
Design of Robust Observer for Uncertain
Takagi-Sugeno Models

A. Akhenak, M. Chadli, J. Ragot, D. Maquin
Centre de Recherche en Automatique de Nancy,

INPL CNRS UMR 7039.
2, Avenue de la for̂et de Haye. 54516 Vandoeuvre, France.

E-mail: {aakhenak, mchadli, jragot, dmaquin}@ensem.inpl-nancy.fr

Abstract— This paper deals with the robust fuzzy observer
design problem for a class of uncertain nonlinear system rep-
resented by Takagi-Sugeno model. Stability conditions of such
observers are expressed in terms of linear matrix inequalities
(LMI). An example of simulation is given to illustrate the
proposed method.

I. I NTRODUCTION

The state reconstruction of an uncertain system is a traditional
problem of the automatic. The observer of Lunberger is not
always sufficient for the fault detection, because the state
estimation error given by this observer for an uncertain system
or with unknown inputs does not converge inevitably towards
zero.
In the linear system framework, observers can be designed for
singular systems, unknown input systems, delay systems and
also uncertain system with time-delay perturbations [4][7]. In
the case of a nonlinear system affected by unknown inputs and
with a multiple model representation, a technique for multiple
model state estimation by using a fuzzy observer with sliding
mode has been proposed [1].
In this paper, we consider the state estimation of an uncertain
Takagi-Sugeno (T-S) model [5]. For that purpose a fuzzy
observer based on convex interpolation of classical Luenberger
observers [3] involving additive terms used to overcome the
uncertainties is designed. Using quadratic Lyapunov function,
sufficient asymptotic stability conditions are given in LMI
formulation [2].

The following notation is used:P > 0 denotes a symmetric
positive definite matrix, andIN = {1, ..., N}.

II. PROBLEM FORMULATION

An uncertain T-S model is represented as follows:




ẋ (t) =
N∑

i=1

µi (ξ)
(
(Ai + ∆Ai(t))x (t) + Biu (t)

)

y (t) =
N∑

i=1

µi (ξ)Cix (t)

(1)

N∑

i=1

µi (ξ) = 1, with 0 ≤ µi (ξ) ≤ 1, ∀ i ∈ IN (2)

whereN is the number of local models,x(t) ∈ Rn is the state
vector,u(t) ∈ Rm is the input vector andy(t) ∈ Rp is the out-
put vector. The ith local model, is characterized by the matrices
Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n and the correponding
activation functionµ(.). Finally, ξ represents the vector of
decision depending on the input and/or the measurable state
variables.∆Ai(t) ∈ Rn×n are modeling/approximation errors
which have to be taken into account in the fuzzy observer
design. Note that other matched and unmatched uncertainties
are lumped together with these errors. The error∆Ai is
bouded such as:

‖∆Ai(t)‖ < δi (3)

where‖.‖ is spectral norm.

III. M AIN RESULT

A. Fuzzy Observer Design

Assuming that all the pairs(Ai, Ci) are observable, the
following structure of fuzzy observer is proposed:





˙̂x(t) =

N∑
i=1

µi (ξ)
(
Aix̂(t) + Biu(t) + Hi (y(t)− ŷ(t)) + αi(t)

)

ŷ(t) =
N∑

i=1

µi (ξ) Cix̂(t)

(4)

where x̂(t) ∈ Rn is the state estimation,̂y(t) ∈ Rp is the
observer output. The gainHi ∈ Rn×m of the ith local observer
and the termαi(t) ∈ Rn might be determined to force state
estimation error converging to zero. Define the state estimation
error as

e(t) = x(t)− x̂(t) (5)

and the output residual as

r(t) = y(t)− ŷ(t) =
N∑

i=1

µi(ξ)Cie(t) (6)



The state estimation error is governed by:

ė(t) = ẋ(t)− ˙̂x(t)

=
N∑

i=1

N∑

j=1

µi (ξ)µj (ξ)
(
Āije(t) + ∆Ai(t)x− αi(t)

)

(7)

Āij = Ai −HiCj (8)

The following lemma is needed to prove theorem 1.

