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Abstract : common rail injection system has been developed to increase diesel engine performances 
and to reduce noise, emission and fuel consumption. Such goals are possible only if the whole system 
is perfectly controlled. But, any system component failure can lead to significant engine performances 
decrease and degraded emission control. 
A faults diagnosis system based on structured hypothesis tests is proposed in this paper, in order to 
detect and isolate different types of failures which are able to affect the pressure control loop in a 
common rail diesel injection system. 
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1 Introduction 
The key feature of the common rail injection 
system is that the injection pressure is generated 
independently of engine speed and injected fuel 
flow. 
This characteristic property presents new 
horizons for air/fuel mixture preparation and 
injection process control because, from now on, 
the injection pressure will be freely realizable in 
the cartography. 
Several mechanical, electromagnetic and 
electronic components (pump, electro valve, 
sensor…) contribute to generate and control the 
injection pressure which reaches around 1400 
bars.  
Any drift or failure in one of these components 
implies predictably a modification of generated 
pressure level. 
This modification influences naturally the injection 
process and move consequently the engine 
performances and emission out of their optimal 
areas. 
Considering the previous effects, a diagnosis 
system becomes essential in order to detect as 
early as possible eventual failures in the pressure 
loop and to suggest recovery actions. 
Model based fault diagnosis has gained 
increased interest during the last ten years 
thanks to technological advances of the on-board 
 
 

 
electronic control units, and increased demand 
on diagnosis performance in many areas. 
Many studies have been devoted to diagnosis 
theory using models and analytical redundancy 
techniques [1][2][3]. 
Several research works have been performed in 
this field, on diesel engines in particular. 
Some methods consist in training neural nets 
based models [4][5][6] with cylinder pressure, 
vibration and instantaneous speed sensors data 
of a diesel engine in order to detect and identify 
several types of failures having different 
signatures. 
Interesting results have been also presented in 
[7][8]. 
They processed different types of faults in the 
intake and supercharging air paths of an 
automotive turbocharged diesel engine. 
This is the reason why we here suggest a model 
based diagnosis method using structured 
hypothesis tests. 
Both the framework and the basic principles of 
the method are summarized in Section 2. 
Afterwards, we describe in Section 3 the process 
to which the suggested method will be applied. 
Finally, the diagnosis system construction as well 
as some method application results will be shown 
in Section 4. 



2 Model based diagnosis using 
structured hypothesis tests 

We have chosen, in our case, a diagnosis system 
based on the structured hypothesis tests 
presented in [9] and shown in Figure 1. 
 

 
 

Figure 1 : Structured hypothesis tests based 
diagnosis system 

 
The inputs to the diagnosis system is the process 
input u and the process output y. 
The signal p represents inputs that are unknown 
to the diagnosis system, e.g. disturbances. 
The output of the diagnosis system is the 
diagnosis statement S which contains information 
about which fault modes that can explain the 
behavior of the process. 
This fault mode can correspond to either the 
presence of one or several faults Fn, or no fault 
status NF as a special case. 
The null hypothesis 0

iH  means that the system 
fault mode, present in the process, belongs to a 
specific set of system fault modes iM . 

Otherwise, if hypothesis 0
iH  is rejected, the 

alternative hypothesis 1
iH  is confirmed, which 

means that the present fault mode does not 
belong to iM , it belongs to complementary sets 

denoted C
iM : 

ii MFH ∈:0   
C
ii MFH ∈:1  

Thus, each separate hypothesis test THi 
contributes with a piece of information Si, 
corresponding to a certain set of system fault 
modes iM , to the final diagnosis result. 
So, the diagnosis system consists of a set of 
hypothesis tests THi and a decision logic which 

combines information to form the diagnosis 
statement S.  
The simple intersection operation is mostly used 
for decision logic.  
The diagnosis statement S then becomes a set of 
fault modes that can be expressed as : 
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C
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i
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Generally, the studied process contains several 
components (sensor, actuator…). 
For each of these components, a number of fault 
modes can be also distinguished. 
Each component i has a, possibly vector-valued, 
parameter iθ  which determines the exact fault 
mode (which can be no fault) of the component i. 
All parameters iθ  are then grouped in a vector  

[ ]pθθθ ,...1=  which describes a global fault mode 
of the whole process containing p components. 
We consider in this study a single fault-mode 
process. Which means that only one fault mode 
can be present. This assumption is considered 
for both process and components. 
Therefore, for each process fault mode, only one 
single hypothesis test must be evaluated. 
For each hypothesis test we need to find a test 
quantity and a rejection region. 
The sample data for each hypothesis is : 
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The test quantity chosen for each hypothesis is a 
function from the sample data x  expressed as : 
( ) ( )xVxT ii ,min θ

θ
=              (2) 

where ( )xVi ,θ  is a measure measuring the 
validity of the process model ( )θM  with respect 
to the sample data x . 
Thus, for a parameters vector θ , the calculation 
of the test quantity iT  can be viewed as a 
minimization problem of ( )xVi ,θ  using the sample 
data x . 
A threshold iJ  is associated to each test quantity 

iT  in order to define the rejection region of null 

hypothesis 0
iH  as follows : 

( ) ii JxT ≥  : 0
iH  rejected ( 1

iH  accepted)         (3a) 

( ) ii JxT <  : 0
iH  not rejected             (3b) 

 
This means that we need to design a test 
quantity ( )xTi  such that it is low if the data x  

match the hypothesis 0
iH , i.e. a fault mode in 

iM  can explain the data. Also if the data come 
from a fault mode not in iM , ( )xTi  should be 
large. 



