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Abstract—In this paper, a multi-modeling strategy based between input and output variables, the clustering is done
on belief function theory is developed. The basic idea is to in the product space of input and output variables instead of

consider a fuzzy rule based system with a belief structure q in ; i ; ;
(BS) as output. The focal elements of each rule are formed the input space in traditional algorithms of fuzzy modeling

by a subset of a collection of functional models. A particular .
attention is paid to the topic of combining global and local In the context of fuzzy modeling, the problem of
fuzzy models of Takagi-Sugeno type by a specific formulation identifying the parameters of the constituent local linear

of the proposed model. Some examples are given to show themodels of Takagi-Sugeno fuzzy models is of great
validity of the approach. importance because it is difficult to find a tradeoff between

KeyWords: belief structure, piece of evidence, functional global model accuracy and interpretability [20], [21].

models, multimodel.
Here, we propose a multi-modeling strategy based on

l. INTRODUCTION evidence theory whose main distinctive feature concerns
The mathematical description of a priori unknownthe nature of the outputs, which consist in a set of belief
dynamic process from observed data and/or expemasses. By using a particular formulation, we show that the
knowledge is a widely encountered problem in engineerindpcal and global models can be combined in a single model.
industry, time series analysis and other fields. In most
cases, the models consist of a set of functional relatipsshi  This paper is organized as follows: section 2 describes
between the elements of a set of variables. A commaboriefly the basics of evidence theory. In section 3, the TSK
way consists of making an estimation by specifying amodel is presented and a special attention is paid to the issu
function with known structure but unknown parameter®f combining local and global models. The formulation of
to be estimated. Although the obtained models might bine functional approximation using the belief functionghe
acceptable in many cases, this approach does not seand the description of the proposed model as well as further
satisfactory from the perspective of knowledge enginegerindevelopments is also presented in section 4. Some numerical
and intelligent reasoning. More specifically, in manyresults are given in section 5. Conclusions are drawn in
practical problems the prediction should be accompaniegkction 6.
with some additional information that quantify their
reliability, e.g, for example in the form of a confidence Il. THE DEMPSTER SHAFER THEORY
interval. A. Knowledge model
In this section, we give a brief overview of certain aspects
For the modeling of complex problems, the principleof D-S theory. For exposition on the D-S theory [1], see
of divide-and-conquer is widely adopted in approximatingshafer's seminal work [2] and [4]. This theory is based on
unknown nonlinear mappings by a smooth combinatiothe definition of a set of hypothesi3 called the frame of
of simple functional models. One of the most outstandingiscernment, defined as follows:
models is the TSK fuzzy model which has attracted a great
attention due to its performances in many applications. Q={H, - Hj - Hy} @
Typically, fuzzy modeling involves structure and parametelt is composed ofV exhaustive and exclusive hypothesgés

identification. The latter is usually addressed by somfyrj =1,..., N. Let us denot@®, the power set composed
gradient descent variant, e.g., the least squares algoritwith 2V propositionsA of €:

or back-propagation. The former describes the inherent

structure for a concrete problem by partitioning each input 29 = {¢,{H1}, {H2}, -~ {Hn},{H U Hs} (2)
variable range into fuzzy sets. In general, the clustering i {H1U Hs}, - 0}

done in the input space of training data without integratingvhere ¢ is the empty set. The concept dfasic belief
the interaction between the input variables and the outpassignmeniBBA) plays a central role in evidence theory.
dynamics. In order to take into acount the interactioThe mass of belief in an element ©f is quite similar to a



probability distribution, but differs by the fact that thait of the BBA's (m(¢) = 0), the use of this rule is possible
mass is distributed among the elemen29f that is to say not only if m! andm? are not totally conflicting, i.e., if there
only on singletons; in © but on the composite hypothesesexist two focal elements B and C af' andm? satisfying
too. The beliefm’ assigned to an information souré is BN C # ¢. Let us denote the belief function resulting from

thus defined byn’ : 2% — [0, 1] such that: the combination ofX’ information sources as:
Tn“gb);(), m=mta - -omt- - omX (8)
> m'(A) =1. (3) _
ACQ whered® represents the operator of combination.

