
State estimation of uncertain multiple model with
unknown inputs

Abdelkader Akhenak, Mohammed Chadli, Didier Maquin and José Ragot
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Abstract— This paper is dedicated to the synthesis of a
sliding mode multiple observer. The considered systems are
represented by an uncertain (nonlinear) multiple model with
unknown inputs. Stability conditions of such observers are
expressed in terms of linear matrix inequalities (LMI). An
example of simulation is given to illustrate the proposed me-
thod.

I. I NTRODUCTION

A physical process is often subjected to disturbances which
have as origin the noises due to its environment, uncertainty
of measurements, fault of sensors and/or actuators. These
disturbances have harmful effects on the normal behavior
of the process and their estimation can be used to conceive
a control strategy able to minimize their effects. The dis-
turbances are called unknown inputs when they affect the
input of the process and their presence can make difficult
the state estimation.

In the linear system framework, observers can be designed
for singular systems, unknown input systems, delay sys-
tems and also uncertain system with time-delay perturba-
tions [18][7]. Several works were also achieved concerning
the estimation of the state and the output in the presence of
unknown inputs. They can be gathered into two categories.
The first one supposes an a priori knowledge of information
on these nonmeasurable inputs; in particular, Johnson [10]
proposes a polynomial approach and Meditch [14] sug-
gests approximating the unknown inputs by the response of
a known dynamic system. The second category proceeds
either by estimation of the unknown inputs, or by their
complete elimination from the equations of the system.

Among the techniques that do not require the elimination
of the unknown inputs, Wang [16] proposes an observer
able to entirely reconstruct the state of a linear system
in the presence of unknown inputs and in [4][11][13], to
estimate the state, a model inversion method is used. Using
the Walcott and Zak structure observer [17] Edwards et
al. [5][6] have also designed a convergent observer using
the Lyapunov approach. Other techniques are based on the
elimination of the unknown inputs [9][12].

However, the real physical systems are often nonlinear. As it
is delicate to synthesize an observer for a nonlinear system,
we preferred to represent these systems with a multiple
model. The idea of the multiple model approach is to ap-
prehend the total behavior of a system by a set of local
models (linear or affine), each local model characterizing
the behavior of the system in a particular zone of opera-
tion. The local models are then aggregated by means of an
interpolation mechanism.

In the case of a nonlinear system affected by unknown
inputs and described by a multiple model, a technique for
multiple model state estimation by using a multiple observer
with sliding mode has already been proposed [1][3].

In this paper, we consider the state estimation of an uncer-
tain multiple model with unknown input. For that purpose
a multiple observer based on convex interpolation of classi-
cal Luenberger observers [1] involving additive terms used
to overcome the uncertainties is designed. Using quadra-
tic Lyapunov function, sufficient asymptotic stability condi-
tions are given in LMI formulation [2].

Notation: Throughout the paper, the following useful no-
tation is used:XT denotes the transpose of the matrixX,
X > 0 means thatX is a symmetric positive definite matrix,
IM = {1,2,...,M} and ‖.‖ represents the Euclidean norm
for vectors and the spectral norm for matrices.

II. M ULTIPLE MODEL APPROACH

A multiple model is obtained by interpolating several local
linear models.




ẋ (t) =
M∑

i=1

µi (ξ (t)) (Aix (t) + Biu (t) + di)

y(t) = Cx(t)

(1)

where x(t) ∈ Rn is a state vector,u(t) ∈ Rm in the
input vector,y(t) ∈ Rp is the output vector and the matrix
C ∈ Rp×n is the output matrix of the system. For theith

local modelAi ∈ Rn×n is the state matrix,Bi ∈ Rn×m is



the matrix of input, anddi ∈ <n×1 is a constant matrix.

The activation functionsµi(ξ(t)), i ∈ IM have the follo-
wing properties:





M∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀ i ∈ IM
(2)

whereξ(t) represents the vector of decision depending on
the input and/or the measurable state variables. The number
of local models(M) depends on the precision of desired
modeling, the complexity of the nonlinear system and the
choice of the structure of the activation functions.

