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Abstract—This paper is dedicated to the synthesis of a However, the real physical systems are often nonlinear. As it
sliding mode multiple observer. The considered systems are js delicate to synthesize an observer for a nonlinear system,
represented by an uncertain (nonlinear) multiple model with we preferred to represent these systems with a multiple

unknown inputs. Stability conditions of such observers are del. The id fth ltiol del his t
expressed in terms of linear matrix inequalities (LMI). An model. The idea or the muftiple model approach IS 1o ap-

example of simulation is given to illustrate the proposed me- Prehend the total behavior of a system by a set of local
thod. models (linear or affine), each local model characterizing

the behavior of the system in a particular zone of opera-
I. INTRODUCTION tion. The local models are then aggregated by means of an

A physical process is often subjected to disturbances Whiéﬂterpolatmn mechanism.

have as origin the noises due to its environment, uncertainté th ¢ i ¢ ttacted b K
of measurements, fault of sensors and/or actuators. Thé € case of a noniinear system afiected by unknown

disturbances have harmful effects on the normal behavilﬂpUtS and described by a multiple model, a technique for

of the process and their estimation can be used to concei%Jltlple model state estimation by using a multiple observer

a control strategy able to minimize their effects. The dis\—NIth sliding mode has already been proposed [1](3].

turbances are called unknown inputs when they affect tll]e

input of the process and their presence can make diffic tf?.th's [Jlf}ple & wedc?ngtlﬁer tEe stat(_a esttlmFanotr;] Otf an uncer-
the state estimation. ain multiple model with unknown input. For that purpose

a multiple observer based on convex interpolation of classi-
In the linear system framework, observers can be designedl Luenberger observers [1] involving additive terms used
for singular systems, unknown input systems, delay sy$e overcome the uncertainties is designed. Using quadra-
tems and also uncertain system with time-delay perturbéie Lyapunov function, sufficient asymptotic stability condi-
tions [18][7]. Several works were also achieved concernintjons are given in LMI formulation [2].
the estimation of the state and the output in the presence of
unknown inputs. They can be gathered into two categoriellotation: Throughout the paper, the following useful no-
The first one supposes an a priori knowledge of informatiotation is used:X” denotes the transpose of the mathx
on these nonmeasurable inputs; in particular, Johnson [18] > 0 means thak is a symmetric positive definite matrix,
proposes a polynomial approach and Meditch [14] sudh, = {1,2,...,M} and||.|| represents the Euclidean norm
gests approximating the unknown inputs by the response fafr vectors and the spectral norm for matrices.
a known dynamic system. The second category proceeds
either by estimation of the unknown inputs, or by their Il. MULTIPLE MODEL APPROACH

complete elimination from the equations of the system. ] ) . ] ]
] ) _ . A multiple model is obtained by interpolating several local
Among the techniques that do not require the eliminatiofnear models.
of the unknown inputs, Wang [16] proposes an observer M
able to entirely reconstruct the state of a linear system i (1) = () (Asz (£) + Biu () + d,
in the presence of unknown inputs and in [4][11][13], to ®) ;m (€ (0) (A (&) + Bru (1) + do) 1)
estimate the state, a model inversion method is used. Using | y(t) = Cx(t)
the Walcott and Zak structure observer [17] Edwards %here 2(t) € R" is a state vectoru(t) € R™ in the

l. h | i i . .
al. [5][6] have also designed a convergent observer usin put vector,(1) &7 is the output vector and the matix

ihe Lyapunov approach, Other techiques are based on {15 11 is the output matrix o the system. For té
P ’ local modelA; € R™"*"™ is the state matrix3; € R"*™ is



the matrix of input, andl; € %! is a constant matrix. = have stable eigenvalues, i.e., there exists symmetric and
positive definite matriceéP, ;) and matricest; € R™*P

Th ivation functiong; i € I,; have the follo- . . X
e activation functionsu; (£(t)), 7 € T have the follo satisfying the following structural constraints:

wing properties:

, ATP 4+ PA;, = -Q;
3 { l +T T N . 4
> p(Et) =1 @ CTFT = PR, Viel,...M
=1 ) The proposed multiple observer of the multiple model (3)
0<p(§(t) <1 Viely has the following form:

where¢(t) represents the vector of decision depending of . X A A

the input and/or the measurable state variables. The number® ~ Z i (€) (Asd + Biut di+ Gi (y = OF) + Ravi+ o )

of local models(A/) depends on the precision of desired| = Ci

modeling, the complexity of the nonlinear system and the ®)

choice of the structure of the activation functions. The aim of the design is to determine gain matrices
and variables/; € R? and «; € R", that guarantee the