The massni(A) represents how strongly the evidence sup-
ports A. Each subsetl C  such thatm‘(A4) > 0 is called

a focal element ofn’. Let us denoteF* the set of focal The fuzzy rule based model proposed by Sugeno and
elements associated to a belief functief. From this BBA, his colleague’s [14] is able to describe complex, nonlinear
a belief functionBel’ and a plausibility functionPl’ are processes [17], [18], [16]. It is based on the fact that an

Ill. THE TSK MODEL

defined respectively, as arbitrary complex system is a combination of mutually inter
i i linked sub-systems. Lek regions, corresponding to indi-
Bel'(4) = Z m'(B) ) vidual sub-systems, be determined in the state space under
BeA consideration. The behavior of the system in these regions
and ‘ 4 can then be described with simpler functional relationship
PI'(A) = Z m'(B) (5) If the dependence is linear and if one rule is assigned to each
ANB#¢ sub system, the TSK fuzzy model can be represented with

The quantityBel’ (A) can be interpreted as measure of one'd®. fules of the following form:

belief that hypothesisd is true. The plausibilityPi (4) '+ TF @1 is Aj and...and L 1 A

can be viwed as the total amount of belief that could be , - THEN yis f (x) Vi=1,....K
potentially placed inA. Note that functionsni, Bel: and O Particular interest is the linear case ff(x):

Pl are three representation of the same piece of information. i) = 0i0 + Oy + ... + Oy (9)

In evidence theory, one of the main difficulties concerns the , i )

modeling of the knowledge of the problem by a proper choic@here f*(z) defines a locally valid model on the support of

of the belief functionsm. the cartesian product of fuzzy sets constituting the premis
parts of theith rule k!, andx = [z, - - ~,xT}T € X is the
B. Dempster’s rule of combination vector of input (antecedent) variablesi, ..., AL are fuzzy
In many cases, the combination or the fusion of differerg€ts defined in the antecedent space, @ne= (0,0, . . ., 0ir]

information sources is an interesting solution to obtaimeno IS the vector of the consequent parameter$'éf). The final
relevant information. Evidence theory provides a coheref@utputy € Y is computed by taking the weighted average
framework for integrating different information sources. ©Of the rule consequents

fact, for a given number of BBA®:’ obtained from different K )
information sourcesS?, the use of a combination rule pro- Z ") [ ()
vides combined masses summarizing the knowledge of the j="— (10)
different sources. These belief masses can then be used for 3 Bi(x)
=1

decision making with the advantage of the total knowledge
contained in the belief functions given by each source.  where3?(z) is the degree of activation of théh rule.
For two information sources® and S?, the induced BBA's ,
1 2 H _ ) i .
m* and m?, (':an.be comblqed by the so-called 1Demesters Bi(z) = H Hai(ays i=1, K (11)
rule of combination to provide a new BBA = m" © m?, =

called the orthogonal sum o' andm?2, and defined as: ) ) ]
andpi4i(,,) : R — [0,1] : is the membership function of the

>, mH(B)m*(C) fuzzy setAi(;) in the antecedent of’.
m(A) = B“C:? — VYACQ (6) The construction of the TS fuzzy model from data is solved
m(¢) in two steps: 1) structure identification 2) parameters estim

where the quantity in the numerator corresponds to thgon. In the first step, the antecedent and consequent Vesiab
conjunctive rule of combination and the mas$s) assigned of the model are determined. From the available training data

to the empty set is defined by that containN input-output samples, a regression matkix
and an output vectoy are constructed
m(g)= Y m'(B)m*C) (7) . .
BNC=¢ X:[mlv"'amN} 7y:[y1a"'7yN] (12)

In the above equations, the masg¢) reflects the conflict In the second step, the number of rul&s the antecedent
between the two source®' and S?. Asuming the normality fuzzy setsA‘, and the parameters of the rule consequents



0; for i = 1,..., K are identified. In order to capture theopposed to global learning, where the local linear models
interaction between the input and output variables, theyfuz cooperate for the minimisation of a global cost functiowalo
clustering in the Cartesian product-spaXex ) is a useful learning strategies encourage the linear models to compete
method. This is based on the fact that the different clustefs this case, the weighted least-squares method is used
represent operating regions, where the system behavioursisparately for each rule:

approximated by local linear models. The data &eto be
clustered is formed by combining andy

Z=[X;y" (13) IV. FUZZY MODELING USING BELIEF FUNCTIONS

6, = [XTW,X] T X" Wiy (19)