A multiple model can be obtained by identification [8], by
linearization around various operating points (in this case
each local model is an affine LTI system due to the presence
of the constant of linearization) or by convex polytopic
transformation [15].

In this paper, we consider that the output of the system
is linear with regard to the state, i.e.,y (t) = Cx (t) that
covers a large class of real systems.

To hold account of modelisation/approximation errors and
sometimes the presence of unknown inputs, a multiple mo-
del can involved uncertainties and unknown inputs:




ẋ(t) =
M∑

i=1

µi (ξ)
(

(Ai + ∆Ai(t)) x(t) + Biu(t)+

Riū(t) + di

)

y(t) = Cx(t)
(3)

The unknown inputs̄u (t) are assumed to be bounded, such
that ‖ū (t)‖ < ρ, whereρ is a positive scalar. The variable
matrices∆Ai(t) are also bounded, i.e.,‖∆Ai(t)‖ < δi.
The transmission matrices of the unknown inputs areRi ∈
Rn×q.

Remark: In the following, to simplify the expression of
equations, time variable(t) will be omitted.

III. M ULTIPLE OBSERVER STRUCTURE

In this paper, we consider the state estimation of an un-
certain multiple model perturbed by unknown inputs. The
proposed multiple observer is based on a linear combina-
tion of local Luenberger observer involving sliding terms
allowing to compensate the uncertainties and the unknown
inputs.

A. Multiple observer stability conditions

It is assumed that the pairs(Ai, C) are observable and there
exists matricesGi ∈ Rn×p, such thatĀi = Ai − GiC

have stable eigenvalues, i.e., there exists symmetric and
positive definite matrices(P,Qi) and matricesFi ∈ Rm×p

satisfying the following structural constraints:{
ĀT

i P + PĀi = −Qi

CT FT
i = PRi, ∀i ∈ 1,...,M

(4)

The proposed multiple observer of the multiple model (3)
has the following form:



˙̂x =

M∑
i=1

µi (ξ)
(
Aix̂ + Biu + di + Gi (y − Cx̂) + Riνi + αi

)

ŷ = Cx̂
(5)

The aim of the design is to determine gain matricesGi

and variablesνi ∈ Rq and αi ∈ Rn, that guarantee the
asymptotic convergence of̂x towardsx. Let us note that
the variablesνi and αi compensate respectively the errors
due to the unknown inputs and the model uncertainties. Let
us define the state estimation error:

e = x− x̂ (6)

The output estimation error is defined as follows:

r = y − ŷ = C (x− x̂) = Ce (7)

The dynamic of the state estimation error is governed by:

ė =
M∑

i=1

µi (ξ)
(
(Ai −GiC) e + ∆Aix + Riū−Riνi − αi

)

(8)
Theorem 1:The state estimation of the robust state multiple
observer (5) converges globally asymptotically to the state
of the multiple model (3), ifνi (t) andαi (t) are given by
the following equations:




If r 6= 0





νi = ρ
Fir

‖Fir‖
αi = β1 (1 + β2) δ2

i

x̂T x̂

2 rT r
P−1CT r

If r = 0
{

νi = 0
αi = 0

(9)
and if there exists a matrixP > 0, some matricesFi and po-
sitive scalarsβ1 andβ2 satisfying the following constraints:

{
ĀT

i P + PĀi + β−1
1 P 2 + β1

(
1 + β−1

2

)
δ2
i I < 0

CT FT
i = PRi, i ∈ IM

(10)

with:
Āi = Ai −GiC (11)

The demonstration of the asymptotic convergence of this
multiple observer uses the following lemma 1:

Lemma 1: For any matricesX and Y with appropriate
dimensions, the following property holds for any positive
scalarβ:

XT Y + Y T X ≤ βXT X + β−1Y T Y



Proof: In order to demonstrate the asymptotic convergence
of the multiple observer, let us consider the following Lya-
punov function:

V (e) = eT Pe (12)

Its time derivative, evaluated along the trajectory of the
system by using equations (6) and (8), may be expressed
as:

V̇ =
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi

)
e + xT ∆AT

i Pe+

eT P∆Aix− 2αT
i Pe + 2eT PRiū− 2eT PRiνi

)

(13)

The lemma (1) property, allows to write:

V̇ ≤
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi

)
e + β1x

T ∆AT
i ∆Aix+

β−1
1 eT P 2e− 2αT

i Pe + 2eT PRiū− 2eT PRiνi

)

(14)

Using the expression of the state estimation error (6), (14)
becomes:

V̇ ≤
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi + β−1
1 P 2

)
e + 2eT PRiū+

β1δ
2
i (x̂ + e)T (x̂ + e)− 2αT

i Pe + 2eT PRiνi

)

V̇ ≤
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi + β−1
1 P 2

)
e + 2eT PRiū+

β1δ
2
i

(
x̂T x̂ + eT e

)
+ β1δ

2
i

(
x̂T e + eT x̂

)

−2αT
i Pe− 2eT PRiνi

)

(15)

Using again the property of the lemma (1), the expression
(15) can be rewritten as follows:

V̇ ≤
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi + β−1
1 P 2 + β3δ

2
i I

)
e+

β1(1 + β2)δ2
i x̂T x̂− 2αT

i Pe + 2eT PRiū− 2eT PRiνi

)

with β3 = β1(1 + β−1
2 )

When r 6= 0, by using the relation (9), it is easy to notice
that:

2αT
i Pe = β1(1 + β2)δ2

i

x̂T x̂

rT r
rT CP−1Pe

= β1(1 + β2)δ2
i

x̂T x̂

rT r
rT r

= β1(1 + β2)δ2
i x̂T x̂

(16)

Therefore, after simplification, we obtain:

V̇ ≤
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi + β−1
1 P 2 + β3δ

2
i I

)
e+

2eT PRiū− 2eT PRiνi

)

(17)

By using the second equality of the structural constraint,

CT FT
i = PRi, we obtain:

2eT PRiū− 2eT PRiνi = 2eT CT FT
i ū− 2eT CT FT

i νi

= 2rT FT
i ū− 2rT FT

i νi

By replacing the variablesνi by the expression (9), this last
expression can be written as:

2eT PRiū− 2eT PRiνi = 2rT FT
i ū− 2rT FT

i νi

= 2rT FT
i ū− 2ρrT FT

i

Fir

‖Fir‖
= 2rT FT

i ū− 2ρ‖Fir‖

This last expression is then clearly negative, therefore, the
inequality (17) becomes:

V̇ ≤
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi + β−1
1 P 2 + β3δ

2
i I

)
e+

2rT FT
i ū− 2ρ‖Fir‖

)

≤
M∑

i=1

µi (ξ)
(
eT

(
ĀT

i P + PĀi + β−1
1 P 2 + β3δ

2
i I

)
e

)

(18)

Whenr = 0, we obtain the same result.

As the RHS of inequality (18) is clearly negative, the asymp-
totic convergence of the multiple observer is guaranteed.
Then the state estimation error converges asymptotically to-
wards zero, if the conditions (9) and the inequalities (10) are
checked. The inequalities (10) are nonlinear inP and Gi.
LMI Techniques can thus be used only after linearization
of these inequalities. We chose a technique of change of
variable.

B. Resolution method

Consider the following change of variable:

Wi = PGi (19)

Then, the inequalities (10) can be written as:

AT
i P + PAi − CT WT

i −WiC + β−1
1 P 2 + β3δ

2
i I < 0

(20)
Applying the Schur complement [12], we obtain from (19)
the following LMI formulation:

[
AT

i P + PAi − CT WT
i −WiC + β3δ

2
i I P

P −β1I

]
< 0

(21)
The solution of this LMI inP andGi allows one to compute
the observer gainsGi = P−1Wi.