3 Common rail diesel injection 
system 

3.1 Process description 
In this study framework, we are interested 
particularly in the pressure control loop of a 
common rail diesel injection system. 
In this system, the pressure is generated thanks 
to high-pressure pump (see Figure 2) driven by 
the engine camshaft. 
 
 

 
 

Figure 2 : Common rail diesel injection system 
 
 
A filling actuator « IMV : Inlet Metering Valve » 
mounted on the pump, with electrically 
controllable cross section area, allows to 
modulate the generated pressure which is stocked 
into a high-pressure accumulator (the rail). 
Pressurized fuel is then led to the injectors that 
allow to spray this fuel into the engine combustion 
chambers. 
A pressure sensor is mounted on the rail in order 
to measure instantaneously the current pressure 
level in this accumulator. 
Finally, an on-board electronic control unit 
evaluates pressure sensor signals and keep the 
pressure in the rail at a desired level by controlling 
the IMV actuator and injectors. 
The ECU manages the injection process and 
supervises also the correct functioning of the 
injection system as a whole.  

3.2 Modeling 
The discrete model of the pressure control 
process described previously can be given, for the 
fault-free case (no faults are present), after 
normalization by the following equations : 
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where : 

321 ,, XXX  states represents respectively rail 
pressure, engine speed and cross section area of 
IMV actuator. In the studied process, only 21, XX  
states are measurable. 
The 4321 ,,, uuuu  inputs are respectively : the 
current through IMV actuator coil, injected fuel 
flow into the cylinders, resistant torque exerted 
on engine (unknown a priori) and the discharge 
command applied to injectors (without injection 
into the cylinders).   
eT  is the sample time period, P is a 2nd degree 

polynomial and )10,...,1( =ici  are constants. 
The rail pressure control is performed by using 

1X  state measurements coming from rail 
pressure sensor, and by applying 1u  command 
signal to IMV actuator in order to modulate the 
generated pressure. 
Figure 3 shows a simulation example of the 
process described by equations (4),(5) and (6) in 
fault-free case. 
This figure includes also the accelerator-pedal 
position representing a certain driving cycle. 
 

 
 

Figure 3 : Fault-free pressure control process 
simulation 



4 Construction of the diagnosis 
system 

We develop, in this section, some examples of 
diagnosis using structured hypothesis tests 
applied to the studied pressure control process. 
So, we are interested in the component fault 
modes described in the following table :  
 
Index Component Fault mode 

C Pressure 
sensor 

NF: no fault 
Cb : signal bias 
Cg : transfer gain modification 

A Filling 
actuator 

NF: no fault 
Ad : cross section area drift  

 
Therefore, we can define the hypotheses which 
must be tested with associated process fault 
modes as : 
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in order to determine parameters vector θ  which 
defines the studied fault modes, we suggest the 
following fault models : 
 
Sensor faults model : 

( ) ( ) ( )kvbkgXkX pm 111 ++=             (7) 
where mX1  is the measured rail pressure, 

pX1  is the predicted rail pressure which is 
calculated thanks to process model described by 
equations (4), (5) and (6). 

],[ bgC =θ  is the parameters vector defining 
pressure sensor fault modes described in the 
above table. 

1v  is a signal that represents a gaussian 
distributed measurement noise with a null mean 
value. 
 
Actuator faults model : 
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where 3X  is the IMV cross section area 
calculated by equation (6) and derived from fault-
free case process model. 

mX 2  is the measured engine speed. 
][dA =θ  is the parameters vector defining IMV 

fault modes described in the previous table. 
2v  is a signal that represents a gaussian 

distributed measurement noise with a null mean 
value. 
Thus, the parameters vector defining process 
fault modes becomes : ],,[ dbg=θ . 
 
As shown in Section 2, in order to evaluate the 
hypothesis tests defined previously in this 
section, we must determine for each hypothesis a 
test quantity and a rejection threshold as 
described by equations (2), (3a) et (3b). 
The following test quantity, based on prediction 
error, suggests a process validity measure with 
respect to sample data x  as : 

( ) ( ) ( )( )
2

1

1min ∑
=

−=
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k
pmi kXkX

N
xT

iθ
           (9) 

where ∈mX
N is the studied state 

measurements vector, ∈pX
N is the state 

predictions vector which takes into account fault 
parameters vector iθ . 
 
