters on the model
performance is under study. As a future work, we need also
to examine in more details the behaviour of the model in
the presence of different kinds of uncertainties.
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Fig. 1. (a) The local models (b) the mass of probability associated to the
global model
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Fig. 2. Modeling of the univariate function.
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Fig. 3. Modeling of Box and Jenkins furnace data.