Once the training dat& and the number of clustel® are In the last years, many method; ba_sed on the D.empst.er—
given, the Gustafson-Kessel (GK) clustering algorithm] [198hafer th_eory have been propos_e_d N different areas imgudi

is used to discover the potential regions of the rules. data fu§|on [3]. [6]. [7], classification [9_]’ [11], [8] and
From the the partition matrix/, whoseikth elementui — regression [5], [12], [10]. Among the different methods,

[0,1] is the membership degree of the data the kth row we mention only the two approaches that are relevant to

of Z in clusteri, it is possible to extract the fuzzy sets in the2Ur work. The first approach was proposed by Yager [5]

antecedent parts. One-dimentional fuzzy s&itsire obtained in the context of fuzzy modeling. This strategy allows the
J

from multidimentional fuzzy clusters (given ) by point- integration of probabilistic uncertginty in_fuzzy rule leds
wise projection onto the space of the input variabje systems. The output of the rules is a belief structure w_hose
focal elements are fuzzy sets among the output variable

B (a) = proj; (i) (14) linguistic terms.
o , The second approach was proposed by Denoeux [9] in
where ;. is the level of belonging of thth sample (vector e context of classification. This approach considers each
ax) to theith cluster, whilejsi(,,) is the value of the paighhour of a pattem to be classified as an item of evidence
membership of thgth input variable of thekth sample jth  gypporting certain hypotheses concerning the class member
co-ordinate of the vectowy) to the fuzzy setdj. Since ghip of that pattern. Based on this evidence, basic belief
all the functions 1i4:,, ) under consideration representyasses are assigned to each subset of the set of classes. Such
membership function, the conditiom,:(,, ) : R — [0,1]  masses are obtained for each of the k-nearest neighbours
must hold true. Value of firing strength of théh rule for  of the pattern under consideration and aggregated using the
eachkth input sample is computed and-conjunctionby  pempster’s rule of combination. Lately, the above approach
means of the product operator: has been improved and applied in regression analysis [10],
_ _ r [12]. For a given input query vector, the output variable is
B = B'(zx) = HMAW,W.) k=1,2,...,N (15) obtained in the form of a fuzzy belief assignment (FBA),
j=1 defined as a collection of fuzzy sets of values with assatiate
The correct application of this equation requires an intronasses of belief. In [13], the output FBA is computed non-
duction of a threshod (¢ = 0.05, for example) for the pa_rametrically on the basis of the training samples in the
fulfillment of the condition:jus: () < € = fai(s,,) = 0. ne|ghbqurhooq qf thg query point. In this approach, the
The consequent parameters for each rule are obtained asnélerlying principle is that the neighbours of the query
least squares estimate. L&, denote the matrixt, X]; W; Pointare considered as sources of partial information en th
is a diagonal matrix of dimensioN x N having the normal- eésponse variable; the bodies of evidence are discounted as

ized membership degree (z;,) — 5%%)/2?11 3 () as a function of their distance to the query point, and pooled

its kth diagonal element. Hence a matrix compositiit of using the Dempster's rule of combination.
; : " Based on the approach proposed by Yager [5] and the princi-
dimensionN x K(r + 1) is formed: PP brop y Yager [3] b

ple introduced by Denoeu®], we propose a nhew model for
X' = [(W1X,.), WaX,),...,(WkX,)] (16) approximating nonlinear functional mappings. This model i
. ] illustrated through a particular form of the functional netzl
where matrixX, = [1,X] contains rows[1,z;;]. Denote \jore specifically, the functional models are linear models

', the column vector of dimensio (r + 1) given by used in the TSK fuzzy model.
I [gT oT 1T

0" =[00,0z....0k] 17 A. The proposed model
X0'+¢, wheree is the approximation error, has the following gptained from an unknown nonlinear proceasand ) are
least squares solution the domains of variation of the input of dimensismnd the

-1 scalar output, respectively.
r_ NT -1 nT
0= [(X ) X} (X" y (18) The principle underlying the fuzzy modeling based on

This identification strategy corresponds to a global leayni Dempster-Shafer theory assumes the existence of a certain

ables and the output variable, denotedfbyz),j = 1,...,c.



