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Abstract
On-line optimisation provides a means for maintaining a process around its optimum operating plant. A important com-
ponent of optimisation relies in data reconciliation which is used for obtaining consistent data. On a mathematical point of
view, the formulation is generally based on the assumption that the measurement errors have normally pdf with zero mean.
Unfortunately, in the presence of gross errors, all of the adjustments are greatly affected by such biases and would not be
considered as reliable indicators of the state of the process. This paper proposes a data reconciliation strategy that deals with
the presence of such gross errors.

1. Introduction
The problem of obtaining reliable estimates of the state of
a process is a fundamental objective, these estimates being
used to understand the process behaviour. For that pur-
pose, a wide variety of techniques has been developed to
perform what is currently known as data reconciliation.
Unfortunately, the measurement may be unknowingly cor-
rupted by gross errors. As a result, the data reconciliation
procedure can give rise to absurd results and the estimated
variables are corrupted by this bias. Several schemes have
been suggested to cope with the corruption of normal as-
sumption of the errors [Narasimhan, 1989].
Methods to include bounds in process variables to im-
prove gross errors detection have been developed. One ma-
jor disadvantage of these methods is that they give rise to
situations that it may impossible to estimate all the va-
riable using only a subset of the remaining free gross er-
rors measurements.
There is also an important class of robust estimators
whose influence function are bounded and finit allowing to
reject outliers [Hampel, 1986].
Another approach is to take into account the non ideality
of the measurement error distribution using an objective
function constructed on contaminated error distribution.
In the following, we adopt and develop this idea for the
data reconciliation problem. Section 2 will be devoted to
recall the background of data reconciliation. In section 3,
robust data reconciliation is developped and will be illus-
trated through an academic example in section 4.

2. Data reconciliation background
The classical general data reconciliation problem [Mah,
1976], [Crowe, 1996], deals with a weighted least squares
minimisation of the measurement adjustments subject to
the model constraints. Indeed the model process equations
are taken as linear for sake of simplicity :

A x= 0,  A Œ¬m.n ,  x Œ¬n (1)

where x  is the state of the process. The measurement de-
vices give the information ˜ x Œ¬n :

  ̃ x = x + e,  p(e) ª N (0,V) (2)

where e Œ¬n  a vector of random errors characterised by
varaince matrix V  and normal probability distribution
(pd). In the least square sense, the well-known solution of
this problem is ˆ x = (I - V AT (A V AT )-1 A)y . [Maquin,

1991]. In fact, the method doesn't work in any situation,
the main drawback being the contamination of all estima-
ted values by the outliers. For that reason robust estima-
tors could be preferred, robustness being the ability to
ignore the contribution of extreme data i.e. such as gross
errors.

3. Robust data validation
If the measurements contain random outliers, then a single
pd described as in (2) cannot account for the high variance
of the outliers. To overcome this problem let us assume
that measure noise is sampled from two pd, one having a
small variance representing regular noise and the other ha-
ving a large variance representing outliers. Thus, for each
observation, we define :
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allowing to define the likelihood function :
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Minimising (3) in respect to x  gives :
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Thus system (4) is clearly non linear and we suggest the
following iterative scheme :
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4. Example and discussion
The method described in section 3 is applied to system
(3). Random errors were added to the 16 variables but the
gross errors were added only on some of them.

x1 - x2 + x4 = 0                  x2 - x3 - x11 = 0
x3 - x4 - x5 = 0                 x5 - x6 + x10 = 0
x6 - x7 - x8 = 0                 x7 - x9 - x10 = 0
x12 + x13 - x14 = 0             x14 - x15 - x16 = 0
x11 - x12 - x13 + x16 = 0

(3)

The performance results are given when three gross errors
(with a common magnitude of 8) affect the measurement
3, 7 and 16. Comparison of the proposed robust least
square algorithm (RLS) with the classical least squares
(LS) algorithm is now provided.

Var. true data meas.  RLS est. LS est.

1 115.00 114.50 114.26 114.91
2 132.00 129.80 130.55 132.05
3 106.40 114.53 105.26 108.28
4 17.00 17.04 16.28 17.14
5 89.40 88.37 88.97 91.14
6 109.60 110.90 110.05 111.86
7 61.00 69.72  61.74 63.56
8 48.60 48.58 48.30 48.29
9 40.80  40.93 40.66 42.85

10 20.20 20.23 21.08 20.72
11 25.60 25.55 25.29 23.77
12 33.10 33.34 33.54 36.97
13 5.10 5.07 5.27  5.15
14  38.20 39.03 38.82 42.13
15 25.60 25.56 25.29 23.77
16 12.60 20.61 13.53 18.36

Table 1. Measurements and reconciled data
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Figure 1. Corrective terms for RLS and LS

In table 1, columns 4 and 5 show the estimations obtained
with RLS and LS ; analysing the estimation errors, for
RLS estimator clearly allows to suspect variables 3, 7 and
16 for being contaminated by a gross error. Such conclu-
sion is more difficult to express with LS estimator.
Figure 1 visualizes more clearly the estimation errors both
for LS and RLS (on each graph, horizontral and vertical
axis are scaled with the number of the data and the magni-
tude of the absolute estimation error).

The proposed method has been extended to non linear sys-
tem. We relate only the bilinear case, in which the model
is described by : A x= 0 , A(x ƒ y) = 0  with A Œ¬m. n ,
x Œ¬n ,  y Œ¬n . The criterion to be maximised is then
defined by

F = p xi ˜ x i , q( )
i=1

v
’ p yi ˜ y i , q( )

Numerical data are not given and only graphical results are
shown with figure 2 : the upper part is concerned with
estimation errors obtained with RLS while lower part is
devoted to LS. For that simulation the x  and y  data were
respectively corrupted with gross errors on component 3,
7, 16 on x  and 1, 9, 12 on y . Without ambiguity, all the
gross errors have been detected and isolated with RLS that
is not the case with LS.

0 5 10 15
0

2

4

6

8
RLS x

0 5 10 15
0

1

2
RLS y

0 5 10 15
0

2

4

6

8
LS x

0 5 10 15
0

1

2
LS y

Figure 2. Corrective terms for RLS and LS

5. Conclusion
To deal with the issues of gross errors influence on data
estimation, the paper has presented a robust approach. For
that purpose, we use a cost function which is less sensi-
tive to the outlying observations than that of least
squares. As a perspective of development of robust recon-
ciliation strategies, there is a need for taking account of
model uncertainties and optimise the balancing parameter
m .
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