IV. SIMULATION EXAMPLE

Consider the multiple model, made up of two local models
and involving two outputs and three states.





ẋ =
2∑

i=1

µi(ξ)
(
(Ai + ∆Ai)x + Biu + Riū

)

y = Cx

(22)

The numerical values of matricesAi, Bi, Ci andRi are as
follows:

A1 =



−2 1 1
1 −3 0
2 1 −6


 A2 =



−3 2 2
5 −8 0

0.5 0.5 −4




B1 =




1
0.5
0.5


 B2 =




0.5
1

0.25




R1 =




1
1
1


 R2 =




1
0.5
2


 C =

[
1 1 1
1 0 1

]

Model of uncertainties are such that∆Ai (j,k) (t) = 0.1Ai (j,k) η (t)
(j,k) ∈ {1,3}, the function η(t) is a Gaussian random
function with zero mean and a unity variance.

In this case, the multiple observer that estimates the state
vector of the multiple model is described by,




˙̂x =
2∑

i=1

µi (ξ)
(
Aix̂ + Biu + Gi (y − Cx̂) + Riνi + αi

)

ŷ = Cx̂
(23)

with{
(Ai −GiC)T P + P (Ai −GiC) + β−1

1 P 2 + β3δ
2
i I < 0

CT FT
i = PRi, ∀i ∈ {1,2}

(24)
It is important to note that a potential problem arises in the
implementation of this multiple observer: when the output
estimation errorr(t) tends towards zero, the magnitude of
αi(t) andνi(t) may increase without bound. This problem
is overcome as follows.

The termsνi(t) andαi(t) are fixed to zero when the output
estimation error us such that‖r(t)‖ < ε a small positive
number chosen by the user. In this case, the estimation
error cannot converge to zero asymptotically but to a small
neighborhood of zero depending on the choice ofε.

A. Simulation results

The simultaneous resolution of equations (24) using LMI
tools leads to the following matricesGi, Fi andP :

G1 =




0.24 0.73
15.32 −13.06
4.46 1.24


 , G2 =




1.18 6.68
14.52 −7.29
11.49 −3.88




P =




1.83 −0.81 0.51
−0.81 3.35 0.06
0.51 0.06 0.95




F1 =
[

2.60 −1.06
]

and F2 =
[

0.98 1.47
]

The system (22) was simulated using the known and unk-
nown inputs depicted in figures (1) and (2).
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FIG. 1 –. the known inputu(t)
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FIG. 2 –. the unknown input̄u(t)

The figures (3), (4) and (5) show the comparison between
the state of the multiple model and its estimate from the
multiple observer. The figures (6) and (7) show the two
outputs of the multiple model and their respective estimates.
It is noted that the two layouts are superimposed except in
the vicinity of the origin; that is due to the choice of the
initial conditions of the multiple observer.

V. CONCLUSION

Based on an uncertain multiple model representation, the
design of a multiple observer using the principle of inter-
polation of local observers has been proposed. Moreover,
the case where some inputs of the system are unknown has
been considered. The calculation of the gains of the multiple
observer is then returned to a simultaneous calculation of
the gains of the local observers. The stability of the global
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FIG. 3 –. x1(t) of the multiple model and its estimate
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FIG. 4 –. x2(t) of the multiple model and its estimate
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FIG. 5 –. x3(t) of the multiple model and its estimate

observer requires however the consideration of coupling
constraints between these local observers; these contraints
lead to the resolution of a LMI problem under structural
constraints. Assuming the existence of suited matrices, we
showed that the reconstruction of the state and unknown
inputs vectors of the multiple model is possible. The simu-
lation results show that the estimation of state and unknown
inputs is very satisfactory.
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FIG. 6 –. y1(t) of the multiple model and its estimate
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FIG. 7 –. y2(t) of the multiple model and its estimate
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