In order to find a link between the evidence theory, whiclso that the piece of evidence provided by fiie rule is
starts by the definition of a set of hypothesis as describativided among the focal elemenfs’ of the belief structure
in section 2, we shall consider that the above relationships®. In order to make a decision, the outputs of the different
models form the frame of discernmefit Thus, we have: rules which are belief structures, are combined using the

Q= (Yoo A} D) 20) t?]zr::psters rule of combination. The final belief structwse i
where {f7} is the hypothesis that corresponds to the func- m = &L,m' (26)
tional model f7(z).
In our modeling strategy, the model consits &f rules of
the form:
R': IF x1is A% and...and z, is A’

THEN yism'

where m® is a BBA whose focal elements are among the /ZC“ mg j=1,...,c+1 (27)
hypotheses of the frame of discernment Let us denote
by Fi;, j=1,...,J(i); the J(i) focal elements ofn* and The overall multimodel is defined as a combination of the
denote bym’ ( zg) the weight (a mass of probability) asso-functional prototypes with a single model representing the
ciated to thejth focal elementt;; of m. This formulation frame of discernmenf, denoted byf ():
which is quite general brings some aspects of the evidence
theory to aggregate different BBA, where every BBA has its 7= Z“’J ) 4 wep1(2) fD (2) (28)
own elements. The firing strength of thh rule is defined by
the product of the membership degrees of the correspondl\rll\ﬁ]
fuzzy sets:

whered® represents the operator of combination. This befief
structurem which is a vector of(c + 1) elements (masses
of probabilities) should be normalized to give the follogin
normalized belief structure:

ere wj, le,...,c+1 are the mixing coefficients, which
c+1
veri w;i(x) = 1. Taking the mixing coefficients as the

z) = H A () (21) y jgl (@) g g

j normalized masses’ which is a vector of sizéc+1) gives
where iy (, ) is the membershlp function of the fuzzy setthe following model:
Al 5(xj). In order to predict an output valug for an input — Z {fy (@) +m' (Q) f(ﬂ)(x) (29)
vectoraz every rule provides a piece of evidence concerning
the value of the unknown output This item of evidence with m’ ({f7}) is thejth element ofm’ andm’ (2) is the

can be assimilated by a belief function: (c+1)th element ofm/.
mz ((S{)J‘c]% |x)1: Z;J'(‘bi)(x)’ j=1...,J00) 22) B. Combining local and global fuzzy TSK models
m r)=1—09;(x
mi(Alz)=0VY A € F — Fi In this subsection, we address the issue of combining local

‘ and global models derived from the TSK fuzzy models. To
In the above equatioF® is the power set of2 and7* de- do that, we consider the case when the number of input
note the focal elements of’. The quantitiesn’ ({f7} |z),  prototypes (or rules) is equal to the number of functional
andm’ (A|x) are the masses assigned to the sub§¢ts  prototypes; e.g¢ = c and we assume that the input region of
and A after taking knowledge of. The quantitym’ (€2[z)  every rule is dominated by the contribution of one model. In
is the mass assigned to the frame of discernment after takiggfirst step, the Gustafson-Kessel (GK) clustering algorith
knowledge ofz. The functiong; (z) is related to the input [19] is used to cluster the data in the Cartesian product
domain (domain of expertise) of theh rule. In the present spacex x ) and to define the antecedent parts of the rules.
work, it is defined by: Thus, the natural choice of the coefficiepts introduced in
‘ i equation (22) igp;; = 1if i = j andp;; =0 if i # 5 and

¢ (2) = aup' () (23) the expression 01{ the belief functiomg is reduced to the

where u(z) is given by (22) andv; is a weighting factor following form:

which verify (0 < a; < 1). It is defined by a suplementary V({1 2) = ¢
parametersd; to control the importance of the rulg’ in the mi (@) f 11 Q;(x) (30)
inference process: zi (A é) B 0V /; xe O _ i
1
o = 11 B (24)  In order to obtain a compromise between local interpretabil-
ity and global accuracy, we consider that the linear models
The coefficientsp;; which are application dependent mustfz( ) of parameter$” = [0, . .., 0;,] are identified by the
verify the following constraint: weighted least squares (19). However, the moffé{z) is
J (@) defined as a global TSK fuzzy model:
S =1 (25) g Y

=1 SE L i @)gi(a:Ay)

o = .
S Hi)

(31)




TABLE |

with ¢‘(z; A;) being local linear functions of parameters
THE DIFFERENT MODELS FOR THE UNIVARIATE FUNCTION