A multiple model can be obtained by identification [8], byasymptotic convergence df towardsz. Let us note that

linearization around various operating points (in this casée variables; and «; compensate respectively the errors

each local model is an affine LTI system due to the presenégle to the unknown inputs and the model uncertainties. Let

of the constant of linearization) or by convex polytopicus define the state estimation error:

transformation [15]. e=gq— 3 (6)

In this paper, we consider that the output of the systerhh€ output estimation error is defined as follows:
is linear with regard to the state, i.e;(t) = Cx (¢) that r=y—ij=C(z—42)=_Ce )
covers a large class of real systems. ) o _

The dynamic of the state estimation error is governed by:
To hold account of modelisation/approximation errors and M
sometimes the presence of unknown inputs, a multiple mé-= Y _ i (€) ((Ai - GiC)e+ AAjz + Riu — Riv; — « )
del can involved uncertainties and unknown inputs: i=1 ®)

M Theorem 1: The state estimation of the robust state multiple
o(t) = Zui (3 ((Ai + AA;(t)) 2(t) + Biu(t)+ observer (5) converges globally asymptotically to the state
i=1 Ra(t) + d, ) of the multiple model (3), ifv; (t) and «; (¢) are given by
! ! the following equations:

y(t) = Ca(t) For
3) Vi = pr—

. If 70 £l
The unknown inputs: (¢) are assumed to be bounded, such 501 52 273 p-10T
that || (t)|| < p, wherep is a positive scalar. The variable o =P (L+ ) 6 5 7 "
matricesAA;(t) are also bounded, i.e[[AA;(#)|| < §;. fr—0 { vi =0
The transmission matrices of the unknown inputs &ye= a; =0
R™>4, 9)

and if there exists a matriR > 0, some matrice#’; and po-
Remark: In the following, to simplify the expression of sitive scalarg3; and 3, satisfying the following constraints:
equations, time variablé) will be omitted. { ATP+ PA; + By P2+ 31 (1+851) 021 <0

T T __ g
[1l. M ULTIPLE OBSERVER STRUCTURE CUFS = PR, i €y (10)
In this paper, we consider the state estimation of an ufwith:
certain multiple model perturbed by unknown inputs. The A, = A, — G,C (12)

proposed multiple observer is based on a linear combing: . . .
tion of local Luenberger observer involving sliding terms‘?he demonstration of the asymptotic convergence of this

allowing to compensate the uncertainties and the unknownr]lUItIpIe observer uses the following lemma 1.

inputs.

Lemma 1 For any matricesX and Y with appropriate
dimensions, the following property holds for any positive
scalarg:

A. Multiple observer stability conditions

It is assumed that the paifsl;, C') are observable and there
exists matrices; € R™*?, such thatd, = A4, — G;C XTYy +YTX <pXTX + 37 'YTY



Proof: In order to demonstrate the asymptotic convergend®y using the second equality of the structural constraint,
of the multiple observer, let us consider the following Lya- CTFT = PR;, we obtain:
punov function:

V(e)=e"Pe (12)  2¢"PRyu— 2" PRyv; = 2T CTF ' — 27 CTF
Its time derivative, evaluated along the trajectory of the = 2rTF ' — 2rTFl
system by using equations (6) and (8), may be expressed
as: By replacing the variables; by the expression (9), this last

expression can be written as:
V= wi (& ( ATP + PA) e+ 2T AAT Pe+
Z ) 2¢" PR, — 2¢T PR,v; = QTTFZ-T’L_L — QTTFZ-TI/Z'
T T T
PAA‘T*QOL Pe+2e* PR;u — 2e PRI/Z) F;
= 2rTFTu — 2prTFT !
(13) | £l

The lemma (1) property, allows to write: =2r"Fl'u — 2p|| Fyr|

< . ATP PA TAATAA This Ia§t expression is then clearly negative, therefore, the
14 Zu ( +PA) e+ fr T inequality (17) becomes:
5 e P?e — 2af Pe + 2¢" PR — 2¢” PR;v;

14 v< Z“z ) (7 (AT P+ PA; + B P + Ba021) e+
Using the expression of the state estimation error (6), (14) =1 ~
becomeS' 2r' Fla — 2p|| Fyr || )

V< Z/% ( (ATP 4+ PA; + B P?) e+ 2" PRii+ <> s (€) (eT (ATP+ PA; + 87 P> + 35621 ) e )

s

5162 (2 + )" (2 +€) — 20T Pe + 2¢" PRy, ) (18)
M Whenr = 0, we obtain the same result.
V<> () (7 (ATP+ PA + 57 P?) e 4+ 2¢7 PRy+
i=1 162 (x iaele ) + 3102 (x ete m) As the RHS of inequality (18) is clearly negative, the asymp-
. . totic convergence of the multiple observer is guaranteed.
—2a; Pe —2e” PRy, Then the state estimation error converges asymptotically to-