Lemma1 : For any matricesX and Y with appropriate
dimensions, the following property holds:

XT Y + Y T X ≤ XT X + Y T Y

Theorem1 :Suppose that there exists symmetric matrixP > 0
and matricesHi such that

ĀT
ijP + PĀij + P 2 + 2δ2

i I < 0, ∀ (i, j) ∈ I2
N (9)

where Āij is defined by (8), then the state estimation error
of the robust state fuzzy observer (4) with condition(10)
converges asymptotically to zero:

αi(t) =





δ2
i x̂T (t)x̂(t)
r(t)T r(t)

P−1
N∑

i=1

µi (ξ)CT
i r(t), if r(t) 6= 0

0, if r(t) = 0
(10)

Proof: Consider the following Lyapunov function candidate

V (t) = e(t)T Pe(t), P > 0 (11)

The time derivatives ofV (t) along the trajectories of system
(7) satisfy,

V̇ (t) = ėT (t) Pe (t) + eT (t)P ė (t)

=
N∑

i=1

N∑

j=1

µi (ξ)µj (ξ)
(
eT (t)

(
ĀT

ijP + PĀij

)
e (t) +

2xT (t)∆AT
i Pe (t)− 2αT

i (t)Pe (t)
)

Using lemma (1), the time derivative ofV (t) can be written as:

V̇ (t) ≤
N∑

i=1

N∑
j=1

µi (ξ) µj (ξ)
(
eT (t)

(
ĀT

ijP + PĀij + P 2
)

e (t)

−2αT
i (t) Pe (t) + xT (t)∆AT

i ∆Aix (t)
)

≤
N∑

i=1

N∑
j=1

µi (ξ) µj (ξ)
(
eT (t)

(
ĀT

ijP + PĀij + P 2
)

e (t)+

δ2
i xT (t) x (t)− 2αT

i (t) Pe (t)
)

(12)

Using the expression (5) and the property of lemma 1, the
derivative of the Lyapunov function becomes as follows:

V̇ (t) ≤
N∑

i=1

N∑
j=1

µi (ξ) µj (ξ)
(
eT (t)

(
ĀT

ijP + PĀij + P 2
)

e (t)+

δ2
i (x̂ (t) + e (t))T (x̂ (t) + e (t))− 2αT

i (t) Pe (t)
)

≤
N∑

i=1

N∑
j=1

µi (ξ) µj (ξ)
(
eT (t)

(
ĀT

ijP + PĀij + P 2+

2δ2
i I

)
e(t) + 2δ2

i x̂T (t)x̂(t)− 2αT
i (t)Pe(t)

)

(13)

Case 1:r(t) 6= 0 - with the expression (5), the inequality (13)
becomes:

αT
i (t)Pe (t) = δ2

i

x̂T (t) x̂ (t)
rT (t) r (t)

rT (t)
N∑

k=1

µk (ξ)CkP−1Pe (t)

= δ2
i

x̂T (t) x̂ (t)
rT (t) r (t)

rT (t) r (t) = δ2
i x̂T (t) x̂ (t)

Then, the expression (13) can be rewritten as follows:

V̇ (t) ≤
N∑

i=1

N∑
j=1

µi (ξ) µj (ξ)eT (t)
(
ĀT

ijP + PĀij + P 2 + 2δ2
i I

)
e(t)

(14)

Case 2:r(t) = 0 - we obtain directly (14).

Consequently the conditions (9) guarantee thatV̇ < 0, and
then the estimation error converges to zero asymptotically.

The conditions (9) are nonlinear inP and Hi, but they can
be easily converted into a LMI problem as it will be shown
at the end of the next section.

B. Relaxed Stability Conditions

In order to reduce the conservatism of the inequalities (9),
we propose to design the observer thanks to theorem (2). The
following lemma is used for proof by taking into account the
maximum number s of local model simultaneously activated
(s is depending on the support of the activation function).