AT = [Aj,..., A, ] identified globally by a single least-
squares equation (18), wheré(x) is the firing level of the
ith rule defined by equation (21). It is worthwhile to notice

that the induced mass of the belief structuré of the ith Local linear models The sub-models of "
rule is divided among its local modgt () and the global | /(%) = —4.0022z — 4.2350 || g'(z) = —4.2842 — 4.4501
model £(z). f2(z) = —0.0103z — 0.0349 || g°(z) = —0.0061z — 0.0465
F2(x) = +7.1408x — 0.0649 || g°(x) = +7.4794x — 0.0649
V. EXPERIMENTAL RESULTS FA(x) = +0.6677x + 1.2226 || g*(z) = +0.7113z + 1.2915
In this section, two examples are tested to verify the f°(z) = +0.6675x — 1.3520 || ¢°(z) = +0.7111z — 1.4210
validity of the proposed strategy: the first one is a univaria| f5(z) = —4.0021x + 4.1051 || ¢%(z) = —4.2841x + 4.3293
function. The other is the gas furnace data of Box and Jenkingﬁ(l-) = —0.0103z — 0.0950 || ¢"(x) = —0.0061z — 0.0834

[24], which is well known and frequently used as benchmar
example for modeling and identification. The performance

index is the mean squares error (MSE). The weighting factor TABLE Il

a; = 0.99 for i = 1,...,K so that all the rules have the BOX AND JENKINS DATA

same weight.

A. Nonlinear static function approximation Model No inputs | No rules| MSE
To illustrate the performance of the proposed methodol-Sugeno and Yasukawa [15] 3 6 0.190

ogy, let us consider the univariate function taken from [22] " Wang and Langari [16] 6 2 0.066

[23]: , local modeling GK+WLS 2 5 0.1575

y(z) = 3e™" sin(mz) +1n (32) global modeling GK+LS 2 5 0.1288

wheren is Gaussian noise with zero mean anti= 0.15. GK+combined 2 > 0.1401

By using random inputsz uniformly distributed in the | local modeling GK+WLS 10 3 0.0557

[—3,3], 300 samples of/(z) were obtained. This gives the | _global modeling GK+LS 10 3 0.0386

identification Z = {(x,yx);k =1,...,300}. The dataZ GK+combined 10 3 0.0447

are clustered by the GK clustering algorithm, wikh = 7
clusters. The different models are given by Table I. The
local linear modelsf’(z);5 = 1,...,K and the mass
assigned to the global modgl*) () are shown in Fig. 1.
The actual and estimated values are shown in Fig. 2.

taken as input variables = [y(t — 1), u(t —4)]". Fig. 3
shows actual values and estimated values, obtained by means
of the model with 5 rules.

The TSK global model (29) obtained with GK+LS gives The above results are obtained without any optimization
a MSE = 0.0058 and the TSK global model obtained with of the parameters governing the behaviour of the model. The
GK+WLS (minimizing individual locally weighted predic- structure of the combined model which integrates expficitl
tion error criteria) gives a\/SE = 0.0196. However, the SOMe conflicting objectives is well suited to be optimized by
combination scheme provides W SE = 0.0181 wr’1ich a gradient descent technique or by a nonlinear optimization
represents a compromise between the two models but tfgFhnique because the global model and the local models
main advantage lies in the output belief structure as share the same antecedent membership functions. Finally,

powerful representation of different kinds of uncertaiatyd it is important to n_oti_ce that the combination of the_ Ipcal
in the additional information of the mass'($2). Depending and global models is introduced here to show the validity of

of the specific formulation of the elementary basic belief€ modeling strategy based on Dempster-Shafer theory and
assignements, the mass’(2) is relatively high in the Other models can be defined.

overlapping regions of the local models (local experts)nehe

the global modelf ) (z) is expected to give better results. VI. CONCLUSIONS

B. Box and Jenkins gas furnace dataset This paper describes a model for the modeling of the
The Box and Jenkins gas furnace data are frequently ustdhctional relationships using belief function theory atsd

in performance evaluation of system identification methodsalidity is illustrated by addressing the issue of combgnin

The data consist of 296 /O measurements with a period gfobal and local learning in fuzzy modeling. The impact of

9s: the input u(t) is gas flow rate and the output measuremethie optimization of the different parameters on the model

is CO2 concentration in outlet gas. The instantaneous valperformance is under study. As a future work, we need also

of the outputy(¢) can be regarded as being influenced byo examine in more details the behaviour of the model in

ten variablesy(t — 1),...,y(t — 4),u(t — 1),...,u(t — 6). the presence of different kinds of uncertainties.

Following the recommendation of [15] and with the aim

of achieving a comparison with other available models, are
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Fig. 3. Modeling of Box and Jenkins furnace data.