No fault {NF} 
This fault mode, corresponding to process fault-
free case, can be defined by parameters vector 

]0,0,1[=NFθ . 
The associated test quantity is expressed by the 
following equation : 

( ) ( ) ( )( )
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xT  

Rejection threshold can be determined in the 
process fault-free case as follows : 

( ) ( )[ ]jNFNFNF xTxTJ ,...,max 1=  
where ∈jxx ,...,1

5xN are the different data 
samples used, including measurable states 

21,XX  as well as the commands 421 ,, uuu . 
 
Signal bias {Cb} 
This fault mode is defined by a pressure sensor 
output signal bias.  
The parameters vector that corresponds to this 
fault mode becomes : ]0,,1[ bCb =θ , and the 
associated test quantity is the following : 
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with : 
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the estimated bias that minimizes CbT  
considering data sample x . 
Rejection threshold of this fault mode, for a 
process without faults, can be given similarly as : 

( ) ( )[ ]jCbCbCb xTxTJ ,...,max 1= , ∈jxx ,...,1
5xN 

 
Transfer gain modification {Cg} 
This fault mode occurs when an extra gain is 
applied to pressure sensor output signal, 
modifying in this way the global sensor transfer 
gain. 
Thus, the fault parameters vector becomes : 

]0,0,[gCg =θ , and the corresponding test quantity 
is : 
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the least square estimate of g  that minimizes 

CgT  considering data sample x . 
Rejection threshold of this fault mode, for a 
process without faults, can be expressed as : 

( ) ( )[ ]jCgCgCg xTxTJ ,...,max 1= , ∈jxx ,...,1
5xN 

 
Cross section area drift {Ad} 
The fault mode, in this case, comes as a bias in 
the cross section area of filling actuator (IMV). 
This may occur because of impurity crossing 
through the high pressure pipes (négative bias in 
this case). 
the fault parameters vector then becomes : 

],0,1[ dAd =θ , and the associated test quantity is : 

( ) ( ) ( )( )
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where pX1  is the rail pressure predictions vector 
which takes into account the cross section area 
drift. pX1  calculation is based on equation (8) as 
follows : 
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with : Nk ,...,2=  et ( ) ( )11 11 mp XX =  

( )xd
^

 is the least square estimate of cross section 
area drift that minimizes AdT  considering data 
sample x . 
Rejection threshold of this fault mode for a 
process without faults is : 

( ) ( )[ ]jCgCgCg xTxTJ ,...,max 1= , ∈jxx ,...,1
5xN 

 
Figure 4 shows application results of the three 
following fault modes : 
- pressure sensor abrupt transfer gain 

modification of 10% during the period t = 
[25,28] s. 

- pressure sensor abrupt output signal bias of 
5% during the period t = [40,43] s. 

- filling actuator abrupt cross section area drift 
of -4% since t = 50 s. 

with data samples width N = 64, and sample time 
period Te = 4 ms. Rejection thresholds are fixed 
to :

1.0,008.0,02.0,03.0 ==== NFAdCbCg JJJJ  
 
The process faults diagnosis can be then 
performed by using the following incidence 
structure : 
 

 NF Cb Cg Ad 

0
NFTH  1 0 0 0 

0
CbTH  1 1 0 0 

0
CgTH  1 0 1 0 

0
AdTH  1 0 0 1 

 

 
 

Figure 4 : Results of hypothesis tests applied 
to a faulty pressure control loop 

 



Examples : 
- as shown in Figure 4, when t = 28 s, we have : 

0,1,0,0 0000 ==== AdCgCbNF THTHTHTH . 
Using above incidence structure, we deduce that 
the present failure corresponds to a pressure 
sensor transfer gain modification fault (Cg). 
 
- when t = 55 s, looking at the same figure, we 
have : 1,0,0,0 0000 ==== AdCgCbNF THTHTHTH . 
This leads us to conclude, taking into account the 
associated incidence structure, that the present 
failure is a filling actuator cross section area drift 
fault (Ad). 

5 Conclusion 
A diagnosis system based on structured 
hypothesis tests has been presented in this 
paper. 
The aim of this diagnosis system is to detect and 
isolate several failure types which are able to 
affect the pressure control loop of a common rail 
diesel injection system. 
The physical process as well as the failures 
intended to be detected by diagnosis have been 
modeled and studied. 
The application results of the diagnosis system 
have shown that it was possible to detect and 
isolate sensor and actuator failures in the high-
pressure control loop of the injection system. 
This shows clearly the strength and the high 
potential of the method which is able to cover a 
large variety of process failures and components. 
Other research works are in progress in order to 
study and evaluate the influence of different 
types of noise on structured hypothesis tests 
based diagnosis system robustness and 
performances. 
More high-pressure loop actuators are also 
intended to be covered by the diagnosis system 
developed in this study framework. 
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