Lemma2 : Taking into account the properties of the activation
functions (2), the following inequality holds [6]:

N∑

i=1

µ2
i (ξ) ≥ 2

s− 1

N∑

i=1
i<j

N∑

j=1

µi (ξ) µj (ξ), 2 ≤ s ≤ N (15)

Theorem2 :Suppose that there exists symmetric matricesP >
0, Q ≥ 0 and matricesHi such that

ĀT
iiP + PĀii + P 2 + 2δ2

i I + (s− 1) Q < 0, i ∈ IN (16a)
1

2

[(
Āij + Āji

)T
P + P

(
Āij + Āji

)]
+ P 2 + 2δ2

i I −Q < 0

(16b)
∀ i < j ∈ IN

where Āij is defined by (8), then the state estimation error
of the robust state fuzzy observer (4) with condition (10)



converges asymptotically to zero.

Proof : Starting from the expression (13), we can write

V̇ (t) ≤
N∑

i=1

N∑
j=1

µi (ξ) µj (ξ)eT (t)
(
ĀT

ijP + PĀij + P 2 + 2δ2
i I

)
e(t)

=

N∑
i=1

µi (ξ)2 eT (t)
(
ĀT

iiP + PĀii + P 2 + 2δ2
i I

)
e(t)

+2

N∑
i=1

N∑
j=1
i<j

µi (ξ) µj (ξ) eT (t)
(
P 2 + 2δ2

i I +

1
2

[(
Āij + Āji

)T
P + P

(
Āij + Āji

)] )
e(t)

Using the expression (16), we deduce:

V̇ (t) ≤ eT (t)


−

N∑
i=1

µ2
i (ξ) (s− 1) + 2

N∑
i=1
i<j

N∑
j=1

µ2
i (ξ) µj (ξ)


 Qe(t)

(17)
Lemma (2) ensures thaṫV < 0, then the estimation error
converges asymptotically to zero.

The conditions (16) are nonlinear inP and Hi. In order to
convert them into a LMI problem, the following change of
variablesWi = PHi, gives:

AT
i P + PAi − CT

i W T
i −WiCi + P 2 + 2δ2

i I + (s− 1) Q < 0

(Ai + Aj)
T

2
P + P

(Ai + Aj)

2
− CT

j W T
i −WiCj − CT

i W T
j −

WjCi + P 2 + 2δ2
i I −Q < 0

(18)

Applying the Schur complement [1], we obtain from (18) the
following LMI formulation:




AT
i P + PAi − CT

i W T
i −WiCi + (s− 1) Q + 2δ2

i I P

P −I


 < 0




(Ai+Aj)
T

2
P + P

(Ai+Aj)
2

− CT
j W T

i −WiCj−
CT

i W T
j −WjCi −Q + 2δ2

i I
P

P −I


 < 0

(19)

Summarising, the state observer is fully described by (4), (6),
(10), the Lyapunov matrixP and the gainsHi = P−1Wi.

It is important to note that there is potentiel problem in im-
plementation of this observer : when the state estimation error
e(t) goes to zero, the magnitudeαi(t) may increase without
bound. This problem is overcome as follows. When|ei(t)| <
ε, whereε is a small positif number ande(t) = (e1, e2, ..., en),
we setei = ε and the denominator of (10) becomesrT r =
N∑

i=1

N∑
j=1

µi (ξ) µj (ξ) νijε
2 with νij , positive scalar, is depending

onCi. In this case, the estimation error cannot converge to zero
asymptotically but to a small neighborhood of zero depending

on the choice ofε. May simulations, not reported in this paper,
have provide the efficiency of the proposed observer design.

IV. SIMULATION EXAMPLE

Consider the fuzzy model, made up of two local models and
involving two outputs and three states.