(15) wards zero, if the conditions (9) and the inequalities (10) are

Using again the property of the lemma (1), the expressm’ﬂqecmdh The mequah::es (b10) arz nor;lmefad%ﬁandG
(15) can be rewritten as follows: LMI Techniques can thus be used only after linearization
of these inequalities. We chose a technique of change of

variable.
V<ZMZ ( (ATP + PA; + B P2 + B3020) e+

ﬁl(l + 52)621 T — 2aiTPe +2¢T PR — 2¢” PR,y )

with 83 = 31 (1 + B3 ")

B. Resolution method

Consider the following change of variable:

Whenr # 0, by using the relation (9), it is easy to notice W; = PG, (19)
that:

AT A . ayn . .
20T Pe = (1 + B2)5? xTx’I"TCP71P6 Then, the inequalities (10) can be written as:
rer
T3 ATP+ PA; — CTWF —W,C + p; ' P? 821 <0
= 511+ B2)0 et T as AP+ : AR B
i Ty (20)
=B (1 + 32)8227 2 Applying the Schur complement [12], we obtain from (19)

TP . the following LMI formulation:
Therefore, after simplification, we obtain: wing ulati

<0

(21)
2¢" PRy — 2¢" PRiv; ) The solution of this LMI inP andG; allows one to compute
(17) the observer gain&'; = P~1W,.

[ ATP 4+ PA; — CTWT —W,C + 83621 P

V<Zm ( (ATP 4+ PA; + BT P2 + 33021) e+ P B



IV. SIMULATION EXAMPLE 1.83  —0.81 0.51
P=] -081 335 0.06
Consider the multiple model, made up of two local models 0.51 0.06 0.95

and involving two outputs and three states.
g P Fy=[260 —1.06] and Fy=[098 147 |

The system (22) was simulated using the known and unk-

2
i=3 () ((AZ- + AA) + Bu+ Ria )
i=1 (22) nown inputs depicted in figures (1) and (2).

y=Cx
The numerical values of matrices;, B;, C; andR; are as ar
follows:
-2 1 1 [ -3 2 2 |
Al = 1 -3 0 Ay = 5 =8 0
2 1 -6 | 05 05 —4
1 [ 0.5 1
B, = 0.5 By = 1 Lo
0.5 | 0.25 i
1 1 0s
Ri=11 Ro=1| 05 C:{} (1) }} ‘
1 2 (] 5 10 15 20 25 30 35 40
Model of uncertainties are such thatd; (j,k) (t) = 0.14; (j,k) n (t) FiG. 1 - the known inputu(t)

(4,k) € {1,3}, the functionn(t) is a Gaussian random
function with zero mean and a unity variance.

In this case, the multiple observer that estimates the state
vector of the multiple model is described by,

2
53:2/%(5) (Aii+Biu+Gi(y—Cf)+RW¢+0@') i
=1
§=C#
(23)
with
(A; — G;O)'P + P(A; — G,C) + B P? + 83621 < 0
CT'Fl' = PR;, Vie {12} - - |
(24) e
It is important to note that a potential problem arises in the
implementation of this multiple observer: when the output
estimation error-(¢t) tends towards zero, the magnitude of
a;(t) andv;(t) may increase without bound. This problemThe figures (3), (4) and (5) show the comparison between
is overcome as follows. the state of the multiple model and its estimate from the
The termsv;(t) anday (¢) are fixed to zero when the output Multiple observer. The figures (6) and (7) show the two
estimation error us such thdi(t)|| < ¢ a small positive ou_tputs of the multiple model and their respectwe estlmates.
number chosen by the user. In this case, the estimatid'S noted that the two layouts are superimposed except in
error cannot converge to zero asymptotically but to a smdiff€ Vicinity of the origin; that is due to the choice of the
neighborhood of zero depending on the choice.of initial conditions of the multiple observer.

FiG. 2 —. the unknown inputi(t)

V. CONCLUSION

A. Simulation results Based on an uncertain multiple model representation, the
, , i i design of a multiple observer using the principle of inter-

The simultaneous resolution of equations (24) using LM},q\ation of local observers has been proposed. Moreover,

tools leads to the following matrices;, I and P: the case where some inputs of the system are unknown has
0.24 0.73 1.18  6.68 been considered. The calculation of the gains of the multiple

Gy =| 1532 —-13.06 |, Go = | 14.52 —-7.29 observer is then returned to a simultaneous calculation of
4.46 1.24 11.49 -—3.88 the gains of the local observers. The stability of the global



FIG. 3 - z1(¢) of the multiple model and its estimate FIG. 6 — y1(t) of the multiple model and its estimate

X1 réel et estimé

FIG. 7 —.  y2(t) of the multiple model and its estimate
FIG. 4 —. z2(¢t) of the multiple model and its estimate
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