ẋ(t) =
2∑

i=1

µi(ξ)
(
(Ai + ∆Ai)x(t) + Biu(t)

)

y(t) = Cx(t)

(20)

The numerical values of matricesAi, Bi, Ci and Ri are as
follows:

A1 =



−2 1 1
1 −3 0
2 1 −6


 A2 =



−3 2 2
5 −8 0

0.5 0.5 −4




B1 =




1
0.5
0.5


 B2 =




0.5
1

0.25


 C =

[
1 1 1
1 0 1

]

Model of uncertainties are such that∆Ai (j, k) (t) =
0.1Ai (j, k) η (t) (j, k) ∈ {1, 3}, the functionη(t) is a Gaus-
sian random function with zero mean and a unity variance.

In this case, the multiple observer that estimates the state
vector of the multiple model is described by,




˙̂x(t) =

2∑
i=1

µi (ξ)
(
Aix̂(t) + Biu(t) + Gi (y(t)− Cx̂(t)) + αi(t)

)

ŷ(t) = Cx̂(t)
(21)

with

(Ai −HiC)T P + P (Ai −HiC) + P 2 + 2δ2
i I < 0, ∀ i ∈ I2

(22)
It is important to note that a potential problem arises in the
implementation of this multiple observer: when the output
estimation errorr(t) tends towards zero, the magnitude of
αi(t) may increase without bound. This problem is overcome
as follows.

The termsαi(t) are fixed to zero when the output estimation
error us such that‖r(t)‖ < ε a small positive number chosen
by the user. In this case, the estimation error cannot converge
to zero asymptotically but to a small neighborhood of zero
depending on the choice ofε.

A. Simulation Results

The resolution of equations (21) using LMI tools leads to the
following matricesHi andP :

P =




0.6365 −0.5836 0.0332
−0.5836 0.9584 −0.1814
0.0332 −0.1814 0.2343






H1 =



−0.26 7.34
28.97 −29.28
0.64 7.30


 H2 =




7.00 4.55
38.82 −33.34
1.11 8.50




The simulation results are represented on the following figures.
The convergence of the state vector of the fuzzy observer
towards those of the fuzzy model is quite good. At the vicinity
of t=0, the disparity between estimated and actual state is due
to the choice of initial conditions.
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Fig. 1. The known inputu(t)
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Fig. 2. The statex1(t) and its estimate
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Fig. 3. The statex2(t) and its estimate

V. CONCLUSION

A robust fuzzy observer design for a T-S model has been
proposed in this paper. The design of such observer relies
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Fig. 4. The statex3(t) and its estimate

on the existence of a quadratic Lyapunov function ensuring
asymptotic convergence of the fuzzy observer. The stability
of the fuzzy observer requires however the consideration of
coupling constraints between these local observers; these con-
traints lead to the resolution of a LMI problem under structural
constraints. Assuming the existence of suited matrices, we
showed that the reconstruction of the state vector of the
fuzzy model is possible. The simulation results show that the
estimation state is very satisfactory.

REFERENCES

[1] A. Akhenak, M. Chadli, D. Maquin and J. Ragot,Sliding mode multiple
observer for fault detection and isolation, 42th IEEE CDC, Hawaii,
December 9-12, 2003.

[2] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan,Linear Matrix
Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

[3] M. Chadli, D. Maquin, J. Ragot,Output stabilization in multiple model
approach, IEEE Control Conference on Application CCA’02, September
2002.

[4] K. K. Fan, J. G. Hsieh,LMI Approach to design of robust state observer
for uncertain systems with time-delay perturbation, IEEE International
Conference on Industrial Technology 2002, Bangkok, Thailand, pp.1111-
1115, 2002.

[5] M. Takagi and M. Sugeno,Fuzzy identification of systems and its
application to moddeling and control, IEEE Trans on Systems Man
and Cybernetics-part C, vol. 15, n. 1, pp. 116-132, 1985.

[6] K. Tanaka, T. Ikeda and Y. Y. He,Fuzzy regulators and fuzzy observers:
relaxed stability conditions and LMI-based design, IEEE Trans Fuzzy
Systems, vol. 6, n. 1, pp. 250-256, May 1998.

[7] Y. Xia, Y. Jia, Robust sliding mode control for uncertain time-delay
systems: an LMI approach, IEEE Trans on Automatic Control, vol.
48, n. 6, June 1998.


